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Abstract—Ultrasonic guided waves offer an efficient means
of rapid non-destructive inspection over long distances. Several
researches has been conducted to study and modelise efficiently
the propagation of these waves in large structures with
arbitrary cross-sections like rails, bars, tubes, and plates.
Classical numerical methods such as the finite element method
(FEM), the semi-analytical finite element method (SAFE),
the hybrid method FEM-SAFE, etc. have proved successful
in this regard, but still have a major drawback: the high
consumption of resources (memory and CPU time). Recently,
the discontinuous Galerkin finite element method (DG-FEM)
has revolutionised computations in the time domain through
its potential in terms of applications and facilities it provides.
In this work, the potential benefits of a class of discontinuous
methods namely the interior penalty discontinuous Galerkin
methods (IPDG) in the frequency domain are investigated
by performing a modal analysis of a finite structure. The
natural frequencies and vibration modes are searched via
the eigenvalue problem derived from the discretisation of the
Helmholtz problem with free boundaries, in one dimension
of space. In line with the work of literature, it was found
that the resulting solutions are correct and free of spurious
modes. In addition, the discontinuous formulation provides an
interesting algebraic system with a block tridiagonal stiffness
matrix and a diagonal block mass matrix. Therefore, the
eigenproblem can be reduced from a generalised problem to
a standard one. For large size problems, this can lead to a
significant gain in computation time. Moreover, it retains its
block-tridiagonal form for which effective and well suited for
parallel implementation block algorithms are developed. Thus,
the DG-FEM allows a double gain strategy in computation
time/memory consumption and achieving high order accuracy.

Keywords—Structural health monitoring (SHM), Interior
penalty discontinuous Galerkin methods (IPDG), Eigenvalue
problem.

I. INTRODUCTION

The use of analysis tools such as numerical models is
a major asset in structural health monitoring (SHM) field,
particularly for non-destructive evaluation (NDE) systems
using ultrasonic guided waves since it deals with more
complex wave propagation phenomenon [1].

In the last decade, many researches has been conducted
to study and modelise the propagation of these waves in
arbitrary cross-section waveguides (rod, plate, tube, etc.).

Several numerical techniques have been developed to over-
come the limitations of analytical approaches exclusive to
simple geometries [2] [3]. First, the semi-analytical finite el-
ement method (SAFE) has been demonstrated very practical
for dispersion curves calculations and vibration modes [4]
[5]. It allows to model the propagation in an arbitrary cross-
section waveguide only from its section. Consequently, any
complex section can be treated and the calculation time
is constant regardless of the length of the relevant guide.
Then, the hybrid method FEM-SAFE allowed to study,
predict and facilitate interpretation of the wave interaction
with different types of defects. It consists of modeling
the damage in the waveguide locally, considering only the
faulty portion. Thus, structures with complex defects can be
treated effectively and in 2 and in 3 dimensions (for more
details see [6] ).

However, despite their success and economical scheme,
modeling real railway transport structures remained tedious.
As the size of the damage is reduced, it is necessary to
go up in frequency. Therefore, the mesh should be much
finer resulting in an increased resource consumption (CPU
time and memory demand) and/or a great error causing
an inaccurate numerical solution. Accordingly, modeling
beyond certain frequency ranges is a major challenge to
date [7]; performing a parametric study of different types
of damages remains very difficult.

Recently, discontinuous Galerkin finite element methods
(DG-FEM) has revolutionised the calculations in the time
domain due to their potential in terms of applications and
facilities they provide: geometric flexibility, high order local
approximations, naturally parallelisable, etc. Due to the
local nature of a discontinuous formulation, the solution is
sought at the elementary level to build afterwards the global
solution; no need to assemble global matrices, which greatly
reduces the memory demand. Moreover, the possibility of
parallel computing allows a considerable time gain. It uses
the same space of interpolating functions as the standard
method but with a relaxed or weak continuity in the inter-
elements boundaries. It was first introduced by Reed and
Hill in [8] to solve the neutron transport equation. Its recent
history and developments were re-examined in [9] [10] [11].

Yet, since their introduction, these DG methods were the
prerogative of time domain and boundary value problems.
The development of such methods in the frequency
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domain, precisely for eigenvalue problems (EP) stayed
very limited in the literature; This can be justified by the
appearance of fictional or parasite modes, i.e. solutions that
have no physical meaning. Later on, the issue of usability
of discontinuous methods for spectral approximation
(i.e. computation of eigenvalues and normal modes) was
addressed for the Maxwell and the Laplace eigenvalue
problems in 2 dimensions respectively in the work of
Hesthaven et al. [12] and of Antonietti et al. [13]. It was
found that actually several variants of DG methods provide
a spectrally correct solution and free of spurious modes.
An overview can be found in [14], Chapter 8.

In this paper, we examine the potential benefits of a class
of discontinuous methods namely the interior penalty family
(IPDG) for a subsequent application in the field of SHM
by ultrasonic guided waves. The aim of this work is to
perform a modal analysis of a finite structure in free regime,
through which the properties of the method and the resulting
eigenvalue problem can be investigated.

In this sense, a simple waveguide that is a long straight
bar with free ends with a uniform cross section along the
direction of propagation is considered. Its behavior analysis
consist of finding the wave numbers and the corresponding
normal modes through the resulting eigenvalue problem.
We restrict this study to the one dimensional case to
simplify the analysis, knowing that the same analysis
applies to the multidimensional case (2 and 3 D). In
addition, the elastodynamic wave equation is reduced to
the Helmholtz wave equation in the frequency domain,
a case for which theoretical aspects are available and
validated in the literature.

This study is organized as follows: in section (II), a
general description of the problem considered is presented.
The variational formulation of the standard FEM, called
continuous Galerkin (CG), is developed. A numerical ex-
ample is presented. Then, in section (III), the variational
formulation of the internal penalty discontinuous Galerkin
methods is studied. The results of the numerical experi-
ments are shown. A discussion on the obtained algebraic
system characteristics is exposed. Finally, a conclusion in
section (IV) summarizes the study and its interest to future
work.

II. CONTINUOUS GALERKIN METHOD

In this section, we present the considered problem and
the variational formulation of the classical finite element
method for spatial discretisation of the second-order wave
equation in one dimension. The eigenvalue problem being
built, a numerical example is presented.

A. General description of the problem

Consider a bar with an arbitrary cross-section (A) uni-
form along the propagation axis, of length L and free ends
as showed in the figure (1).

Under the assumption of plane deformation and a small
cross section relative to the length of the structure, the
traction-compression waves in the propagation axis x are

Figure 1. Longitudinal traction-compression waves of a uniform cross-
section rod in the axis of propagation x : Axial displacement of an element
of the rod.

governed by the second-order wave equation:

∂2u

∂t2
= c2L

∂2u

∂x2
. (1)

where cL =
√

E
ρ is the speed of propagation of longitudinal

waves; ρ is the mass density of the material of the rod; E
is Young’s modulus; t is the time.

Looking for time-harmonic solutions u(x, t) =
U(x)e−iωt, the equation (1) becomes the reduced
Helmholtz wave equation. Taking into account the stress
free ends, i.e. null Neumann boundary conditions, the
problem is set on the interval I = [a, b] and its limits
∂I = (a, b) such as:

∂2U(x)

∂x2
+ k2U(x) = 0, (2a)

∂U(x)

∂x
|∂I = 0, (2b)

where k =
ω

cL
expresses the wave number; ω is the angular

frequency.

To analyze the waveguide’s behavior, the wave numbers
k and the corresponding modes U(x) are to be found. In
other words, a Laplace eigenvalue problem is to be resolved.
In this simple geometry case, analytical exact solutions are
established. There is an infinity of solutions (Uex, kex),
mode shapes and corresponding natural frequencies, such
as: {

Uexm (x) = A cos(kmx), m = 0, 1, 2, 3, ...

kexm =
mπ

L
.

(3)

All the solutions k are positive real numbers. The first
frequency corresponding to a rigid body motion of the bar is
zero (k = 0). The second relates to the fundamental mode
of the traction-compression of rod, while the rest are its
multiples [15].

B. Variational formulation

By means of the method of weighted residuals, multi-
plying (2a) by a test or a weighting function v(x) and
integrating the result on the field I , we get the strong
integral form:

ˆ
I

(
∂2U(x)

∂x2
+ k2U(x)

)
v(x) dx = 0. (4)
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Integrating by parts the first term in (4), we obtain the
weak form :[

∂U(x)

∂x
v(x)

]
∂I

−
ˆ
I

∂U(x)

∂x

∂v(x)

∂x
dx+ k2

ˆ
I

U(x)v(x) dx = 0,

(5)

with: [
∂U(x)

∂x
v(x)

]
∂I

=
∂U(b)

∂x
v(b)− ∂U(a)

∂x
v(a). (6)

The spatial domain is then meshed into a finite number of
n identical elements {Ej = [xj , xj+1], j = 0, 1, ..., n− 1.}
size h. The integral over the whole area is transformed into
a sum of integrals over its elements. For an element Ej , we
write:ˆ xj+1

xj

∂U(x)

∂x

∂v(x)

∂x
dx− k2

ˆ xj+1

xj

U(x)v(x) dx

=
∂U(xn)

∂x
v(xn)− ∂U(x0)

∂x
v(x0),

(7)

A change of variables allows to transform the coordinates
xj and xj+1 in the coordinate system x into −1 and +1
in the local coordinate system of each element ξ. The
elementary integrals become:
ˆ xj+1

xj

∂U(x)

∂x

∂v(x)

∂x
dx =

ˆ +1

−1

∂U

∂ξ

∂ξ

∂x

∂v

∂ξ

∂ξ

∂x
det(J) dξ,

ˆ xj+1

xj

U(x)v(x) dx =

ˆ +1

−1
U(ξ)v(ξ)det(J) dξ,

(8)

where det(J) is the determinant of the Jacobian matrix such
as :

det(J) =
dx

dξ
=

∆xj
2

=
h

2
, (9)

The approximation of the solution function U(ξ) on each
element of N nodes is:

Ue(ξ) =

p∑
l=0

Pl(ξ)U
e
l = P · Ue, (10)

where {Pl(ξ), l = 0, 1, ..., p} is the set basis interpolating
polynomials of order p = N − 1.

Continuous Galerkin method consists of the choice of the
test function v(x) equal to the variation of U(x):

v(ξ) = δUe(ξ) = P · δUe. (11)

For simplicity, we use δUe = (δUe)TPT . Substituting
the function U by its nodal approximation (10) and the test
function v(x) by (11) on the left side of (7), we get:

2

h

ˆ +1

−1
(δUe)T

dPT

dξ

dP
dξ

Ue dξ−k2h
2

ˆ +1

−1
(δUe)TPTPUe dξ.

(12)
Thereby, a system of elementary linear algebraic equa-

tions is obtained:

(δUe)T
(
[Ke]− k2[Me]

)
Ue, (13)

where [Ke] and [Me] are respectively the elementary matri-
ces of mass and stiffness of size (N×N) such as:

[Ke] =
2

h

ˆ +1

−1

dPT

dξ

dP
dξ

dξ,

[Me] =
h

2

ˆ +1

−1
PTP dξ.

(14)

The assembly of the latter elementary matrices allows to
write:

(δU)T
(
[K]− k2[M]

)
U

=
∂U(xn)

∂x
δU(m)− ∂U(x0)

∂x
δU(1),

(15)

where [K] and [M] are the global matrices of size (m×m)
with m = p∗n+1; U is the global vector of m generalised
nodal displacements.

Finally, factoring and simplifying by δU 6= 0, the global
system is obtained in the following standard form:(

[K]− k2[M]
)

U = F, (16)

where, in the absence of body forces, F = [FL 0 FR]T is
the global vector of time harmonic forces.

C. Eigenvalue problem
The free harmonic wave propagation (i.e. modal analysis)

in a system occurs when external forces and constraints
border are zero (2b); FR and FL equal zero and so is F = 0.
Thus, the algebraic system (16) becomes the generalised
eigenproblem (GEP):

([K]− λ[M]) U = 0, (17)

where λ = k2 is a positive real scalar. This system of
m linear equations admits m non-trivial solutions (λi, Ui)
satisfying:

([K]− λi[M]) Ui = 0, (18)

where the quantities λi = k2i (i = 1, 2, ...,m) are the roots
of the algebraic equation:

det ([K]− λ[M]) = 0. (19)

Solving (17) provides the traction-compression mode
shapes - the eigenfunction Ui and the corresponding
numerical wave numbers ki =

√
λi. Note that λ1 ' 0 and

its own mode U1(x) = cte, where cte means constant,
corresponds to a rigid body motion.

1) Numerical example: Consider a bar of length L =
60 m on the interval I = [−1.59]. The domain is meshed
in 300 linear Lagrange elements. Figure (2) shows the first
6 solutions {(Ui, ki), i = 1, 2, .., 6}. The amplitudes of the
eigenmodes of each curve are normalized with respect to
their respective maximums.

III. DISCONTINUOUS GALERKIN METHODS

In this section, the derivation of the class of discontinuous
methods known as interior penalty family is presented.
Then, the algebraic system being constructed and the
boundary conditions applied, the eigenvalue problem is
solved. The discontinuous system features are discussed.
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Figure 2. The first 6 eigenmodes of traction-compression and the corresponding numerical wave numbers.

A. Discontinuous variational formulation

Unlike the continuous Galerkin formulation which
consists of integrating over the whole domain, the
discontinuous formulation is locale. The solution is
sought in each element separately. So the starting point is
essentially different.

Consider the problem defined in (2a). As shown in Figure
(3), the spatial domain I = [a, b] is meshed into a finite
number of n elements Ej = [xj , xj+1] where j = 0, .., n−1
is the index of the element.

Figure 3. Mesh of the domain I .

We define the size of the element by:

hj = xj+1 − xj , hmax(j) = max(hj−1, hj).

The essential idea of the method is derived from the fact
that the weighting functions can be chosen so that the field
variable, or its derivatives or usually both, are considered
discontinuous across the boundaries of the element while
the continuity of the domain is maintained. Therefore, we
define Dp the space of the discontinuous piecewise test
functions v(x) on the mesh Ih =

∑
j Ej :

Dp(Ih) = {v : v |Ej∈ Pp(Ej) ∀j = 0, .., n− 1},

where Pp(Ej) is the space of interpolation polynomials of
order p in the element Ej . Therefore, it is wise to note that

for v |Ej
defined only in inside, we write:

v(xj) = v(x+j ) = lim
ε→0
ε>0

v(xj + ε),

v(xj+1) = v(x−j+1) = lim
ε→0
ε>0

v(xj+1 − ε),

By means of the weighted residuals method, multiplying
(2a) by a discontinuous test function v(x) and integrating
the result of the element Ej , the elementary strong integral
form is obtained:ˆ xj+1

xj

(
∂2U(x)

∂x2
+ k2U (j)(x)

)
v(x) dx = 0, (20)

To get the elementary weak integral form, we integrate
by parts the first term in (20). We obtain:
ˆ xj+1

xj

∂U(x)

∂x

∂v(x)

∂x
dx− k2

ˆ xj+1

xj

U(x)v(x) dx

−
[
∂U(x)

∂x
v(x)

]xj+1

xj

= 0,

(21)

In CG formulation, the approached the displacement field
is forced to be continuous across the borders of the elements
- a direct consequence of global matrices. In contrast,
the DG formulation allows the field to be discontinuous
across the borders. Therefore, solutions on the interfaces are
duplicated. As illustrated in Figure (4), there is no coupling
between the elements and the values are not unique.

For this reason, a treatment of this inter-element discon-
tinuity is necessary to complete the discretisation. Thus, the
values at the borders are to be calculated based on the two
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Figure 4. Discontinuity and duplication of values at the inter-elements
borders.

values available:
U(x)|∂Ej = f0(UL, UR),

∂U(x)|∂Ej = f1(∂UL, ∂UR),
(22)

where ∂/UL and ∂/UR are respectively the values of
∂/U(x) on the left and the right of the element interfaces
∂Ej . This treatment is based on the use of a numerical flux
as demonstrated by Cockburn et al. [16], which must be
carefully defined since it dramatically affects the stability
and the accuracy of the method.

In order to establish this numerical flux, it is necessary
to define first the jump [[•]] and average {{•}} across the
interface between two adjacent elements:

J·K = (· |L)− (· |R),

{{·}} = qL(· |L) + qR(· |R),
(23)

where qL and qR are respectively the coefficients of the
average of the element on the left and the right of the
interface considered. This definition of the average is
general. However, in this work we limit ourselves to the
special case where qL = qR = 1

2 .

Considering the above definitions, the weak integral form
(21) becomes:ˆ xj+1

xj

∂U(x)

∂x

∂v(x)

∂x
dx− k2

ˆ xj+1

xj

U(x)v(x) dx

−
(
{{∂U(xj+1)

∂x
}}v(x−j+1)− {{∂U(xj)

∂x
}}v(x+j )

)
= 0.

(24)

By summing for all the elements, we get:
n−1∑
j=0

ˆ xj+1

xj

(
∂U(x)

∂x

∂v(x)

∂x
− k2U(x)v(x)

)
dx

−
n∑
j=0

{{∂U(xj)

∂x
}}Jv(xj)K = 0.

(25)

It is important to mention that this formulation remains
general and incomplete. The solution is neither convergent
nor stable. The existence and the uniqueness of the solution
can not be demonstrated. Moreover, it does not include a
treatment of the boundary conditions [17]. This will be the
subject of the next paragraph.

1) Interior penalty method: To obtain a valid method, the
numerical flux allowing information transmission between
the different elements must always and imperatively satisfy
the conditions of consistency, conservation and cœrcivity
[16] [18]. Starting from the first condition, the exact solution
Uex must satisfy:

JUexK = 0,

J
∂Uex

∂x
K = 0.

(26)

In this case, under the consistency hypothesis, it is
legitimate to add a term which vanishes when the numerical
solution is the right approximation of the exact one. In other
words, the penalty function:

g(U, v, ε) = ε

n∑
j=0

{{∂v(xj)

∂x
}}JU(xj)K, (27)

where ε is generally a real number to adjust.

By incorporating this function in (25), it yields the basic
expression of the interior penalty discontinuous Galerkin
formulation:
n−1∑
j=0

ˆ xj+1

xj

(
∂U(x)

∂x

∂v(x)

∂x
− k2U(x)v(x)

)
dx

−
n∑
j=0

{{∂U(xj)

∂x
}}Jv(xj)K + ε

n∑
j=0

{{∂v(xj)

∂x
}}JU(xj)K = 0

(28)
Indeed, there are three cases of ε in the literature. In

each case, a sub-method can be identified. But before
addressing this classification, it should be noted that some
of these sub-methods require other types of penalty for
them to be coercive [17]. Hence, there are two more types
of penalties involving the approximate function and its
derivative, respectively:

J0(U, v, α) =

n∑
j=0

α

hmax(j)
JU(xj)KJv(xj)K,

J1(U, v, γ) =

n−1∑
j=1

γ

hmax(j)
J
∂U(xj)

∂x
KJ
∂v(xj)

∂x
K,

(29)

where α and γ are two positive real numbers.

At last, by adding these last two functions in (28), we
obtain the general expression of the IPDG approximation
of the Laplacian operator:

n−1∑
j=0

ˆ xj+1

xj

(
∂U(x)

∂x

∂v(x)

∂x
dx− k2U(x)v(x) dx

)

−
n∑
j=0

{{∂U(xj)

∂x
}}Jv(xj)K + ε

n∑
j=0

{{∂v(xj)

∂x
}}JU(xj)K

+

n∑
j=0

α

hmax(j)
JU(xj)KJv(xj)K

+

n−1∑
j=1

γ

hmax(j)
J
∂U(xj)

∂x
KJ
∂v(xj)

∂x
K = 0,

(30)
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The derivations of IPDG method established in
the literature corresponding to ε = {−1; 0; +1} are
accordingly : the symmetric interior penalty method
(SIPDG), incomplete interior penalty method (IIPDG) and
non-symmetric penalty interior (NIPDG). Details of their
development and implementation are omitted here, however
a more general mathematical analysis, implementation
aspects and a detailed bibliography can be found in these
references [11] [19] [17].

Furthermore, it is important to highlight that there are
combinations of ε, α and γ which give unstable methods.
For example, in (25) when ε = α = γ = 0, the solution is
neither convergent nor stable. As for the variants defined
above, the existence, the uniqueness and the stability
conditions of the solution are shown in [17].

2) Neumann boundary conditions: In the context of dis-
continuous methods such as the IPDG, the implementation
of boundary conditions (BC) is a complicated task. The
only information exchanged between neighboring elements
is through the numerical flux on the common interface.
Therefor, this connection is the key to their implementation.
However, the peculiarity of the Neumann BC type (2b) is
that they satisfy directly the integral on the borders of the
domain ∂Ih. Like this, the corresponding jump and average
involving U and ∂U are zero. Thus, the term of this integral
can be moved directly to the right hand of (30).

ˆ
∂Ih

∂U(x)

∂x
v(x) dx =

[
∂U(x)

∂x
v(x)

]b
a

=
∂U(b)

∂x
v(x−n )− ∂U(a)

∂x
v(x+0 ).

(31)

Finally, the DG scheme is complete. The problem can
be defined as:

Find U ∈ Dp(Ih) such that :

∀v ∈ Dp(Ih), aε(U, v) = L(v). (32)

where the bilinear form aε(U, v) and linear form L(v) are
defined as:

aε(U, v) =

n−1∑
j=0

ˆ xj+1

xj

(
∂U(x)

∂x

∂v(x)

∂x
dx− k2U(x)v(x) dx

)

−
n−1∑
j=1

{{∂U(xj)

∂x
}}Jv(xj)K + ε

n−1∑
j=1

{{∂v(xj)

∂x
}}JU(xj)K

+

n−1∑
j=1

α

hmax(j)
JU(xj)KJv(xj)K

+

n−1∑
j=1

γ

hmax(j)
J
∂U(xj)

∂x
KJ
∂v(xj)

∂x
K,

L(v) =
∂U(b)

∂x
v(x−n )− ∂U(a)

∂x
v(x+0 ).

(33)

B. Eigenvalue problem
Likewise, the global linear algebraic system resulting

from the discretisation of the weak formulation (33) in
conservative free regime ({F} = 0) is an eigenvalue
problem. It can be rewritten in the following generalized
form: (

[AKE ]− λ[AM ]
)
{U} = 0, (34)

where λ = k2 is a positive real scalar; [AKE ] and
[AM ] are the global stiffness-flux and mass matrices
respectively. They are square matrices of size (m×m)
with m = n ∗ (p+ 1), called block or partitioned matrices.
The mass matrix is block diagonal, while the stiffness-flux
matrix is block tridiagonal; {U} is the global generalized
nodal displacement vector.

1) Numerical example: Consider a bar of length L = 60.
The physical domain is meshed into n Lagrange linear
elements (p = 1) of the same size h. The IPDG derivations
(Symmetric, Non-symmetric and Incomplete) are all used
with a factor γ = 0. The penalty parameter is chosen such
that α = 3/h > 0, in order to ensure stability.

Figure (5) shows the discontinuous mode shape and
the corresponding numerical wave number of the first six
modes {(Ui, ki), i = 1, 2, .., 6} resulting from the IIPDG
eigenproblem. Each element is drawn independently from
each other in a discontinuous manner with a different color
and dots indicating the degree of freedom of the element.
Amplitudes are normalized with respect to the global vector
Ui maximum.

The table(1) presents the numerical dispersion error on
the wavenumbers as well as the L2 error norm obtained for
the first six modes {(Ui, ki), i = 1, .., 6} on the mesh Ih.
They are, as defined in [20]:
(i) Numerical dispersion error on the wavenumber ki :

Ek = |kex − knum|;

(ii) L2 error norm on the mode shape Ui :

‖Eh‖L2 =

√√√√ n∑
j=0

(Uex(xj)− Unum(xj))
2
.

Subsequently, the convergence rate, the speed at which
the solution converges (i.e. the error decreases) depending
on the size of the mesh h, is calculated for the eigenmodes
and their corresponding wavenumbers resulting from each
sub-method GEP. In fact, the error can be written as:

E(h) = Chβ ,

where
β =

1

ln(2)
ln

(
E|h
E|h/2

)
.

is said the order of accuracy (id. convergence rate) of the
method in space.

Table (2) shows these rates for the eigenvalues and the
eigenfunctions in the L2 norm obtained from the three
sub-methods for n = 150 and n ∗ 2 = 300 corresponding
to h = 0.4 and h/2 = 0.2.
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Figure 5. The first 6 eigenmodes and wavenumbers obtained from resolving the GEP resulting from the IIPDG derivation with α = 3/h and γ = 0.

Table I. THE NUMERICAL DISPERSION ERROR AND L2 ERROR
NORM FOR THE FIRST 6 SOLUTIONS (Ui, ki) OBTAINED FROM THE

RESOLUTION OF GEP USING n = 150 ELEMENTS.

SIPDG
mode i 1 2 3

4 5 6
Ek 8.3780e−8 9.5692e−7 7.6538e−6

2.5823e−5 6.1181e−5 1.1942e−4

‖Eh‖L2 1.3236e−11 4.6879e−6 3.7495e−5

1.2650e−4 2.9970e−4 5.8496e−4

IIPDG
mode i 1 2 3

4 5 6
Ek 8.3780e−8 3.1899e−7 2.5519e−6

8.6122e−6 2.0413e−5 3.9866e−5

‖Eh‖L2 1.6168e−11 3.1253e−6 2.4999e−5

8.4351e−5 1.9988e−4 3.9021e−4

NIPDG
mode i 1 2 3

4 5 6
Ek 5.7876e−8 1.4049e−11 4.4776e−10

3.400e−9 1.4328e−8 4.3724e−8

‖Eh‖L2 1.5060e−11 2.3440e−6 1.8750e−5

6.3270e−5 1.4994e−4 2.9275e−4

First, the obtained results shown in Figure (5) and in
Table (1) are in good agreement with those obtained in
the numerical example of the continuous formulation in
section (II). Second, in agreement with the results found
in literature in [12] [13], the solutions provided by all
the IPDG derivations are spectrally correct, as well as the
multiplicity. They are free of spurious modes as the stability
condition α > 0 is widely verified. The modal base, the
spectrum and the eigenmodes space, is complete.

Table II. CONVERGENCE RATES OF THE IPDG METHODS FOR THE
FIRST 6 SOLUTIONS (Ui, ki) IN A UNIFORM MESH WITH h = 0.4 AND

h/2 = 0.2.

SIPDG
mode i 1 2 3

4 5 6
β(k) 0.3779 1.9999 1.9997

1.9993 1.9988 1.9982
β(U) 2.6635 2.4999 2.4997

2.4993 2.4987 2.4980

-
' 2
' 2.5

IIPDG
mode i 1 2 3

4 5 6
β(k) 0.0894 2.0000 2.0000

1.9999 1.9999 1.9998
β(U) 6.4006 2.4999 2.4998

2.4995 2.4992 2.4987

-
' 2
' 2.5

NIPDG
mode i 1 2 3

4 5 6
β(k) 1.6543 4.7580 4.0055

4.0010 4.0000 3.9999
β(U) 3.9869 2.5000 2.4998

2.4996 2.4994 2.4990

-
' 4
' 2.5

Furthermore, from the results of Table (2): the
symmetric and non-symmetric methods provide a second-
order precision approximation in the dispersion error on
the wavenumber, while the incomplete derivative provides
an approximation of fourth order of accuracy. Moreover,
the rate of convergence in the L2 error norm of the
eigenfunctions is the same for the whole IPDG family.
Finally, we note that these latter results depend on the
penalty value α and the polynomial order.
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2) Advantages and disadvantages of the discontinuous
system: The local nature of the DG formulation leads to
a duplication of the freedom degrees on the neighboring
elements borders. This, in the context of the temporal
evolution and initial value problems constitutes the
major drawback of the method since it increases the
computational cost for a same solution U .

However, in the context of eigenvalue problem this at-
tribute is double-edged since the unknown here is the couple
(λi,Ui). On the one hand, to the natural modes Ui it’s
still a heavy disadvantage. Nevertheless, it can be reduced
by decreasing the number of border nodes and introducing
internal nodes. This is done by increasing the degree of
the polynomials basis of the numerical solution (i.e. p-
refinement-).

On the other hand, this duplication has an interesting
effect on the eigenvalues λi. In a point xj , two solutions
are computed on the left and the right respectively Ui(x−j )

and Ui(x
+
j ). These latter when the solution Ui tends

to the exact one, become two sides of the same coin:
Ui(x

−
j ) = Ui(x

+
j ). Meanwhile, calculated eigenvalues

corresponding to these two points are still distinct.

In fact, a problem (34) of order m provides m solu-
tions λi. In the CG formulation , the problem is of size
{(m×m), m = (n∗p) + 1}, whereas in the DG solution it
is of size {(m×m), m = n ∗ (p+ 1)}. Ergo, for the same
order m, thus a same number of solutions ki we have:{

mCG = mDG,

mDG = nDG ∗ (pDG + 1),
(35)

with
nDG =

(nCG ∗ pCG) + 1

pDG + 1
. (36)

This means that in the context of high order methods,
the nDG is always less than nCG. For example, for
pDG = pCG = 1, the number of elements nDG is equal
to about half the number of elements required in CG
formulation. Thus, the solutions λi are obtained with fewer
elements than the CG, so less time consumed in calculating
elementary matrices and assembly.
Consequently, for wave numbers oriented computations
like dispersion curves calculations, the DG methods are
suitable since the same solution curves can be obtained
with less elements.

In addition, the mass matrix is block-diagonal. Hence, its
inverse is the block diagonal matrix of the inverse of the
blocks separately:

[M−1] =


[M−10 ] 0 · · · 0

0 [M−11 ] · · · 0
...

...
. . .

...
0 0 · · · [M−1n−1]

 (37)

These inverse elementary matrices can be calculated
independently and multiplied directly to build the dynamic
stiffness matrix [Ag] = [M−1K]. Therefore, the assembly
of the mass matrix is unnecessary, an operation that is
well known to be too expensive in computation time.

Besides, the matrix [Ag] keeps its block-tridiagonal shape.
Thus, the GEP is reduced into a standard problem. This
transformation for large problems can lead to a significant
gain in computation time.
The standard form problem is given by:

([Ag]− λ[I]) {U} = 0, (38)

where [I] is the identity matrix of order m.

Aside from that, it is well known that the extraction
of the eigenvalues is the most costly problem in terms of
calculation even for a standard problem. Nonetheless, the
discontinuous system (40) is even more interesting thanks to
its block-tridiagonal form for which numerous competitive
modal extraction methods based on the Divide-and-Conquer
computational techniques are developed in the literature.
This new generation of effective and suitable for parallel
execution algorithms operates on multiple portions/blocks
at the same time instead of scalars. They use decom-
position and multiplication block-algorithms such as LU,
QR, Cholskey, Strassen, etc. Therefore, they require fewer
operations and less storage especially for a block-tridiagonal
matrices and even less for symmetric positive definite ones
(for more details see [21] [22] [23] [24]). Therewith, their
gain increases with the size of the blocks, which is perfectly
in line with the desired solution. By increasing the size of
local matrices, i.e. the polynomial order p, the number of
blocks in the global matrix is reduced and so is the number
of operations. In this way, the computational time and the
accuracy are optimised.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a modal analysis of a free end finite 1-D
structure is performed in order to study the potential benefits
of the discontinuous Galerkin methods when applied to
harmonic wave propagation eigenvalue problems; this is
in the aim for a subsequent application in the ultrasonic
guided waves SHM area. In this sens, the second-order
wave equation in one dimension of space is discretised
using both continuous and discontinuous Galerkin methods;
the corresponding problems were constructed; numerical
examples were shown; and finally the advantages and
disadvantages of the discontinuous system over the
continuous one were discussed.

First, a good agreement between the results of the two
formulations is observed. In agreement with works in the
literature, the approximations obtained are spectrally correct
and free of spurious modes for all the interior penalty
discontinuous Galerkin methods family: symmetric, non-
symmetric and incomplete.

In addition, the results confirmed an optimal convergence
of the wave number for non-symmetric derivation (of
precision order β = 4), while for the symmetric and
incomplete methods, a convergence of the second order
is obtained; which is typical of the continuous method.
Further on, the rate of convergence in the L2 norm of the
eigenfunctions is the same for the whole IPDG family.
Indeed, these results depend on the penalty value α and the
selected polynomial order. The question on the influence
and role of the penalty as a function of the polynomial
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order is still to be detailed in a future work in the context of
analysis and comparison of performances of IPDG methods.

Moreover, unlike the development of DG methods in
the time domain ensuring naturally parallelisable numerical
schemes and unnecessary matrices assembly, for eigenprob-
lems the method requires at least an assembly operation and
a global system resolution. The elementary solution can not
be obtained directly and independently of the global solu-
tion, withal the multiplicity and complicity of the sought
solutions in such problems. However, all calculations done,
the discontinuous method is advantageous compared to the
continuous one, particularly in the oriented wavenumbers
calculations like dispersion curves which is consistent with
our future work for an application in the field of structural
health monitoring.

The discontinuous system is still attractive because of its
natural block partitioned form that allows to convert the
problem from generalised to standard form while saving an
assembly operation. Likewise, it enables the use of very fast,
efficient and highly parallel block-algorithms. Besides, the
performance of the resulting solvers is scalable according to
the increasing size of elementary blocks, so the polynomial
order. Therefore, in the context of high-order methods,
the DG formulation allows a double gain strategy: less
computational time/memory consumption and a high-order
achieved accuracy.
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