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Abstract: In this work, a modi�ed coupling Lattice Boltzmann Model (LBM) in sim-
ulation of cardiac electrophysiology is developed in order to capture the detailed activities
of macro- to micro-scale transport processes. The propagation of electrical activity in the
human heart through torso is mathematically modeled by bidomain type systems. As
transmembrane potential evolves, we take into account domain anisotropical properties
using intracellular and extracellular conductivity, such as in a pacemaker or an electrocar-
diogram, in both parallel and perpendicular directions to the �bers. The bidomain system
represents multi-scale, sti� and strongly nonlinear coupled reaction-di�usion models that
consist of a set of ordinary di�erential equations coupled with a set of partial di�er-
ential equations. Due to dynamic and geometry complexity, numerical simulation and
implementation of bidomain type systems are extremely challenging conceptual and com-
putational problems but are very important in many real-life and biomedical applications.
This paper suggests a modi�ed LBM scheme, reliable, e�cient, stable and easy to imple-
ment in the context of such bidomain systems. Numerical tests to con�rm e�ectiveness
and accuracy of our approach are provided and the propagation of electrophysiological
waves in the heart is analyzed.

Keywords: Coupled Lattice Boltzmann, Heart-torso coupling, coupled nonlinear
parabolic/elliptic PDEs, bidomain models, Ionic models, cardiac electrophysiology, .

1 Introduction

Computational cardiac electrophysiological modeling is now an important �eld in applied
mathematics. Indeed, nowadays, heart and cardiovascular diseases are still the leading
cause of death and disability all over the world. That is why we need to improve our
knowledge about heart behavior, and more particularly about its electrical behavior.
Consequently we want strong methods to compute electrical �uctuations in the torso
region to prevent cardiac disorders (as arrhythmias), or to study interactions between
brain and heart.

In this work, coupling Lattice Boltzmann Models (LBM) in simulation of cardiac
electrophysiology are developed in order to capture the detailed activities of macro- to
micro-scale transport processes. The propagation of electrical activity in the human heart
is mathematically modeled by bidomain type systems in heart, derived from Ohm's law,
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and is coupled with a general Laplace equation in surrounding tissues across the torso.
As heart is embedded in the torso, the dynamic of electrical potential in torso have to
be treated in detail to obtain realistic behavior in myocardium (the muscle tissue of the
heart) for several applications such as in a pacemaker or an electrocardiogram. The mus-
cle tissue of the ventricles and atria are composed of �bers which is oblong like cylinders
and formed by thick and thin protein �laments. Each �ber is connected to neighboring
�bers with a step-like surface. Because of these connections, the electrical current passes
from cell to cell and its direction is therefore determined by the orientation of the �bers.
This makes the myocardial tissue anisotropic, and we use intracellular and extracellu-
lar conductivity, with two tensors respectively called Kic and Kec, in both parallel and
perpendicular directions to those �bers to taking into account the anisotropy. So, even
if this tissue has a granular nature and is composed of multiple individual cells, we can
consider this tissue as continuous anisotropic domain which can be likened to a functional
syncytium. This biophysical model of electrical cardiac activity links electrophysiological
cell models, at small scales, and myocardial tissue mechanics, metabolism and blood �ow
at large scales. Indeed, myocardium �bers have a higher conductivity than normal mus-
cle �bers. That is because the heart cells are surrounded by a plasma membrane which
induces a di�erent chemical and electrical intracellular and extracellular behavior. There
is notably a higher intracellular potassium concentration than in the extracellular �uid.
This di�erence induces an out�ow of potassium which can be traduced by a di�erence of
distribution charge, called the transmembrane potential ρ. External electrical stimulus
control ion channels gates in the membrane, and intracellular and extracellular ionical
concentration changes while the transmembrane potential leaves its resting state (see e.g.
[14], [24] and the references therein).

So, the bidomain system represents multi-scale, sti� and strongly nonlinear coupled
reaction-di�usion models (governing the dynamics at cellular and tissue levels) that con-
sists of a set of ordinary di�erential equations coupled with a set of partial di�erential
equations in myocard to compute extracellular potential ρe, transmembrane potential ρ
and ionic variable U , which are linked to the Laplace equation in torso to compute torso
potential ρT with Robin type boundary conditions between torso and extra-cellular po-
tentials. During last years a lot of studies about bidomain models have led to results
about well-posedness, existence and uniqueness of solutions (see e.g., [3] , [9] and the
references therein), and several numerical methods based on methods as �nite di�erence
method or �nite element method are used to solve these models (see e.g., [31] and the
references therein).

However, there exist several models to simulate electrical behavior in electrophysiol-
ogy based on Hodgkin-Huxley equations to approximate the electrical characteristics of
excitable cells such as neurons and cardiac myocytes. In order to have a simple and real-
istic model, we choose 2-variable phenomenological Mitchell-Schae�er (MS) model [26] to
capture ionic phenomena. This model derived from Fenton-Karma 3-variable model [19]
is interesting because of its simplicity. In the same time, it has already shows its accuracy
and its realism. Due to dynamic and geometry complexity, numerical simulation and
implementation of bidomain type systems are extremely challenging conceptual and com-
putational problems but are very important in many real-life and biomedical applications.
This work presents a modi�ed coupled LBM scheme, reliable, e�cient, stable and easy to
implement in the context of such bidomain systems with Neumann type boundary con-
ditions in complex geometry boundaries. LBM was originated from Boltzmann's kinetic
theory of gases (70s), and attracts more and more attentions for simulating complex �uid
�ows since 90s. More recently, LBM has been extended successfully to simulate di�erent
types of parabolic reaction-di�usion equation as Keller-Segel chemotaxis model [35] and
monodomain model in cardiac electrophysiology [11], or Poisson equation [12]. The con-
cept of LBM, which is e�cient in terms of parallelization, is based on Boltzmann equations
which describe the evolution of particles in kinetic theory. LBM has two main phases:
one, local, which models the collision between particles and the second, along each di-
rection of interpolation, which models the transport phase. We demonstrate that solving
Lattice Boltzmann Equations (LBE) is equivalent to solving governing bidomain system

2



with Chapman-Enskog perturbation expansion [13]. This ansatz leads us to decompose
the particular distributions f around equilibrium state in di�erent scales of perturba-
tion with introduction of dimensionless Knudsen number ε which is a ratio between the
particular mean free path length to a representative physical length scale. So, for every
distribution function we can rewrite distribution function f as f = feq+εf (1)+ε2f (2)+....
Then, the main point of Chapman-Enskog expansion is to match LBE with Taylor series
with including the decomposition in order to recompose the governing bidomain system.
Finally, we propose two applications in simpli�ed square domains for heart and torso.
On the one hand, numerical results demonstrate the e�ectiveness and accuracy of our ap-
proach using general methods for bidomain type systems with full known data and chosen
analytical solution. On the other one, we treat the model with realistic data to show good
agreement with numerical results and potential behavior reported in the literature (see
e.g., [7], [29]).

The paper is structured as follows: �rst, in Section 2 we introduce the full coupled
heart and torso bidomain system and the MS ionic model. Then, in Section 3 after some
generalities about LBM, we develop our modi�ed coupled LBM for numerical simulations
of the considered model and investigate its asymptotic behavior as ε goes to zero. The
validity of this method is demonstrated in Section 4 by comparing the numerical solu-
tion to the known exact solution, and convergence of solution is established. Finally, the
propagation of electrophysiological waves in the heart is studied.

2 The bidomain Model

Figure 1: Modeling of the membrane as resistor and capacitor coupled in parallel.

The full coupled heart and torso bidomain model of cardiac tissue is expressed mathe-
matically by the following time dependent system of coupled partial di�erential equations
governing the electrical potentials in the physical region Ω = ΩH ∪ΩT , which is an open,
bounded, and connected subset of Rd, d ≤ 3 and during a time interval (0, T ). The two
spaces ΩH and ΩT are the regions occupied by the excitable myocardium tissue (the heart
muscle) and the thorax, respectively.

First, we will introduce the bidomain model in myocard ΩH . Propagation of electrical
potential is modeled by:

div(Kic∇ρi) = Im − κfis, div(Kec∇ρe) = −Im − κfes, (1)

where ρi and ρe are the intracellular and extracellular potentials, respectively; Kic and
Kec are the conductivity tensors describing the anisotropic intracellular and extracellular
conductive media; fis(x, t) and fes(x, t) are the respective externally applied current
sources after they passed through the thorax. The transmembrane current density is
described by Im and is given by the following expression:

Im = κ(cm
∂ρ

∂t
+ Iion), (2)
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where ρ is the transmembrane potential, which is de�ned as ρ = ρi − ρe, κ is the ra-
tio of the membrane surface area to the volume occupied by the tissue, cm term is the
transmembrane capacitance time unit area. We can assimilate this membrane to a simple
electrical circuit with a resistor associate to the ionic current (Iion) and a capacitor asso-
ciate to the capacitive current (Ic = cm

∂ρ
∂t ) in parallel (Figure 1). The tissue is assumed

to be passive, so the capacitance cm can be assumed to be not a function of the state
variables. The nonlinear operator Iion(x, t; ρ, U) describes the sum of transmembrane
ionic currents across the cell membrane with U the electrophysiological ionic state vari-
able (which describes e.g., the dynamics of ion-channel and ion concentrations in di�erent
cellular compartments). These variables satisfy the following ODE (with Hion a nonlinear
operator)

∂U

∂t
= Hion(x, t; ρ, U). (3)

From (1), (2) and (3), the bidomain model can be formulated in terms of the state
variables ρ, ρe and U as follows (in QH = ΩH × (0, T ))

κ(cm
∂ρ

∂t
+ Iion(.; ρ, U))− div(Kic∇ρ) = div(Kic∇ρe) + κfis,

−div((Kec +Kic)∇ρe) = div(Kic∇ρ) + κ(fes + fis),
∂U

∂t
= Hion(.; ρ, U).

(4)

The operators Iion and Hion which describe electrophysiological behavior depends on
the considered cell ionic model. We can choose physiological ionic models (e.g Djabella
and Sorine [16] or Luo and Rudy [25]), phenomenological models (e.g Fenton-Karma [19],
Fitzhugh-Nagumo [27], or Mitchell-Schae�er [26]). In our case, we choose the phenomeno-
logical two-variable classical model proposed by Mitchell and Schae�er as:

Iion(x, t; ρ, U) = I1(x, t; ρ) + I2(x, t; ρ)U,

Hion(x, t; ρ, U) =

{
λ1(x)U +H0(x, t) if ρ ≤ ρgate,
λ2(x)U if ρ > ρgate,

(5)

where operators I1, I2, functions λ1, λ2 and H0 depend of given parameters and where
ρgate is a given activation threshold.

Then, under the assumption that the heart is isolated from its surrounding (e.g. non-
coupled with the thorax), we will search ρT which is electrical potential in thorax with
solving propagation equation (in QT = ΩT × (0, T )):

−div(KT∇ρT ) = fT , (6)

where KT is the conductivity tensor describing the anisotropic conductivity in thorax,
and fT is the applied current source.

To close the system, we impose the following boundary conditions on Σ = ∂ΩH×(0, T )

(Kic∇(ρ+ ρe)).n = ζi, (Kec∇ρe).n = ζe, (7)

and on ΣT = ΓT × (0, T ) where ΓT = ∂ΩT \ ∂ΩH :

(KT∇ρT ).n = 0, (8)

where n being the outward normal to Γ = ∂ΩH and ζi and ζe are the intra- and
extra-cellular currents per unit area applied across the boundary, and the following initial
conditions (in ΩH)

ρ(t = 0) = ρ0, U(t = 0) = U0. (9)

Such problems have compatibility conditions determining whether there are any solutions
to the PDEs. This is easily found by integrating the second equation of (4) over the
domain and using the divergence theorem with the boundary conditions (7) (a.e. in (0,
T)). Then (for compatibility reasons), we require the following condition∫

Γ

(ζi + ζe)dΓ + κ

∫
ΩH

(fes + fis)dx = 0. (10)
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Moreover, the function ρe is de�ned within a class of equivalence, regardless of a time-
dependent function. This function can be �xed, for example by setting the following
condition (a.e. in (0, T)) ∫

ΩH

ρedx = 0. (11)

Under some hypotheses for the data and parameters of the system and some regularity
of operators Iion and Hion, system (4) with (7)-(9) and under the conditions (10)-(11) is
a well-posed problem (for more details see [3, 9]).

We respect the following boundary conditions on Σ:

(Kic∇ρ+ (Kic +Kec)∇ρe).n = (KT∇(ρT )).n, (12)

which induce the following boundary condition:

(KT∇ρT ).n = ζe + ζi on Σ. (13)

Remark 2.1 .

In order to guarantee the well-posedness of system (4)-(9) (under some hypotheses for
data and some regularity of the nonlinear operators), we can use the following regularized
version of ionic operators Hion, given by (5), (see e.g., [8])

Hr(x, t; ρ, U) = (−λ2(x) + (λ2(x)− λ1(x))h∞(ρ)) (U(x, t)− h∞(ρ))
−(H0(x, t) + λ1(x))h∞(ρ),

where h∞(ρ) is given by

h∞(ρ) =
1

2

(
1− tanh

(
ρ− ρgate

rg

))
,

with rg a positive parameter. We can deduce that

lim
rg→0

h∞(ρ) =

{
1 if ρ < ρgate,
0 if ρ > ρgate,

To illustrate the convergence of Hr to Hion, we consider, e.g., the following functions

λ1(x) =
1

Topen
, λ2(x) =

1

Tclose
,

H0(x, t) = − 1

Topen(ρmax − ρmin)2
.

with ρgate = −67mV , Topen = 100ms, Tclose = 120ms, and we choose U(x, t) = 10−3.
As Figure 2 shows for di�erent parameters rg, lim

rg→0
Hr(ρ, U) = Hion(ρ, U).
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Figure 2: Operator Hion and regularized operator Hr for rg = 1, rg = 0.5, rg = 0.1.
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3 Numerical method and algorithm

In this section, a numerical method is presented for the bidomain system (4) in two
space dimensions. For this, we introduce a coupled modi�ed LBM for solving the coupled
system of nonlinear parabolic and elliptic equations (i.e. the �rst and second equations
of (4)). Then we treat the ODE satis�ed by ionic state by applying Gronwall Lemma
to obtain an integral formulation, and by using a quadrature rule to approximate the
obtained integral.

In the sequel, without loss of generality, we assume cm = 1 and κ = 1. Moreover we
assume Kic = KicId, Kec = KecId, KT = KT Id, with Id identity matrix and Kic, Kec,
KT constants.

3.1 LBM for coupled parabolic and elliptic equations

In this �rst part, we develop and describe the modi�ed LBM to solve the following system
(which corresponds to two �rst parts of (4) and elliptic equation in thorax (6))

∂ρ

∂t
− div(Kic∇(ρ+ ρe)) = F (.; ρ, ρe), in QH

−div(Kic∇ρ+ (Kic +Kec)∇ρe) = G(.; ρ, ρe), in QH
−div(KT∇ρT ) = H(.; ρT ), in QT

(14)

where F , G and H are given nonlinear operators.
Before introducing the coupled LBM for system (14), it is important to explain the

main steps of this method and to give some de�nitions about discretization and operators
in case of a general reaction-di�usion equation.

3.1.1 LBM for general reaction-di�usion equations

Let us introduce the LBM for solving the following reaction-di�usion equation (with the
macroscopic variable Θ)

∂Θ(x, t)

∂t
− div(K(x, t)∇Θ(x, t)) = Φ(x, t; Θ), (15)

where Φ is a non linear operator and K is a di�usion coe�cient. The evolution equation
of the LBM for (15) is given by the following continuous Boltzmann equation [6]:

∂φ(x, t; e)

∂t
+ e · ∇φ(x, t; e) = J (x, t; e) (16)

with

Θ(x, t) =

∫
φ(x, t; e)de, (17)

where J (x, t; e) = Qcol(φ(x, t; e)) +P (x, t; e), φ(x, t; e) is the distribution function of the
single particle moving with velocity e at position x and time t, P is the distribution type
function of particle of macroscopic external force Φ moving with velocity e and Qcol is
the Bhatnagar-Gross-Krook (BGK) collision operator de�ned by (see [5]):

Qcol(φ(x, t; e)) = − 1

τ(x, t)
(φ(x, t; e)− φeq(x, t; e)) , (18)

where φeq is the Maxwell-Boltzmann equilibrium distribution function and τ is the di-
mensionless relaxation time.

LBM leads us to approximate (16) to recover reaction-di�usion equation (15) with
Chapman-Enskog expansion. In the method of Chapman-Enskog the distribution function
φ is expanded as : φ = φ(0) + εφ(1) + ε2φ(2) + .... =

∑∞
k=0 ε

kφ(k), which can be regarded
as a power series in a small variable ε or an expression that keeps track of the relative
orders of magnitude of the di�erent terms through the scaling parameter ε (the so-called
Kundsen number). The distribution functions φ(0), φ(1) and φ(2) represent the zero, �rst
and second approximation to the distribution function φ, and so on.
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Remark 3.1 .

It is important to note that φeq is an exact solution of the Chapman-Enskog's zero-order
approximation of the Boltzmann equation (see [22]).

The numerical solution of Boltzmann equation (16) requires to discretize the con�g-
uration spaces, velocities and time. For that, we discretize Q = Ω × (0, T ) in time and
space. Then we consider a regular lattice L with typical mesh size ∆x and time step
size ∆t, and we de�ne streaming lattice speed c = ∆x/∆t and lattice sound speed Cs by
3C2

s = c2. We note (ei)i=0,N−1 the discrete set of N admissible particle velocities (the
magnitude of each ei depends on the speed c) and we assume that for each node x of
lattice L, and each ei, the point x + ei∆t is also a node of the lattice L. For the latter,
we use the so-called D2QN LBM scheme (i.e., 2-dimensional and N velocity vectors).

Remark 3.2 .

Since the velocities ei are constant vectors in space-time variables, then, for su�ciently
regular scalar function Ξ, we have

ei · ∇Ξ = div (eiΞ) . (19)

First, we consider the �nite discrete-velocity system of the Boltzmann equation with
the �nite discrete velocity ei, for i = 0, N − 1 (by discretizing the velocity space by the
discrete set of microscopic velocities)

∂φi(x, t)

∂t
+ ei · ∇φi(x, t) = Ji(x, t) (20)

where, for each particle on the lattice, we associate discrete functions, for i = 0, N − 1,
φi(x, t) = φ(x, t; ei), φ

eq
i (x, t) = φeq(x, t; ei) and Ji(x, t) = J (x, t; ei), and the discrete

operator Φi of Φ, which describes the probability of streaming in one particular direction.
The aim of the so-called LBM scheme is to compute the distribution function of particle

(φi(x, t))i=1,N for x ∈ L and discrete values of time t by solving the discretization of the
Boltzmann's equation (20) in two steps (for each time): collision and streaming processes.
Then, by using a second order time integration scheme to approximate (20) (by limiting
physical space to a lattice and velocity space to the discrete set of microscopic velocities),
we can obtain

φi(x + ei∆t, t+ ∆t) = φi(x, t)−
1

τ(x, t)
(φi(x, t)− φeqi (x, t))

+∆tΦi(x, t) +
∆t2

2
(
∂

∂t
+ ei · ∇)Φi(x, t), (21)

which can be decomposed into the two key sub-steps i.e. collision and streaming. The
collision process is local in space and is given for each node x by:

φcoli (x, t) = φi(x, t)−
1

τ(x, t)
(φi(x, t)−φeqi (x, t))

+∆tΦi(x, t)+
∆t2

2
(
∂

∂t
+ ei · ∇)Φi(x, t) (22)

Then we can formally summarize the streaming step as a translation in post-collision dis-
tribution function �elds. For each node, the post-collision distribution function φcoli (x, t)
will replace post-collision distribution function of the neighbor node φcoli (x + ei∆t, t) ac-
cording to velocity ei (Fig. 4). So, streaming process is given for each velocity ei and in
a step time ∆t by:

φi(x + ei∆t, t+ ∆t) = φcoli (x, t) (the propagation of Lattice Boltzmann scheme). (23)

Finally, we recover governing macroscopic variable Θ by a summation of microscopic
particle distribution function φi, i = 1, N as follows (which is a discrete approximation
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of the integral given in (17))

N∑
i=0

φi(x, t) = Θ(x, t), for x ∈ L and discrete values of time t. (24)

In this paper, we consider the popular two-dimensional D2Q9 lattice, which involves
9 velocity vectors (i.e. N = 9). The microscopic velocities ei, for i = 0, 8 in D2Q9 are
given as (see Figure 3)

e0 =

(
0
0

)
,

ei = c

(
cos
(
(i− 1)π2

)
sin
(
(i− 1)π2

)) , for i = 1, 2, 3, 4,

ei =
√

2c

(
cos
(
(i− 9

2 )π2
)

sin
(
(i− 9

2 )π2
)) , for i = 5, 6, 7, 8.

According to the expression of the microscopic velocities ei, we prove easily that

8∑
i=0

ei =

8∑
i=0

wiei =

(
0
0

)
(25)

and
8∑
i=0

wieiei = C2
s Id, (26)

where the weight vector w = (w0, . . . , w8) is de�ned by

8∑
i=0

wi = 1, w0 = 4/9,

w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36.
(27)

Remark 3.3 .

With using D2Q9 model, we de�ne a 9-speed square lattice with square elements. It is also
possible to use D2Q7 model to obtain a 7-speed hexagonal lattice with triangular elements
or to de�ne other types of quadrature if it is needed. In all cases, we have to care about
geometric properties. Indeed, respect summations (25) and (26) is necessary to obtain a
convergent method.

Figure 3: Particle velocities for D2Q9 LBM
Figure 4: Streaming process of a lattice node

Remark 3.4 .

During streaming and collision processes, in order to satisfy boundary conditions, the
boundary nodes need special treatments on distribution functions, which are essential to
stability and accuracy of the method. We use extrapolation methods [20] and modi�ed
bounce-back methods [37], [23], [36].
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3.1.2 LBM for coupled system

In this part, we detail the modi�ed coupled LBM presented in [15], adapted from [35] with
introducing LBM for elliptic equations proposed in [12]. We begin with the introduction
of three Lattice Boltzmann type equations, which are associated to the three equations
of the coupled system of parabolic and elliptic equations (14), respectively. Then, we
de�ne discrete equilibrium functions, source terms, nonlinear operators and relaxation
time associated to each equation as in previous section. So, we associate the repartition
functions of particle moving with velocity ei, with i = 0, . . . , 8, fi, gi and hi for ρ, ρe and
ρT , respectively.

The discrete LBM equation for the �rst equation of (14), which is parabolic, can be
given by (at node x and time variable t)

fi(x + ei∆t, t+ ∆t) = fi(x, t)−
1

τ1(x, t)
(fi(x, t)− feqi (x, t))

+∆tS1
i (x, t;∇ρ,∇ρe)

+∆tFi(x, t) +
∆t2

2
(
∂

∂t
+ ei · ∇)Fi(x, t), (28)

where τ1(x, t) is the dimensionless relaxation factor, Fi(x, t) is the discrete source term
associated to operator F (x, t; ρ, ρe), S

1
i (x, t;∇ρ,∇ρe) is a link function (between the �rst

and second equations of (14)) related to gradients ∇ρ and ∇ρe.
For the two elliptic equations of (14), for a �xed time t, the discrete pseudo-time-

stepping LBM equations can be given (at node x and pseudo time variables r and s)

gi(x + ei∆r, r + ∆r; t) = gi(x, r; t)−
1

τ2(x, t)
(gi(x, r; t)− geqi (x, r; t))

+∆rS2
i (x, r; t,∇ρ,∇ρ̃e)

+∆rGi(x, r; t) +
∆r2

2
(
∂

∂r
+ ei · ∇)Gi(x, r; t), (29)

hi(x + ei∆s, s+ ∆s; t) = hi(x, s; t)−
1

τ3(x, t)
(hi(x, t)− heqi (x, s; t))

+∆sHi(x, s; t) +
∆s2

2
(
∂

∂s
+ ei · ∇)Hi(x, s; t), (30)

where ∆r and ∆s are given time-steps, τ2(x, t) and τ3(x, t) are the dimensionless relax-
ation factors, gi(x, r; t) and hi(x, s; t) are the distribution functions of particle moving
with velocity ei at node x and times r and s, Gi(x, r; t) and Hi(x, s; t) are the discrete
source terms associated respectively to operators G̃(x, r; t, ρ, ρ̃e) and H̃(x, s; t, ρ̃T ). The
term S2

i (x, r; t,∇ρ,∇ρ̃e) is the second link function (between the �rst and second equa-
tions of (14)) related to gradients ∇ρ and ∇ρ̃e.

Then, after each time step, we obtain new particular repartitions which lead us to
recover governing macroscopic potentials ρ, ρ̃e and ρ̃T with following summations:

8∑
i=0

fi(x, t) = ρ(x, t), (31)

1

1− w0

8∑
i=0

gi(x, r; t) = ρ̃e(x, r; t), (32)

1

1− w0

8∑
i=0

hi(x, s; t) = ρ̃T (x, s; t). (33)

The two elliptic equations of system (14) associated to the pseudo time variables r
and s induce subroutines in order to reach the following convergence:

lim
r→∞

ρ̃e(x, r; t) = ρe(x, t), (34)
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lim
s→∞

ρ̃T (x, s; t) = ρT (x, t), (35)

lim
r→∞

G̃(x, r; t, ρ, ρ̃e) = G(x, t; ρ, ρe) (36)

and
lim
s→∞

H̃(x, s; t, ρ̃T ) = H(x, t; ρT ). (37)

Now we de�ne equilibrium functions, source terms functions, linked functions and the
three dimensionless factors τ1, τ2, τ3. The local equilibrium distribution functions are
given by (∀i = 0, . . . , 8)

feqi (x, t) = wiρ(x, t), (38)

geqi (x, r; t) =

{
wiρ̃e(x, r; t) for i 6= 0,
(w0 − 1)ρ̃e(x, r; t) for i = 0

(39)

heqi (x, s; t) =

{
wiρ̃T (x, s; t) for i 6= 0,
(w0 − 1)ρ̃T (x, s; t) for i = 0.

(40)

According to (25) and (26), we can prove easily that

8∑
i=0

feqi (x, t) = ρ(x, t), (41)

8∑
i=0

eif
eq
i (x, t) =

(
0
0

)
, (42)

8∑
i=0

eieif
eq
i (x, t) = C2

sρ(x, t)Id, (43)

8∑
i=0

geqi (x, r; t) = 0, (44)

8∑
i=0

eig
eq
i (x, r; t) =

(
0
0

)
, (45)

8∑
i=0

eieig
eq
i (x, r; t) = C2

s ρ̃e(x, r; t)Id, (46)

8∑
i=0

heqi (x, s; t) = 0, (47)

8∑
i=0

eih
eq
i (x, s; t) =

(
0
0

)
, (48)

8∑
i=0

eieih
eq
i (x, s; t) = C2

s ρ̃T (x, s; t)Id. (49)

Remark 3.5 .

There is no uniqueness of equilibrium function de�nition. According to implementation
choices and type of PDE, we can choose more complex forms which are more e�cient
in term of implementation. This choice only depends on the de�nitions of link functions
S1
i and S2

i , and time relaxations τ1 and τ2. Indeed, we can take into account nonlinear
di�usion operators in relaxation terms τ1 and τ2, and we can merge equilibrium and link
functions (see e.g. [34]).

Then, we can de�ne the source terms Fi, Gi andHi, which are discrete approximations
of nonlinear operator and source terms of system (14), as follows (∀i = 0, . . . , 8)

Fi(x, t) = wiF (x, t; ρ, ρe), (50)

Gi(x, r; t) = wiG̃(x, r; t, ρ, ρ̃e), (51)

Hi(x, s; t) = wiH̃(x, s; t, ρ̃T ). (52)
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According again to (25) and (26), we can derive the following relations

8∑
i=0

Fi(x, t) = F (x, t; ρ, ρe), (53)

8∑
i=0

eiFi(x, t) =

(
0
0

)
, (54)

8∑
i=0

Gi(x, r; t) = G̃(x, r; t, ρ, ρ̃e), (55)

8∑
i=0

eiGi(x, r; t) =

(
0
0

)
, (56)

8∑
i=0

Hi(x, t) = H̃(x, s; t, ρ̃T ), (57)

8∑
i=0

eiHi(x, s; t) =

(
0
0

)
. (58)

Similarly, we de�ne the �rst link function S1
i associate to the �rst equation of (14)

and equation (28) by (∀i = 0, . . . , 8)

S1
i (x, t;∇ρ,∇ρe) = wi(βρ(x, t)ei · ∇ρe(x, t) + αρ(x, t)ei · ∇ρ(x, t)), (59)

and the second link function S2
i associate to the second equation of (14) and equation

(29) as (∀i = 0, . . . , 8)

S2
i (x, r; t,∇ρ,∇ρ̃e) = wi(βρe(x, t)ei · ∇ρ(x, t) + αρe(x, t)ei · ∇ρ̃e(x, r; t)), (60)

where we choose αρ, αρe , βρ, βρe to be:

αρ(x, t) = − 1

τ1(x, t)C2
s∆t

(
Kic(x, t) + C2

s∆t

(
1

2
− τ1(x, t)

))
, (61)

βρ(x, t) =
−Kic(x, t)

τ1(x, t)C2
s∆t

, (62)

αρe(x, t) = − 1

τ2(x, t)C2
s∆r

(
(Kic(x, t) +Kec(x, t)) + C2

s∆r

(
1

2
− τ2(x, t)

))
, (63)

βρe(x, t) =
−Kic(x, t)

τ2(x, t)C2
s∆r

. (64)

Remark 3.6 .

As values αρ and αρe de�ned by the equations (61) and (64) depend on relaxation factors
τ1 and τ2, we can choose them as arbitrary nonzero constants. However, for the relaxation
time τ3, in order to recover relaxation tensor KT Id in the governing elliptic equation, we
can de�ne it as

τ3(x, t) =
KT (x, t)

C2
s∆s

+
1

2
. (65)

By using the relations (25) and (26), we can deduce the following properties

8∑
i=0

S1
i (x, t;∇ρ,∇ρe) = 0, (66)

8∑
i=0

S2
i (x, r; t,∇ρ,∇ρ̃e) = 0, (67)
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8∑
i=0

eiS
1
i (x, t,∇ρ,∇ρe) = C2

s (βρ(x, t)∇ρe(x, t) + αρ(x, t)∇ρ(x, t)), (68)

8∑
i=0

eiS
2
i (x, r; t,∇ρ,∇ρ̃e) = C2

s (βρe(x, t)∇ρ(x, t) + αρe(x, t)∇ρ̃e(x, r; t)). (69)

Remark 3.7 .

The link functions S1
i and S2

i depend on the gradient of functions ρ, ρe and ρ̃e. The
approximation of these gradients can be directly derived from Chapman-Enskog expansion
with distribution functions fi and gi (see the below equations (101) and (111)), or with a
�nite di�erence approximation type method.

We can now prove formally that the above coupled LBM recovers the governing macro-
scopic system (14).

Proposition 3.1 .

If local equilibrium distribution functions feqi , geqi and heqi satisfy relations (41)-(49),
source terms Fi, Gi, Hi respect properties given by equations (53)-(58), properties (66)-
(69) hold for link functions S1

i and S2
i , then, for τ3 = KT

C2
s∆t + 1

2 , the above coupled LBM

recover correctly macroscopic system (14) through the Chapman-Enskog analysis.

Proof: To derive the macroscopic equation from developed coupled lattice BGK
model, the Chapman-Enskog expansion is applied under the assumption of small Kundsen
number ε (which can be a ratio between a characteristic length L and the particular mean
free path l) to determine equilibrium functions, source terms and link functions. Each
function is decomposed around its equilibrium state with di�erent scale of perturbations.
Then, the di�erence between associated LBE and Taylor series of the distribution function
lead us to recover the governing macroscopic equation.

Before to prove the main result of proposition, we introduce the main steps of demon-
stration with applying Chapman-Enskog expansion to distribution functions φi of LBE
(21) in order to recover governing reaction-di�usion equation (15). The macroscopic
variable Θ is de�ned in terms of distribution functions as

Θ =

8∑
i=1

φi =

8∑
i=1

φeqi , with

8∑
i=1

eiφ
eq
i =

(
0
0

)
and

8∑
i=0

eieiφ
eq
i (x, t) = C2

sΘ(x, t)Id.

(70)

For every distribution functions φi the Chapman-Enskog expansion is applied with the
small parameter ε as:

φi = φ
(0)
i + εφ

(1)
i + ε2φ

(2)
i + ...

= φeqi + εφ
(1)
i + ε2φ

(2)
i + ..., (71)

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, (72)

∇ = ε∇1 , div1 = ∇1·, (73)

where ti is the time scale, for i = 1, 2, x1 is the space scale and ∇1 = ∇x1
is the gradient

with respect to x1, and we assume that every source term Φi take the form

Φi = εΦ
(1)
i + ε2Φ

(2)
i , with

8∑
i=0

Φ
(n)
i (x, t) = Φ(n)(x, t) and

8∑
i=0

eiΦ
(n)
i (x, t) =

(
0
0

)
.

(74)
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Remark 3.8 .

The Chapman-Enskog expansion is usually called multi-scale Chapman-Enskog expansion,
because this ansatz lead us to decompose every function according to several perturbation
scales. But we take into account the multi-scale nature of a biological or physical problem
through the relaxation-time τ(x, t) which is related to di�usion properties and nondimen-
sionalization parameters.

Property 3.1 .

The functions φ
(0)
i are associated to unperturbed state (i.e.: ∀i = 0, . . . , 8 : φ

(0)
i = φeqi ).

Moreover, since each scale of perturbation is linearly independent of each other, we can
deduce that (for all n ∈ IN∗)

8∑
i=0

φ
(n)
i = 0. (75)

Then, we express the di�erence between (21) and Taylor series of distribution function
φi moving with velocity ei. Indeed Taylor series also lead us to approximate the term
φi(x + ei∆t, t+ ∆t) as:

φi(x + ei∆t, t+ ∆t) = φi(x, t) +

∞∑
k=1

∆tk

k!

(
∂

∂t
+ ei · ∇

)k
φi(x, t), (76)

where (
∂

∂t
+ ei · ∇

)k
=

k∑
n=0

(
k
n

)
∂k−n

∂tk−n
(ei · ∇)

n
,

with
(ei · ∇)n = (ei · ∇) (ei · ∇)

n−1
.

So, by using the expressions (74)-(73), Taylor series (76) and discrete LBE (21) become
(∀i = 0, . . . , 8)

φi(x + ei∆t, t+ ∆t) =
(
φ

(0)
i (x, t) + εφ

(1)
i (x, t) + ...

)
+

∞∑
k=1

∆tk

k!

(
ε
∂

∂t1
+ ε2 ∂

∂t2
+ ei · (ε∇1)

)k (
φ

(0)
i (x, t) + εφ

(1)
i (x, t) + ...

)
(77)

and

φi(x + ei∆t, t+ ∆t) =

(
1− 1

τ

)(
φ

(0)
i (x, t) + εφ

(1)
i (x, t) + ...

)
+

1

τ
φeqi (x, t) + ∆t

(
εΦ

(1)
i (x, t) + ε2Φ

(2)
i (x, t)

)
+

∆t2

2

(
ε
∂

∂t1
+ ε2 ∂

∂t2
+ εei · ∇1

)(
εΦ

(1)
i (x, t) + ε2Φ

(2)
i (x, t)

)
. (78)

By calculating the di�erence between relations (78) and (77), we can obtain

0 =
1

τ

(
φ

(0)
i (x, t) + εφ

(1)
i (x, t) + ...

)
+

∞∑
k=1

∆tk

k!

(
ε
∂

∂t1
+ ε2 ∂

∂t2
+ ei · (ε∇1)

)k (
φ

(0)
i (x, t) + εφ

(1)
i (x, t) + ...

)
−1

τ
φeqi (x, t)−∆t

(
εΦ

(1)
i (x, t) + ε2Φ

(2)
i (x, t)

)
−∆t2

2

(
ε
∂

∂t1
+ ε2 ∂

∂t2
+ εei · ∇1

)(
εΦ

(1)
i (x, t) + ε2Φ

(2)
i (x, t)

)
, (79)
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which can be rewritten as follows (according to di�erent scales of ε)

0 = Ψ
(0)
i (x, t) + εΨ

(1)
i (x, t) + ε2Ψ

(2)
i (x, t) + . . . , (80)

where probability density functions Ψ
(n)
i regroup all terms of (79) in order of εn, n = 0, ...,

respectively (which are partial di�erential equations for n 6= 0)

Ψ
(0)
i =

1

τ

(
φ

(0)
i − φ

eq
i

)
= 0, (81)

Ψ
(1)
i = ∆t

(
∂

∂t1
+ ei · ∇1

)
φ

(0)
i +

1

τ
φ

(1)
i −∆tΦ

(1)
i = 0, (82)

Ψ
(2)
i =

(
∆t2

2

(
∂

∂t1
+ ei · ∇1

)2

+ ∆t
∂

∂t2

)
φ

(0)
i + ∆t

(
∂

∂t1
+ ei · ∇1

)
φ

(1)
i

+
1

τ
φ

(2)
i −∆tΦ

(2)
i −

∆t2

2
(
∂

∂t1
+ ei · ∇1)Φ

(1)
i = 0, (83)

. . .

As functions Ψi are density probability functions, summation along each velocity
ei lead us to recover macroscopic functions, noted Ψ(n) at order n. Then, we recover
macroscopic functions with

8∑
i=0

(
Ψ

(0)
i + εΨ

(1)
i + ...

)
= Ψ(0) + εΨ(1) + . . . (84)

and with an order N accuracy as:

Ψ(0) + εΨ(1) + ...+ εN−1Ψ(N−1) +O(εN ) = Ψ +O(εN ). (85)

Finally, by retaining terms up toO(ε3), taking (82) times ε plus (83) times ε2, summing
over i and using (81), (70), (72), (73) and (75), we can obtain, by a suitable choice of
equilibrium distribution φeqi (with similar properties as feqi , geqi and heqi given in (41)-
(49)), source terms Φi (with similar properties as Fi, Gi and Hi given in (53)-(58)) and

relaxation time τ(x, t) = K(x,t)
C2

s∆t + 1
2 , the approximation of the general reaction-di�usion

equation (15).
In fact, according to (74),(70), (75) and using the relation (19), we can prove easily

from (82) that

Ψ(1) = ∆t(
∂Θ(x, t)

∂t1
− Φ(1)(x, t)). (86)

To treat the second order terms, we rewrite ∆t2

2

(
∂
∂t1

+ ei · ∇1

)2

φeqi with using �rst order

term given by (82) as:

∆t2

2

(
∂

∂t1
+ ei · ∇1

)2

φeqi =
∆t

2

(
∂

∂t1
+ ei · ∇1

)(
−1

τ
φ

(1)
i + ∆tΦ

(1)
i

)
,

= −∆t

(
∂

∂t1
+ ei · ∇1

)(
1

2τ
φ

(1)
i

)
+

∆t2

2

(
∂

∂t1
+ ei · ∇1

)
Φ

(1)
i

and then Ψ
(2)
i becomes

Ψ
(2)
i = ∆t

(
∂

∂t1
+ ei · ∇1

)(
(1− 1

2τ
)φ

(1)
i

)
+

1

τ
φ

(2)
i

+∆t

(
∂

∂t2

)
φeqi −∆tΦ

(2)
i . (87)

Summing over i the terms of equation (87), according again to (74),(70), (75) and using
the relation (19), we can deduce that

Ψ(2) = ∆t

(
∂Θ(x, t)

∂t2
− Φ(2) + div1

((
1− 1

2τ

) 8∑
i=0

eiφ
(1)
i

))
.
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To express
(
1− 1

2τ

) 8∑
i=0

eiφ
(1)
i , we use relation (82) and properties (74),(70) (using (19))

(
1− 1

2τ

) 8∑
i=0

eiφ
(1)
i = −τC2

s∆t

(
1− 1

2τ

)
∇1Θ.

According to the expression of τ we can deduce that τC2
s∆t

(
1− 1

2τ

)
= K, and then

Ψ(2) = ∆t(
∂Θ(x, t)

∂t2
− div1(K∇1Θ(x, t))− Φ(2)). (88)

Then, we can recompose Ψ with using (81), (85), (86) and (88) and deduce the following
approximation of equation (15) as

∂Θ(x, t)

∂t
− div(K(x, t)∇Θ(x, t))− Φ(x, t; Θ) = 0. (89)

Now, we will follow the previous process and steps for each equation of bidomain system
(14) and its associate discrete LBE system (28)-(30). For this, we perform the Taylor
expansion on (28)-(30) up to terms with order of O(ε3) and we use ansatz given by
equations (71)-(73) where distribution functions fi, gi and hi successively replace φi with
order 2 expansion given by equation (71) and we assume that the source terms and link
functions Fi,Gi, Hi, S

1
i and S

2
i take the form (which are de�ned like source term Φi with

order 2 expansion)

Fi = εF
(1)
i + ε2F

(2)
i , with

8∑
i=0

eiF
(j)
i = 0, for j = 1, 2, (90)

S1
i = εS

1,(1)
i , with

8∑
i=0

S
1,(1)
i = 0, (91)

Gi = εG
(1)
i + ε2G

(2)
i , with

8∑
i=0

eiG
(j)
i = 0, for j = 1, 2, (92)

S2
i = εS

2,(1)
i , with

8∑
i=0

S
2,(1)
i = 0, (93)

Hi = εH
(1)
i + ε2H

(2)
i , with

8∑
i=0

eiH
(j)
i = 0, for j = 1, 2. (94)

First, we consider the �rst equation of (14) and its associate discrete LBE system (28).

According to (90)-(91) and using similar arguments to derive the terms Ψ
(n)
i in (81)-(87),

we can obtain the following terms P(n)
i , n = 0, 2 (after division by ∆t)

P(0)
i = − 1

∆tτ1

(
f

(0)
i − feqi

)
= 0, (95)

P(1)
i =

(
∂

∂t1
+ ei · ∇1

)
feqi +

1

τ1∆t
f

(1)
i

−S1,(1)
i − F (1)

i = 0, (96)

P(2)
i =

(
∂

∂t1
+ ei · ∇1

)
f

(1)
i

+

(
∂

∂t2
+

∆t

2

(
∂

∂t1
+ ei · ∇1

)2
)
feqi

+
1

τ1∆t
f

(2)
i − ∆t

2

(
∂

∂t1
+ ei · ∇1

)
F

(1)
i − F (2)

i = 0. (97)
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Summing over i the terms of equation (96) and using the fact that
8∑
i=0

f
(n)
i = 0, for n 6= 0,

and the relations (41), (42), (53), (66), (90) and (91) we obtain

εP(1) = ε

8∑
i=0

P(1)
i = ε

∂ρ

∂t1
− εF (1) = 0. (98)

By rewriting the equation (97) with the equation (96), we obtain

P(2)
i =

(
∂

∂t1
+ ei · ∇1

)(
(1− 1

2τ1
)f

(1)
i

)
+
∂feqi
∂t2

+
1

τ1∆t
f

(2)
i

+
∆t

2

(
∂

∂t1
+ ei · ∇1

)
S

1,(1)
i − F (2)

i . (99)

Summing over i the terms of equation (99) and using the fact that
8∑
i=0

f
(n)
i = 0, for n 6= 0,

Remark 3.2 and the relations (41), (42), (53), (66), (90) and (91) we obtain

ε2P(2) = ε2
8∑
i=0

P(2)
i = ε2

∂ρ

∂t2
+ div

(
ε(1− 1

2τ1
)

8∑
i=0

eif
(1)
i

)

+
∆t

2

(
div(

8∑
i=0

eiS
1
i )

)
− ε2F (2),

(100)

with F (j) =
8∑
i=0

F
(j)
i , for j = 1, 2.

Now we calculate (1− 1
2τ1

)ε
8∑
i=0

eif
(1)
i . From (96) (to express

8∑
i=0

eif
(1)
i ) and according

to (19), (54), (68), (90) and (91), we can deduce

(1− 1

2τ1
)ε

8∑
i=0

eif
(1)
i = −(1− 1

2τ1
)C2

s τ1∆t∇ρ+ τ1∆t(1− 1

2τ1
)

8∑
i=0

eiS
1
i . (101)

According to (68) and (101), the relation (100) becomes

ε2P(2) = ε2
∂ρ

∂t2
− ε2F (2)

+div

(
C2
s τ1∆t

(
βρ∇ρe + (αρ + (1− 1

2τ1
))∇ρ

))
.

(102)

Then (from (59), (61) and (62))

ε2P(2) = ε2
∂ρ

∂t2
− ε2F (2) − div (Kic(∇ρ+∇ρe)) . (103)

Consequently, from (98) and (103), we can recover the macroscopic parabolic equation of
(14) with

0 = P(0) + εP(1) + ε2P(2) +O(ε3) =
∂ρ

∂t
− F − div (Kic (∇ρ+∇ρe)) . (104)

Second, for a �xed time t, we consider the second equation of (14) and its associate

discrete pseudo-time-stepping LBM system (29) (for pseudo-time variables r with
∂

∂r
=
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ε
∂

∂r1
+ ε2 ∂

∂r2
and pseudo-time step ∆r). By using similar arguments to derive the terms

P(n)
i , n = 0, 2, we can obtain the following terms (after division by ∆r)

Q(0)
i = − 1

∆tτ2

(
g

(0)
i − g

eq
i

)
= 0, (105)

Q(1)
i =

(
∂

∂r1
+ ei · ∇1

)
geqi

+
1

τ2∆r
g

(1)
i − S

2,(1)
i −G(1)

i = 0, (106)

Q(2)
i =

(
∂

∂r1
+ ei · ∇1

)
g

(1)
i

+

(
∂

∂r2
+

∆r

2

(
∂

∂r1
+ ei · ∇1

)2
)
geqi

+
1

τ2∆r
g

(2)
i −

∆r

2

(
∂

∂r1
+ ei · ∇1

)
G

(1)
i −G

(2)
i = 0. (107)

Summing over i the terms of equation (106) and using the fact that
8∑
i=0

g
(n)
i = 0, for

n 6= 0, and the relations (44), (45) and (93) we obtain

Q(1) = −G̃(1), (108)

with G̃(1) =
8∑
i=0

G
(1)
i .

By rewriting the equation (107) with the equation (106), we obtain

Q(2)
i =

(
∂

∂r1
+ ei · ∇1

)(
(1− 1

2τ2
)g

(1)
i

)
+
∂geqi
∂r2

+
1

τ2∆r
g

(2)
i

+
∆r

2

(
∂

∂r1
+ ei · ∇

)
S

2,(1)
i −G(2)

i . (109)

Summing over i the terms of equation (109) and using the fact that
8∑
i=0

g
(n)
i = 0, for

n 6= 0,
8∑
i=0

geqi = 0, Remark 3.2 and the relations (44), (45)and (93) we obtain

ε2Q(2) = ε2
8∑
i=0

Q(2)
i = div

(
ε(1− 1

2τ2
)

8∑
i=0

eig
(1)
i

)

+
∆r

2

(
div(

8∑
i=0

eiS
2
i )

)
− ε2G̃(2),

(110)

with G̃(2) =
8∑
i=0

G
(2)
i .

Now we calculate (1 − 1
2τ2

)ε
8∑
i=0

eig
(1)
i . From (106) and according to (19), (54), (69),

(92) and (93), we can deduce

(1− 1

2τ2
)ε

8∑
i=0

eig
(1)
i = −(1− 1

2τ2
)C2

s τ2∆r∇ρ̃+ τ2∆r(1− 1

2τ1
)

8∑
i=0

eiS
2
i . (111)
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According to (69) and (111), the relation (110) becomes

ε2Q(2) = −ε2G̃(2)

+div

(
C2
s τ2∆r

(
βρe∇ρ+ (αρe + (1− 1

2τ2
))∇ρ̃e

))
.

(112)

Then (from (60), (63) and (64))

ε2Q(2) = −ε2G̃(2) − div (Kic∇ρ+ (Kic +Kec)∇ρ̃e) . (113)

We can now sum the terms of order 0 to 2 to obtain the following equation (from
(108) and (113))

0 = Q(0) + εQ(1) + ε2Q(2) +O(ε3) = −G̃− div (Kic∇ρ+ (Kic +Kec)∇ρ̃e) . (114)

To recover the �rst elliptic equation of system (14), we use the two limits (34) and
(36) to write the following limit: (formally)

lim
r→∞

(
−G̃(x, r; t, ρ, ρe)− div (Kic∇ρ(x, t) + (Kic +Kec)∇ρ̃e(x, r; t))

)
= −G(x, t; ρ, ρe)− div (Kic∇ρ(x, t) + (Kic +Kec)∇ρe(x, t)) . (115)

Finally, we apply the previous method to recover the governing second elliptic equation
of the system (14). For that, for a �xed time t, we consider the discrete pseudo-time-

stepping LBM system (30) (for pseudo-time variables s with
∂

∂s
= ε

∂

∂s1
+ ε2 ∂

∂s2
and

pseudo-time step ∆s). By using similar arguments to derive the terms Q(n)
i , n = 0, 2, we

can obtain the following terms (after division by ∆s)

R(0)
i = − 1

τ3∆s

(
h

(0)
i − h

eq
i

)
= 0, (116)

R(1)
i =

(
∂

∂s1
+ ei · ∇1

)
heqi +

1

τ3∆s
h

(1)
i −H

(1)
i = 0, (117)

R(2)
i =

(
∂

∂s1
+ ei · ∇1

)
h

(1)
i

+

(
∂

∂s2
+

∆s

2

(
∂

∂s1
+ ei · ∇1

)2
)
heqi

+
1

τ3∆s
h

(2)
i −

∆s

2

(
∂

∂s1
+ ei · ∇1

)
H

(1)
i −H

(2)
i = 0. (118)

Summing over i the terms of equation (117) and using the fact that
8∑
i=0

h
(n)
i = 0, for

n 6= 0, and the relations (47) and (48) we obtain

εR(1) = −εH̃(1), (119)

with H̃(1) =
8∑
i=0

H
(1)
i .

By rewriting the equation (118) with the equation (117), we obtain

R(2)
i =

(
∂

∂s1
+ ei · ∇1

)(
(1− 1

2τ3
)h

(1)
i

)
+
∂heqi
∂s2

+
1

τ3∆r
h

(2)
i

−H(2)
i . (120)
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Summing over i the terms of equation (120) and using the fact that
8∑
i=0

h
(n)
i = 0, for

n 6= 0,
8∑
i=0

heqi = 0, Remark 3.2 and the relations (47) and (48) we obtain

ε2R(2) = ε2
8∑
i=0

R(2)
i = div

(
ε(1− 1

2τ3
)

8∑
i=0

eih
(1)
i

)
−ε2H̃(2),

(121)

with H̃(2) =
8∑
i=0

H
(2)
i .

Now we calculate (1 − 1
2τ3

)ε
8∑
i=0

eih
(1)
i . From (117) and according to (19), (58) and

(65), we can deduce

(1− 1

2τ3
)ε

8∑
i=0

eih
(1)
i = −(1− 1

2τ3
)C2

s τ3∆s∇ρ̃T = −KT∇ρ̃T . (122)

According to (122), the relations (121) becomes

ε2R(2) = −ε2H̃(2) − div (KT∇ρ̃T ) . (123)

We can now sum the terms of order 0 to 2 to obtain the following equation (from (119)
and (123))

0 = R(0) + εR(1) + ε2R(2) +O(ε3) = −H̃ − div (KT∇ρ̃T ) . (124)

To recover the second elliptic equation of system (14), we use the two limits (35) and (37)
to write the following limit (formally):

lim
s→∞

(
−H̃(x, s; t, ρT )− div (KT∇ρ̃T (x, s; t))

)
= −H(x, t; ρT )− div (KT∇ρT (x, t)) . (125)

This completes the proof.

3.2 Treatment of ODE

Now, we present brie�y the method to solve ODE satisfy by variable V on the interval
[s1, s2], with initial condition V (x, s1) = V0(x). As:

∂V (x, s)

∂s
= W (x, s;V ), (126)

where operator W is de�ned by

W (x, s;V ) = W̃ (x, s)− λ(x)V (x, s). (127)

By using Gronwall Lemma we can deduce that

V (x, s2) = V0(x)e−λ(x)(s2−s1) + e−λ(x)s1

s2∫
s1

W̃ (x, s)eλ(x)sds.

Then, according to approximation of derived integral by trapezoidal method between t1
and t2 we obtain the following approximation of V denoted also by V

V (., s2) = V0(.)e−λ(.)(s2−s1) +
s2 − s1

2

(
W̃ (., s1) + W̃ (., s2)eλ(.)(s2−s1)

)
. (128)

In our case, we assume that for all t ∈ [0;T −∆t] the ionic function U given by (3)
looks like V given by (127) between t and t+ ∆t . So with thin enough discretization, we
aim to reach an order 2 convergence space accuracy method to approximate ionic variable
U with using relation (128).
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3.3 Algorithm

After non-dimensionalization, mesh de�nition and initialization of initial conditions, pa-
rameters and data, the proposed algorithm to solve the full coupled heart and torso
bidomain system can be summarized as follows

1. Initialization: t=0.

2. LBE according to time t by using (28) to compute ρ(x, t+ ∆t).

3. Trapezoidal method by using (128) to compute U(x, t+ ∆t).

4. Loop on new time variable r:

(a) LBE according to time r by using (29) to compute ρ̃e(x, r + ∆r; t+ ∆t) (i.e.,
approximation of ρe(x, t+ ∆t)) .

(b) If we don't reach the stopping criteria chosen to be:

|gi(x, r + ∆r; t)− gi(x, r; t)| < Cρe∆xNe , (129)

where Cρe is a chosen constant and Ne the order of accuracy we want, set
r = r + ∆r and go back to (4a).

5. Set ρe(x, t+ ∆t) := ρ̃e(x, r; t+ ∆t).

6. Loop on new time variable s:

(a) LBE according to time s by using (30) to compute ρ̃T (x, s+ ∆s; t+ ∆t) (i.e.,
approximation of ρT (x, t+ ∆t)), with taking into account boundary condition
(12) between ρT and ρe .

(b) If we don't reach the stopping criteria chosen to be:

|hi(x, s+ ∆s; t)− hi(x, s; t)| < CρT ∆xNT , (130)

where CρT is a chosen constant and NT the order of accuracy we want, set
s = s+ ∆s and go back to (6a).

7. Set ρT (x, t+ ∆t) := ρ̃T (x, s; t+ ∆t).

8. If t 6= T , set t := t+ ∆t and go back to (2).

Remark 3.9 .

In order to parallelize the LBM, the main idea is to treat separately the collision and the
streaming phases. The collision step is strictly local and can be computed on each node
independently of its neighbors. Then, the streaming is just an exchange of data between its
node of origin and the adjacent neighbor along velocity (see e.g. [30], [38], and references
therein).

4 Numerical simulation and applications

To validate the capacity of our modi�ed coupled LBM to deal with 2D bidomain systems,
several situations are numerically simulated. In this study, we consider the phenomeno-
logical two-variable model proposed by Mitchell and Schae�er [26]. The functions Hion

and Iion are given by:

Iion = − U

Tin
(ρ− ρmin)2(ρmax − ρ)

ρmax − ρmin

+
1

Tout
ρ− ρmin

ρmax − ρmin
(131)
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and

Hion =

{
U
Topen −

1
Topen(ρmax−ρmin)2 if ρ < ρgate,

U
Tclose if ρ ≥ ρgate.

(132)

Then, the ionic variable U depends on the change-over voltage ρgate, the resting potential
ρmin, the maximum potential ρmax, and on the time constants for opening, Topen, and
closing, Tclose. The time constants Tin and Tout are respectively related to the length of
depolarization and repolarization phases. These constants are such that

Tin < Tout < min(Topen, Tclose).

In the sequel, we take the values of the parameters, which are consistent with the
analysis and observation reported in Mitchell and Schae�er [26], given e.g. in [7] (see
Table 1). Moreover, we assume that the domain heart-torso is in a square region Ω =

Description name value (unit)

Cell surface to volume ratio κ 200 (cm−1)
transmembrane capacitance Cm 10−3 (F/cm2)

Depolarization length Tin 4.5 (ms)
Repolarization length Tout 90 (ms)
Opening time constant Topen 100 (ms)
Closing time constant Tclose 130 (ms)
Change-over voltage ρgate −67 (mV)
Resting potential ρmin −80 (mV)

Maximum potential ρmax 20 (mV)
Activation time Tact 10 (ms)
Time-delay Td 20 (ms)

Table 1: Cell membrane parameters.

[−LT /2;LT /2] × [−LT /2;LT /2] = ΩH ∪ ΩT , where ΩH = [0;LH ] × [0;LH ] and ΩT =
Ω \ ΩH , where LH and LT are respectively heart and torso lengths (Figure 5).

Figure 5: Heart-torso domain.

Nota Bene: If the exact solution φsol is known, we can measure the e�ciency of
method with the following L2 relative error:

Errφ =
‖φsol − φ‖L2(Ω)

‖φsol‖L2(Ω)
.

4.1 Benchmark problem and validation

In this �rst analysis, we investigate the accuracy and spatial convergence rate of the
proposed modi�ed LBM for which we postulate that the error estimates of the method is
of order 2 in space and of order 1 in time (for su�ciently regular solution). We assume

21



LH = 1, LT = 3 and T = 1, and we take Kic = 1, Kec = 1, ξi = 0, ξe = 0, ρ(x, t = 0) = 0
and U(x, t = 0) = cos(π(x+ y)). Moreover the source terms Fρ, Fρe and FρT are added
to parabolic-elliptic system (4) and elliptic equation in thorax (6), respectively, to ensure
that the function (ρ, ρe, U, ρT ) given by (with x = (x, y)) :

ρ(x, t) = tx2(x−1)2y2(y−1)2, ρe(x, t) = t(cos(πx)+cos(πy)), U(x, t) = et cos(π(x+y))

ρT (x, t) = Kicρ(x, y, t) + (Kic +Kec)ρe(x, y, t)

is the exact solution of system (4)-(6) (with appropriate source term).
To study the convergence, we have constructed a sequence of meshes with decreas-

ing spatial step ∆x between 1/25 and 1/200 and ∆t = ∆x2. Figures 6 ,8, 7, 9 show
respectively numerical solution of ρ, ρe, Uand ρT at t = 1 for the step ∆x = 1/100.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

y

x

ρ
(x
,y
,1
)

Figure 6: Potential ρ in ΩH at t = 1.
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Figure 7: Ionic variable U in ΩH at t = 1
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Figure 8: Potential ρe in ΩH at t = 1. Figure 9: Potential ρT in ΩT at t = 1

Since, the chosen stopping criteria for the iterative method to approach ρe and ρT
involves a constant error (because this criteria is not de�ned in function of lattice size
cell), then we analyze only the numerical estimate of relative error of approximation of ρ
and U .
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We present on Figures 10 and 11 (at t = 0.5 and t = 1) the convergence curves,
log(Error) versus ∆x, for ρ and U (numerical values can be found in Table 2). We
observe that the slope of error curves for ρ passes approximately from 1.5 to 2 and the
slope of error curves for U is approximately equal to 2. This shows that our numerical error
estimates agree with the postulated error estimates, and indicate the good performance
of our method.

t=0.5 ∆x Errρ ErrU
1/25 0.0937 7.972× 10−4

1/50 0.0334 2.039× 10−4

1/75 0.0141 7.971× 10−5

1/100 0.0074 4.483× 10−5

1/150 0.0032 1.990× 10−5

1/200 0.0017 1.121× 10−5

t=1 ∆x Errρ ErrU
1/25 0.1204 0.0012
1/50 0.0541 3.117× 10−4

1/75 0.0277 1.471× 10−4

1/100 0.0187 7.314× 10−5

1/150 0.0097 3.417× 10−5

1/200 0.0053 2.237× 10−5

Table 2: Relation between relative error and lattice spacing for ρ and U.

−8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5
−10

−9

−8

−7

−6

−5

−4

−3

Log2(∆x)

L
o
g
2
(E

rr
ρ
)

 

 

t=0.5

t=1

Figure 10: Error curves with respect to
spatial step ∆x for ρ in ΩT at t = 0.5 and
t = 1.
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Figure 11: Error curves with respect to
spatial step ∆x for U in ΩT at t = 0.5 and
t = 1.

Remark 4.1 .

We notice that the two elliptic equations have relative errors which depend on convergence
criteria given in (129) and (130) with Cρe = CρT = 1 and NT = Ne = 2. These criteria
lead to a 10−2 order relative error for both solutions of elliptic equations.

4.2 Study of an action potential in heart and torso

With this second set of data, we aim to reproduce a realistic electrical wave propagation
in heart and torso. For that, we apply an external density current within source term fis
in a short time scale (t ∈ [0, Tact]) which represents external applied current (electroshock
for example). This applied current involves action potentials (AP) which are generated
by the movement of ions into and out of cardiac cells (i.e. biological manifestation of
electrical cells excitation) with di�usion in torso region. This potential leads us then to
study the evolution of the transmembrane potential ρ and ionic variable U . The purpose
of the next analysis is to derive the following standard four phases of the action potential
(see e.g. [10] and references therein).

• Phase I: Depolarization. In a short time scale (order of Tin), transmembrane
potential (TMP) changes from its resting state ρmin to its maximum ρmax when
cells are depolarized. This sudden change induces opening of ionic channels, so ionic
variable U leaves its equilibrium state to falling down.
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• Phase II: Excited phase. In a long time scale (order of Topen), TMP ρ begins to
fall slowly. During this phase, ionic channels are open and ionic variable U goes to
its minimum.

• Phase III: Repolarization. In a short time scale (order of Tout), TMP goes back
towards resting potential of ρmin to prepare the cells for a new cycle of depolar-
ization. During this phase, ionic channels are gradually inactivated. That induces
inversion of ionic variable slope.

• Phase IV: Recovery period. In a long time scale (order of Tclose), TMP reaches
the resting potential ρmin. During this time, ionic variable slowly goes back to its
equilibrium state and ionic channels are closed at resting TMP.

To reproduce this behavior, we take the values of the parameters given in Table 1,
we choose discretization parameters ∆x = 1/50, ∆t = ∆x2 and convergence criteria
parameters Cρe = CρT = 1 and Ne = NT = 3, we �x LH = 15cm and LT = 45cm, and
we �x Ki = 0.003S.cm−1, Ke = 0.003S.cm−1 and KT = 0.009S.cm−1, and we choose the
initial data as follows:

ρ(x, 0) = ρmin, U(x, 0) =
1

(ρmax − ρmin)2
. (133)

Moreover, in order to model electrical excitation within the myocardium (due to heart
beat or external applied current), we apply a given external stimulus during a short time
scale (0 < t− Td < Tact, where Td is a time-delay), and we de�ne fis as (x = (x, y))

fis(x, t) = IappχH(x)χ[0,Tact](t− Td)χprop(x, t− Td)Φ(x), (134)

where Iapp is the amplitude of the external applied stimulus with Iapp = 104, and the
functions χH , χ[0,Tact] and χprop are de�ned by

χH(x) =

{
1 if x ∈ ΩH ,
0 else

(135)

χ[0,Tact](t) =

{
1 if t < Tact,
0 else

(136)

χprop(x, t) =

{
1 if x+ y < 2t/Tact,
0 else.

(137)

The last characteristic is associated to wave propagation as a diagonal which evolves from
left bottom corner to right top corner. The function Φ, which corresponds to the shape
of the electrical wave, is de�ned by

Φ(x) = 1− 1

LH

(
x− LH

2

)2

− 1

LH

(
y − LH

2

)2

. (138)

Figure 12 shows how the transmembrane potential ρ taken in the middle point of
domain ΩH evolves according to the AP (after electrical wave passage), and we recover
clearly the four phases. We present on Figure 13 the ionic behavior in this middle point
with evolution of ionic variable U .

However, we can see these main phases with 3-dimensional representation of ρ and U
at di�erent moments. In a �rst time, at t = 0.3s, the AP involves depolarization of the
left bottom corner (Figure 14) of ΩH and ionic variable U begins to fall down (Figure 15).
Then, at t = 0.5s (Figure 16), the electrical wave has covered more than the half of heart
domain and we can see the di�erent phases of AP: the left bottom corner is already on
his recovery period (Phase IV), whereas its neighborhood is on the repolarization phase
(Phase III) and we observe the plateau inherent to excited phase (Phase II) just behind
the depolarized area (Phase I). In term of ionic variable, we also see the four phases with
the activation of ionic channels in left bottom corner at t = 0.3s (Figure 15). At t = 0.5s
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Figure 12: Evolution of transmembrane
potential ρ in middle of the heart (with four
phases of AP).
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Figure 13: Evolution of ionic variable U in
middle of the heart.
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Figure 14: Potential ρ in ΩH at t = 0.3s.
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Figure 15: Ionic variable U in ΩH at t =
0.3s
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Figure 16: Potential ρ in ΩH at t = 0.5s.
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Figure 17: Ionic variable U in ΩH at t =
0.5s
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Figure 18: Potential ρe in ΩH at t = 0.3s.
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Figure 19: Potential ρT in ΩT at t = 0.3s
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Figure 20: Potential ρe in ΩH at t = 0.5s.
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Figure 21: Potential ρT in ΩT at t = 0.5s
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(Figure 17), as for transmembrane potential, we can identify the four phases during the
propagation of the electrical wave through domain ΩH .

Figures 18 and 20 show that these four phases are visible through the extracellular
potential ρe at respectively t = 0.3s and t = 0.5s. Then, as Figures 24 to 27 show for
∆x = 1/30 to 1/100 in middle points of ΩH and ΩT , there is a few perturbation in the
numerical solution, when a sudden change arises, due to chosen stopping criteria. This
noise is tending to disappear totally with thinner discretization. Finally, we present on
Figures 19 and 21 the di�usion of the electrical wave in the torso at t = 0.3s and t = 0.5s.

To complete the analysis, we study the relationship between the transmembrane po-
tential ρ and ionic variable U , and their mutual in�uence. For this, we introduce the
following normalized terms

ρN =
ρ− ρmin

|ρmax − ρmin|
, UN =

U − Umin
|Umax − Umin|

. (139)

We can see the correlation between transmembrane potential and ionic movements through
the cell membrane in Figure 22. In particular, we clearly see that ionic variable begins to
converge slowly to its equilibrium state at the beginning of the recovery period whereas
transmembrane potential is already close to its equilibrium.

Finally, in Figure 23 we perform the phase plan curve of ρN and UN . After initial-
ization at t = 0ms, the point A corresponds to equilibrium state (i.e. ρ = ρmin and
U = 1/(ρmax − ρmin)2). We observe that ρ grows to ρmax in a shorter time scale before
the ionic variable U starts to fall down (because ρ > ρgate). This depolarization phase
(Phase I) leads us to point B. Then, between points B and C, we are in the excited phase
(Phase II) which numerically corresponds to Iion(ρ, U) = 0. After point C, ρ goes fast
to ρmin while U varies slightly (Phase III). Finally, from point D to the end, ρ is near to
its resting state and U goes back to its equilibrium state (Phase IV).

These analyzes led us to verify the e�ciency of our coupled modi�ed LBM. Indeed,
realistic behavior of the interactions between electrical potentials and ionic movements
in heart-torso coupling (which is a critical numerical issue), has been demonstrated by
the di�erent simulations. The four phases of the AP are clearly reproduced. Our method
remained stable and robust even if the solutions of elliptic equations contain some very
local noises due to stopping criteria and sudden changes in dynamics.
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Figure 22: Evolution of ρN and UN in the middle of heart.

5 Conclusion and commentary

An e�cient and stable coupled LBM to solve a two-dimensional heart-torso coupled bido-
main model is developed. From the Chapman-Enskog expansion analysis, the bidomain
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Figure 23: (ρN , UN ) phase plan portrait.
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Figure 24: ρ for x = (7.5, 7.5) for ∆x = 1/30, 1/50, 1/75 and 1/100.

system which is a coupled of reaction-di�usion, elliptic and ODE equations, can be cor-
rectly recovered by our modi�ed LBM. This method is easy to implement. The prelim-
inary results presented in this work show the capability of this method to capture the
distribution of the electrical wave. It is clear that, due to the multi-scale nature of the
system, the Cartesian grid used in our preliminary simulations is not very su�cient to
compute in a computationally e�cient manner real life clinical situations (see e.g. [17],
[32] ) with complex geometry which is in general computationally expensive. Therefore,
it is expected to solve the Lattice Boltzmann system on adapted Cartesian or triangular
unstructured grids as e.g., in [33, 18] and the references therein. Moreover, in order to
overcome the limitations of the constraint CFL stability condition, we extend the method
to implicit or semi-implicit time schemes, e.g., by using the θ-method (with θ ∈ [0, 1])
or Runge-Kutta methods, coupled with adaptive time stepping strategies, as e.g. in [21]
and the references therein. This coupled LBM method will be shown in a forthcoming
paper for more general coupled models with realistic complex geometries. It would be in-
teresting to use this developed method with observations coming from experimental data
and a more complete description of the biophysical model of electrical cardiac activity.
Moreover, since time delays in signal transmission are inevitable and a small delay can
a�ect considerably the resulting electrical activity in heart and thus the cardiac disorders
therapeutic treatment, it is then necessary to analyze the impact of delays on the dynam-
ical behaviors of such a system by considering time-delays models with continuous and
impulsive treatment (see e.g. [2]).
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Figure 25: ρe for x = (7.5, 7.5) for ∆x = 1/30, 1/50, 1/75 and 1/100.
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Figure 26: ρT for x = (0, 0) for ∆x = 1/30, 1/50, 1/75 and 1/100.

In order to get even closer to a more realistic calculation, it is necessary to study,
in the future, this method coupled with optimization technique and, optimal and robust
control problems by using the approach developed in [1, 4].

Acknowledgments: The autors would like to thanks all the referees for their relevant
questions, suggestions and comments which lead to improve this paper.
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Figure 27: U for x = (7.5, 7.5) for ∆x = 1/30, 1/50, 1/75 and 1/100.

6 Appendix

6.1 Nondimensional model

We have nondimensionalized (4)-(6) by introducing the following dimensionless quantities
(dimensionless variables, parameters and physical domains are denoted with "∼")

x̃ =
x

L
, t̃ =

t

T
, ∇̃ = L∇, d̃iv = Ldiv, ∂/∂t̃ = T∂/∂t,

Kec = σK̃ec, Kic = σK̃ic, KT = σK̃T ,

where L is a characteristic length of physical domain Ω, T is a characteristic time and
σ is a characteristic conductivity. The dimensional transmembrane and extracellular
potentials ρ and ρe, and thorax potential ρT are rescaled using

ρ = ρρ̃+ ρmin, ρe = ρρ̃e + ρmin, ρT = ρρ̃T + ρmin (140)

with ρ = ρmax − ρmin the characteristic action potential amplitude. The electrophysio-
logical ionic state variable U is rescaled using

Ũ = ρ2U. (141)

Using these adimensional relations, we get �nally the dimensionless system

∂ρ̃

∂t̃
+ Ĩion(.; ρ̃, Ũ)−Rh ˜div(K̃ic∇̃ρ̃) = Rh ˜div(K̃ic∇̃ρ̃e) + f̃is, on Q̃H

−Rh ˜div((K̃ec + K̃ic)∇̃ρ̃e) = Rh ˜div(K̃ic∇̃ρ̃) + (f̃es + f̃is), on Q̃H
∂Ũ

∂t̃
= H̃ion(.; ρ̃, Ũ), on Q̃H

(142)

and
−Rh ˜div(K̃T ∇̃ρ̃T ) = f̃T , on Q̃T , (143)

where

Rh =
σT

L
2
κcm

f̃is =
T

cmρ
fis, f̃es =

T

cmρ
fes, f̃T =

T

κcmρ
fT

Ĩion(x̃, t̃; ρ̃, Ũ) =
T

cmρ
Iion(x, t; ρ, U),

H̃ion(x̃, t̃; ρ̃, Ũ) = Tρ2Hion(x, t; ρ, U).

(144)
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Remark 6.1 .

If we take for example σ = L
2
κcm
T

, T = T and L = LH then Rh = 1, Q̃H = [0, 1]× [0, 1]×
[0, 1] and Q̃ = Ω̃× [0, 1], where Ω̃ = [− LT

LH
, LT

LH
]× [− LT

LH
, LT

LH
].

6.2 Implementation and Algorithm

Our goal is to develop an e�cient LBM for bidomain system. In this work, in order to
validate the method, we just focus on stability and accuracy of the method for coarse
discretization without any speci�c optimization. So we make our simulation in a beta
version of our program, and the characteristic execution time can be signi�cantly reduce
with using some Matlab functions or parallelizations. We want to control all the stages
of build, and we need to represent every functions at each stage. That is why some stages
are not optimized yet, even if we can do it easily (and so reduce the CPU time). The
other main reason is that some stages are already implemented for complex boundary and
complex domain for further works; the initialization stage or boundary treatment could
be simpli�ed for simpler boundaries. By the same way, we introduce some functions in
order to have easy graphical representations. For all these reasons, we insist on the non
optimal nature of our present code, and the characteristic CPU times we obtain are not
revealing of the e�ciency of LBM.

Moreover, the way we suggested for parallelization has not already been studied fur-
ther by ourselves. Indeed, the two-stage build of the method guarantees that we can
compute all local stages of the method with dividing the mesh between di�erent threads.
That includes local summations to recompose all the macroscopic values, the local de�ni-
tion of the equilibrium functions, second terms and link functions, and the local treatment
of collision stage. Then, the streaming process can be resume as an index substitution be-
tween distribution function of adjacent nodes witch can also be separate for each velocity
ei. This proposed parallelization will be done in a future work.

All the steps of this algorithm are represented in Figure 28. The step S1 is the ini-
tialization of the mesh (including vectors ei, vectors of boundaries index, or usual objects
for graphical representations), the non-dimentionalization on time and space according
to system (142), and de�nition of initial conditions. The step S2 is the treatment of the
parabolic equation and of the ODE of system (142), and the both subroutines S3 and S4
correspond to the treatment of the elliptic equation of the system (142) in the heart and
elliptic equation (143) in the thorax.

To estimate typical computionnal times, we have made our simulation with Matlab
2016b and with Intel core i5 processors. We present in Table 3 the di�erent typical
computational times for each part S1 to S4 of the algorithm in Ω × (0, T ) with T = 1
according to scale ∆x = 1/50, . . . , 1/100, ∆t = ∆x2, and convergence criteria parameters
Cρe = CρT = 1 and Ne = NT = 3. The execution time of both elliptic equations treat-
ments are strongly related to the convergence criteria. With this simple implementation
without optimization or parallelization, the execution time grows quickly according to the
number of iterations and to the number of nodes. The �rst scaling ∆x = 1/50 induces
2500 iterations to reach T = 1 and each domain contains 2601 nodes, and the last one
∆x = 1/100 induces 104 iterations for 10201 nodes for each domain. So we can conclude
that execution time for each iteration is proportional to the number of nodes.

∆x S1 S2 S3 S4
1/50 1.0598 58.9528 71.9957 217.8366
1/75 7.8410 201.9650 243.5739 657.5601
1/100 22.5423 764.5007 1042.5311 2567.0278

Table 3: Typical computational time (in second) for each part of the algorithm in Ω × (0, 1).
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Mesh definition, Non-dimentionalization,
 and initialization of initial conditions

Compute equilibrium fuction,
 second term and link function.

Collision and streaming steps.

Boundary treatment.

     Compute ρ(t+∆t)  and U(t+∆t).      
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Collision and streaming steps.

Boundary treatment.

      Compute ρe(t+∆t).      

If convergence criteria 
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Figure 28: Step by step representation of the algorithm.
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