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ABSTRACT 
 
Incomplete samplings are doomed to become common practice for many inventories of biodiversity, 
thereby inviting to extrapolate what the rate of accumulation of newly recorded species would be if 
sampling was to be continued any further. For this purpose, a new derivation is provided for the 
extrapolation of the Species Accumulation Curve associated to the “Chao” estimator of the number 
of unrecorded species. This new derivation strictly complies with the general mathematical 
relationship constraining the shape of any expression of the Species Accumulation Curve, while the 
extrapolation previously proposed by Chao & Chiu [1] does not. The mathematically relevant 
formulation for the extrapolation R(N) of the Species Accumulation Curve associated to “Chao” 
estimator is thus: R(N) = R(N0) + [f1

2/(2 f2)](1 – exp[– (2f2/f1/N0 ). (N – N0)]), with N0 as the actual 
sample size, f1 and f2 as the numbers of species actually recorded once and twice and R(N) as the 
extrapolated number of species expected to be recorded as a function of sample size N (N> N0). 
Accounting for the constraining relationship mentioned above is also essential in another respect: it 
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allows to extrapolate separately the numbers of species expected to be recorded 0-, 1-, 2-, >2- 
times, thereby permitting to analyse rationally the process of species accumulation during 
continuously growing sampling. At last, the preferred range of applicability of both “Chao” estimator 
and the associated extrapolation of the Species Accumulation Curve estimator is discussed, by 
comparison with the alternative type estimator Jackknife-2. 
 

 
Keywords: Chao estimator; extrapolation; species accumulation curve; Jackknife; incomplete 

sampling; species richness. 
 
1. INTRODUCTION 
 
Incomplete inventories of biodiversity are likely 
doomed to become increasingly frequent, as 
surveys progressively address new taxonomic 
groups more difficult to cope with, in particular 
those groups giving rise to species assemblages 
with high number of species made of tiny 
individuals, such as, for example, small or micro-
invertebrates. In addition, more commonly 
investigated taxonomic groups, as well, are likely 
doomed to remain more or less incompletely 
surveyed at the local scale, due to sampling 
efforts often being far less at these small scales 
than they usually are in larger areas [2,3]. 
 
Incomplete samplings raise two important 
questions, of high practical relevance: 
 

-  how many “missing” species might be left 
unrecorded by the incomplete sampling 
and, accordingly, what would be the 
estimated total species richness of the 
assemblage (that is the expected number 
of recorded species if the sampling was 
ideally complete) ; 

-  what would be the extrapolated shape of 
the so called “Species Accumulation 
Curve”, beyond the currently achieved 
sampling-size, that is, how the rate of 
discovery of new species would vary with 
increasing sampling size, beyond the 
currently achieved sampling-size. A major 
practical interest of extrapolating the 
species accumulation curve being the 
possibility to predict quantitatively the level 
of additional sampling effort that would be 
required to obtain any desired increment of 
sampling completeness. In other words, 
extrapolation offers the possibility to gauge 
the ratio between the expected gain in 
newly recorded species and the 
corresponding additive sampling effort 
needed. 

 
Regarding the first issue  – the estimation of the 
number ∆ of missing (unrecorded) species – a lot 

of non-parametric estimators have been 
proposed during the last decades (reviewed in 
[4,5]). All these estimators are based upon the 
numbers fx of species recorded x-times during 
the considered incomplete sampling, especially 
the two first numbers, f1 and f2. Among the               
more commonly implemented non-parametric 
estimators are: (i) the “Chao” estimator (∆Ch = 
f1

2/(2 f2)) and (ii) the series of “Jackknife” 
estimators at different orders. Jackknife 
estimators are more commonly implemented at 
orders 1 and 2 (i. e. ∆J1 = f1 and ∆J2 = 2f1 – f2) but 
higher orders, up to 5, should be considered 
however, when samplings are substantially 
incomplete [6,7]. 
 
Now, regarding the second issue  - the 
extrapolation of the species accumulation curve - 
a series of parametric models are classically 
considered (reviewed in [8]). These models are 
expected to fit more or less the main common 
feature of species accumulation curves 
considered as a whole (that is: species 
accumulation rate monotonically decreasing with 
additional sampling efforts, finally slowing to zero 
when total species richness is reached).                     
Yet, none of these formal models have                    
direct relevance to the process of species 
accumulation itself, during progressive sampling                             
and, accordingly, none of these models               
explicitly satisfy the general mathematical 
relationship (equation (1)) that systematically 
constrains any kind of species accumulation 
curves. 
 
In fact, as might have been expected, it has   
been previously demonstrated that a specific 
expression of the extrapolation of the species 
accumulation curve is associated to each type of 
non-parametric estimator of the number of 
unrecorded species [5,7,9]. This is so because 
both the number of unrecorded species and the 
shape of the species accumulation curve are 
jointly dependent upon a same cause: the 
particular Distribution of Species Abundances 
(the so-called “S.A.D.”) within the sampled 
assemblage of species (as has been already 
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suggested implicitly in [6]). More specifically, this 
linkage between the type of estimator of the 
number of unrecorded species and the 
expression of the extrapolated species 
accumulation curve is precisely ruled by                     
the constraining mathematical relationship 
mentioned above (equation (1)). 
 
2. EXTRAPOLATION OF THE SPECIES 

ACCUMULATION CURVE ASSOCIATED 
TO THE “CHAO” ESTIMATOR OF THE 
NUMBER OF UNRECORDED SPECIES 

 
* a new derivation, complying with the 
mathematical requirements constraining the 
shape of any Species Accumulation Curve 
 
The successive derivatives, ∂x

∆(N)/∂Nx, of the 
number ∆(N) of species expected to remain 
unrecorded after a sampling of size N are 
respectively related to the numbers, fx (N), of 
species recorded x-times during this sampling of 
size N: 
 

[∂x 
∆(N)/∂N

x] = (-1)x fx (N) /CN, x                        (1)  
 

with CN, x  = N!/X!/(N-x)!.  A detailed proof of this 
general theorem is given in Appendix. 
 
Leaving aside the very beginning of sampling (of 
no practical relevance), the sampling size N 
rapidly exceeds widely the numbers x of practical 
concern, so that, in practice, the preceding 
equation simplifies as: 
 

∂
x 
∆(N)/∂N

x = (– 1)x (x!/Nx) fx (N)                      (2) 
 

In particular,  
 

∂∆(N)/∂N  =  – f1 (N)/N                                    (3) 
 

∂
2 
∆(N)/∂N

2  =  2 f2 (N)/N
2                                (4) 

 
These relations have general relevance because 
their derivation does not require any specific 
assumption relative to the particular shape of             
the distribution of species abundances (“S.A.D.”) 
in the sampled assemblage of species. 
Accordingly, the general equation (2) and its 
successive forms (3), (4),… actually constrain 
any theoretical form of Species Accumulation 
Curves. 
 
Let now focus upon the case of the “Chao” 
estimator of the number of missing (still 
unrecorded) species in a sample of size N: 

∆(N) = (f1 (N))
2/(2 f2 (N))                                    (5) 

 
Applying the general relation (2) and its particular 
consequences (3) and (4) to the definition (5) of 
the “Chao” estimator yields: 
 

∆(N) = (f1 (N))
2/(2 f2 (N)) = (∂∆(N)/∂N)2/(∂2 

∆(N)/∂N
2)     

(6) 
 

The general solution of this differential equation 
(6) is: 
 

∆(N) = k’.exp(k.N) 
 

with k and k’ as constants, independent of N. 
 
Now, let f1 and f2 be the numbers of species 
recorded once and twice in the actually realised 
sampling of size N0 (that is: f1 = f1 (No) and f2 = f2 

(No)). Then, according to “Chao” estimator, ∆0 (= 
∆(No)) = f1

2/(2f2) is the estimated number of 
unrecorded species after a sampling of size N0. 
Accordingly, ∆(No) = ∆0  requires k’ = ∆0.exp(– 
kN0). And satisfying equations (3) and (4) implies 
k = – 2f2/(N0.f1 ). 
 
For samplings of sizes greater than the size N0 of 
the actually realised sample, the expression of 
the extrapolation of the Species Accumulation 
Curve specifically associated to “Chao” type 
estimator is thus: 
 

∆(N) = ∆0.exp[–2f2/(N0.f1 ).(N – N0)]              (7) 
 

or, as well, accounting for ∆0  =  f1
2/(2 f2): 

 
∆(N) = [f1

2/(2 f2)] exp[– (2f2/f1).(N/N0 – 1)]     (8) 
 

Thus, the extrapolation of the species 
accumulation curve, R(N) [ = R(N0) + ∆(N0)  – ∆(N)] 
takes the following form, when associated to 
“Chao” type estimator: 
 
R(N) = R(N0) + [f1

2/(2f2)](1 – exp[– (2f2/f1).(N/N0 – 
1)])     (9) 

 
* comparison with previous formulations of 
the extrapolation of the Species 
Accumulation Curves associated to “Chao” 
estimator 
 
An extrapolation of the Species Accumulation 
Curve specifically associated to “Chao”                   
type estimator was previously proposed                      
by Chao & Chiu [1]. This formulation                          
(their equation (9)), converted in our own 
notations, is:  
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R(N) = R(N0) + ∆0.(1 – [1- f1/(N0.∆0 + f1)]
(N – N0))         

(10) 
 

As may easily be verified, this expression is 
formally different from expression (9) derived 
above and, as such, does not satisfy – as it 
should do –  the relationships (3) and (4) which 
actually constrain all kinds of Species 
Accumulation Curve. Indeed, following equation 
(10):  
 

∆(N) = ∆0.[1- f1/(N0.∆0 + f1)]
(N – N0) 

 
and thus, the first derivative of ∆(N) at N = N0 is: 
 

∂∆ (N)/∂N]N0  =  – ∆0.ln[1- f1/(N0.∆0 + f1)] 
 

which formally differs from the required value,  – 
f1/N0, given by equation (3). 
 
Although this non-compliance with mathematical 
requirements has relatively limited quantitative 
consequences in practice, it does remain 
unsatisfactory on theoretical ground. At                      
last, another expression for the extrapolation                  
of the Species Accumulation Curve associated           
to “Chao” estimator has been formerly               
proposed [5,7], which, also, does note                    
cope correctly with equations (3) and (4)              
and, for this reason, should thus be               
discarded.  
 
3. SEPARATE EXTRAPOLATIONS OF 

THE NUMBERS OF SPECIES 
EXPECTED TO BE RECORDED ONCE, 
TWICE & MORE THAN TWICE, 
ACCORDING TO “CHAO” ESTIMATOR  

 
The number R(N) of recorded species is, of 
course, nothing else that the sum of the numbers 
f1 (N), f2 (N), f3 (N), …, fx (N),…  of those species 
respectively recorded 1-, 2- ,3-,…, x-times… 
 
Accordingly, the evolution of the number R(N) of 
recorded species with sample size N has a 
complex determinism, resulting from the additive 
contributions of all the fx (N), each of them having 
its own pattern of evolution with increasing 
sampling size N. Disentangling these respective 
contributions may thus shed some light                  
on the complex mechanism underlying the 
evolution with N of the number R(N) of recorded 
species. 
 
For this purpose, it is necessary to consider 
separately the extrapolations of each of the 

numbers fx (N). And, precisely, this is made 
possible thanks to considering the general 
mathematical relationship (1) (and the associated 
equations (3) & (4)).  
 
Here, I shall consider the separate extrapolations 
of the numbers f1 (N), f2 (N), f>2 (N), which, 
altogether, govern the evolution of R(N) with 
increasing sample size N: 
 

R(N)  =  Σx [fx (N)]  =  f1 (N) + f2 (N) + f>2 (N)  

 
In the specific context of implementation of the 
estimator "Chao" and, thus, in accordance with 
equations (3) and (8): 
 

f1(N)/N = [f1
2/(2f2)].exp[–(2f2/f1).(N/N0–

1)].(2f2/f1/N0) 
 

that is: 
 

f1 (N) = (N/N0).f1.exp[– (2f2/f1).(N/N0 – 1)] (11) 
 
Also, according to equations (4) and (8): 
 

2 f2 (N)/N
2 = [f1

2/(2f2)].exp[– (2f2/f1).(N/N0 – 
1)].(4f2

2/f1
2/N0

2) 
 

that is: 
 

f2 (N) = (N/N0)
2.f2.exp[– (2f2/f1).(N/N0 – 1)]  (12) 

 
At last, the number of species expected to be 
recorded more than twice, f>2 (N), is: 
 

f>2 (N) = R(N) – f1 (N) – f2 (N) 

 
that is, according to equations (9), (11), (12): 
 
f>2 (N) = R(N0) + [f1

2/(2 f2)](1 – exp[–(2f2/f1).(N/N0 – 
1)]) – (N/N0).f1.exp[– (2f2/f1).(N/N0 – 1)] – 
(N/N0)

2.f2.exp[– (2f2/f1).(N/N0 – 1)]      
 

 that is:   
       

f>2 (N)  =  R(N0) + f1
2/(2 f2) – [f1

2/(2 
f2)+(N/N0).f1+(N/N0)

2.f2].exp[ – (2f2/f1).(N/N0  – 1)] 
(13) 

 
For the sake of generality, the contribution of the 
number of actually recorded species, R(N0), may 
be cancelled by considering f>2 (N) – f>2 (No) instead 
of f>2 (N). It follows: 
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f>2 (N) – f>2 (No) = 
[f1

2/(2 f2) + f1 + f2] – [f1
2/(2f2) + (N/N0).f1 + 

(N/N0)
2.f2].exp[ – (2f2/f1).(N/N0  – 1)]         (14) 

 
Equations (8), (11), (12), (14), thus rule, 
respectively, the extrapolations of the numbers f0 

(N) (= ∆ (N)), f1 (N), f2 (N), f>2 (N) – f>2 (No), of species 
expected to be recorded zero, once, twice and 
the increment of the number of species recorded 
more than twice, if the sampling effort was further 
continued beyond the actual inventory (sample 
size N0). 
 
Figs. 1 to 5 provide representative illustrations of 
the different patterns of variations of each of 

these numbers { f0 (N), f1 (N), f2 (N), f>2 (N)–f>2 (No) } for 
different ratios f1/f2 of the numbers of species 
recorded once and twice in the actually                
achieved sample. Namely: f1/f2 = 8.3, 5.0, 2.5, 
1.0, 0.5 (= 25/3, 25/5, 25/10, 25/25, 25/50, 
respectively). Thereby, these figures highlight        
the underlying complex process by                 
which the number of recorded species,   R(N) = 
Σx [fx (N)], steadily increases with sampling         
size N, as the result of the cumulative 
contributions of f1 (N), f2 (N), f>2 (N). A very                
complex process indeed, since the contribution 
of each of the fx (N) successively increases,              
then decreases, at its own pace and out of 
phase. 

 

 
 

 
 
Fig. 1 and 1bis. Extrapolations of the numbers f 0 (N), f1 (N), f2 (N), f>2 (N) – f>2 (No) of species expected 

to be recorded zero, once, twice and more than twice , as the sampling effort is going on 
further beyond the actual inventory size N 0. Here, f 1/f2 (= f1 (No)/f2 (No)) = 8.3 (in fact, f 1 = 25               

and f 2 = 3) 
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Fig. 2 and 2bis. Extrapolations of the numbers f 0 (N), f1 (N), f2 (N), f>2 (N) – f>2 (No) of species expected 

to be recorded zero, once, twice and more than twice , as the sampling effort is going on 
further beyond the actual inventory size N 0. Here, f 1/f2 (= f1 (No)/f2 (No)) = 5.0 (in fact, f 1 = 25               

and f 2 = 5) 
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Fig. 3 and 3bis. Extrapolations of the numbers f 0 (N), f1 (N), f2 (N), f>2 (N) – f>2 (No) of species expected 
to be recorded zero, once, twice and more than twice , as the sampling effort is going on 
further beyond the actual inventory size N 0. Here, f 1/f2 (= f1 (No)/f2 (No)) = 2.5 (in fact, f 1 = 25                

and f 2 = 10) 
 

 
 

 
 

Fig. 4 and 4bis. Extrapolations of the numbers f 0 (N), f1 (N), f2 (N), f>2 (N) – f>2 (No) of species expected 
to be recorded zero, once, twice and more than twice , as the sampling effort is going on 
further beyond the actual inventory size N 0. Here, f 1/f2 (= f1 (No)/f2 (No)) = 1.0 (in fact, f 1 = 25                 

and f 2 = 25) 
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Fig. 5 and 5bis. Extrapolations of the numbers f 0 (N), f1 (N), f2 (N), f>2 (N) – f>2 (No) of species expected 

to be recorded zero, once, twice and more than twice , as the sampling effort is going on 
further beyond the actual inventory size N 0. Here, f 1/f2 (= f1 (No)/f2 (No)) = 0.5 (in fact, f 1 = 25                 

and f 2 = 50) 
 
High values of f1/f2 characterise, of course, 
samplings that remain substantially incomplete 
and, accordingly, decreasing values of f1/f2 are 
signatures of increasing degrees of sampling 
completeness. Keeping this in mind, the 
comparison between the patterns of variations of 
the fx (N) (in particular, here, f1 (N) and f2 (N)) 
according to the ratio f1/f2 are very suggestive: 
 

 (i)  by increasing sampling completeness, 
starting from a low level (say: f1/f2 
decreasing from 8.3 to 5 and even to 2.5 
[Figs. 1, 2, 3]), both f1 (N) and f2 (N) begin to 
grow, then successively pass through a 
maximum and finally slowly decrease 
asymptotically towards zero (while f>2 (N) 
steadily increases, at a rate sufficient to 
more than compensate the decreases of f1 

(N) and f2 (N), so that R(N) steadily remains 
monotonically increasing with N, as is 
expected of course). 

 (ii)  then, by continuing to increase sampling 
size towards higher degrees of 
completeness (say from f1/f2 = 1.0 to 0.5 
[Figs. 4, 5]), the maxima of both f1 (N) and f2 

(N) are now let behind so that both f1 (N) and 
f2 (N) are already in process of monotonic 
decrease towards zero (while f>2 (N) steadily 
increases at sufficient rate to more than 
compensate for these decreases). 

 
Incidentally, the following general trends should 
be noticed: 
 

 (i)  f0 (N) intersects f1 (N) precisely when f1 (N) 
reaches its maximum and, similarly, f1 (N) 
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intersects f2 (N) precisely when f2 (N) reaches 
its maximum; 

 (ii)  the maximum of f2 (N) is reached at a 
sample size exactly double of the sample 
size when f1 (N) reaches its own maximum. 

 
Indeed, these trends are general properties for 
the extrapolations of all the fx (N) associated to 
“Chao” estimator, as demonstrated below. 
 
From equations (8) and (11), it follows that f0 (N) 
(= ∆ (N)) intersects f1 (N) at N such that: 
 

[f1
2/(2 f2)].exp[– (2f2/f1).(N/N0 – 1)]  =  

(N/N0).f1.exp[– (2f2/f1).(N/N0 – 1)] 
 
that is: 
 

N = ½ N0.f1/f2  
 

and from equation  (11), the maximum of f1 (N) is 
reached for N such that  ∂ f1 (N) / ∂N = 0:    
 

∂f1(N) /∂N = [f1/N0 – f1.(N/N0).2f2/f1/N0].exp[– 
(2f2/f1).(N/N0 – 1)] = 0  

 
which leads to the same value of N as just 
above: 
 

N = ½ N0.f1/f2  
 

Now, from equations (11) and (12), it follows that 
f1 (N) intersects f2 (N) at N such that: 
 

(N/N0).f1.exp[– (2f2/f1).(N/N0 – 1)] = 
(N/N0)

2.f2.exp[– (2f2/f1).(N/N0 – 1)]      
     

that is: 
 

N = N0.f1/f2  
 

and from equation  (12), the maximum of f2 (N) is 
reached for N such that  ∂ f2 (N) / ∂N = 0:    
 
∂ f2 (N) / ∂N = [2f2.N/N0

2 – 
f2.(N/N0)

2.2f2/f1/N0].exp[– (2f2/f1).(N/N0 – 1)] = 0  
 

which leads to the same value of N as just 
above: 
 

N = N0.f1/f2  
 

Indeed, these trends are quite consistent, 
remaining unchanged farther, for any fx, as 
exemplified at Figs. 6 and 7:  f2 (N) intersect f3 (N) 

precisely when f3 (N) reaches its maximum (at N = 
1.5 N0.f1/f2 ); f3 (N) intersect f4 (N) precisely when f4 

(N) reaches its maximum (at N = 2.0 N0.f1/f2); f4 (N) 
intersect f5 (N) precisely when f5 (N) reaches its 
maximum (at N = 2.5 N0.f1/f2); and so on… 

 
In complement to the mathematical 
demonstration above, it is interesting to highlight 
the underlying “physical” process behind this 
general pattern. Consider a sample of any size N 
(i.e. N individuals already observed) extracted 
from an assemblage of species having an ideally 
even distribution of species abundances – the 
ideal condition for “Chao” estimator being 
relevantly applied, as demonstrated in the next 
section. Under this specific condition, the next 
individual collected (thus making sample size 
growing from N to N+1) may concern with equal 
probability any species (either a species 
previously unrecorded, or a species already 
recorded once, or a species already recorded 
twice, …, or a species already recorded x-times, 
etc....). Now, the probability of drawing a species 
previously observed x-times is expected to be 
proportional to its relative abundance, reflected 
by the number, fx, of those species already 
recorded x-times. Accordingly, the number fx of 
species already recorded x-times will tend to: 
 

-  increase if the probability of drawing a 
species already recorded x-1 times 
exceeds the probability of drawing a 
species already recorded x times because, 
thus, the probability for fx to increase by 
one exceeds the probability for fx to 
decrease by one; 

-  decrease if the probability of drawing a 
species already recorded x-1 times is less 
than the probability of drawing a species 
already recorded x- times because, thus, 
the probability for fx to decrease by one 
exceeds the probability for fx to increase by 
one. 

 
Therefore, fx is expected either (i) to increase,  
(ii) to pass by a maximum, (iii) to decrease, 
depending on fx-1 being either (i) larger, (ii) equal,  
(iii) less than fx respectively. This, indeed, is the 
fundamental – “mechanical” – reason which 
explains the general trend highlighted above.  In 
other words, this argumentation unravels the 
basic underlying process behind the pattern 
described and mathematically demonstrated 
above and graphically exemplified at Figs. 6             
and 7. 
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Figs. 6 and 7. Extrapolations of the numbers f 0 (N), f1 (N), f2 (N), f3 (N), f4 (N), f5 (N) of species expected 
to be recorded 0-, 1-, 2-, 3-, 4-, 5-times, as the sampling effort is going on further beyond the 

actual inventory size N 0. 
above : f1/f2 (= f1 (No)/f2 (No)) = 5.0 (f1 = 25 and f2 = 5) ; below: f1/f2 (= f1 (No)/f2 (No)) = 2.5  (f1 = 25 and f2 = 10) 

 
4. DISCUSSION 
 
* the Chao estimator and the associated 
extrapolation of the Species Accumulation 
Curve are especially relevant when species 
abundances distribution is even or, at least, 
close to ideal evenness 
 
As already pointed by Chao & co-authors [10], 
the “Chao” estimator provides accurate, point 
estimation in the specific case only when the 
species abundances are evenly distributed in the 
sampled assemblage of species. This, of course, 
stands also for the extrapolation of the Species 
Accumulation Curve associated to “Chao” 
estimator.  
 
Indeed, let consider an assemblage of S species 
with ideally evenly distributed species 
abundances (all abundances the same). In this 
particular case, the expected number of recorded 
species after sampling N individuals is, 
classically, R(N) = S.[1 – exp( – k.N)] with k as a 

constant, independent of N. The number of still 
unrecorded species is thus:  ∆(N) =  S.exp( – k.N).  
At N = N0, ∆(N) = ∆0  (= f1

2/(2 f2)), so that:  
 

∆(N) = ∆0.exp( – k.(N – N0))                       (15) 
 

The formal correspondence between the 
preceding expression (15) and the expression of 
∆(N) associated to the “Chao” estimator (equation 
(7)), confirms that the extrapolation R(N) 
associated to the “Chao” estimator (equation (9)) 
corresponds, ideally, to the progressive sampling 
of a species assemblage with evenly distributed 
species abundances, as was expected. 
 
Now, as no species is comparatively rarer than 
any other one when abundances are evenly 
distributed, the progressive sampling, in such a 
case, is expected to reach completeness 
comparatively faster than for any other 
assemblage of the same total species richness 
but having a less even distribution of species 
abundances. 
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Fig. 8. Extrapolations of the Species Accumulation Curves beyond {N 0, R(N0)}, respectively 
associated to “Chao” (solid line) and “Jackknife-2” ( dashed line) estimators ; f 1 = 48,  f2 = 24 ; 

∆0 Chao =  48, ∆0 JK-2 = 72. 
 

 
 

Fig. 9. Extrapolations of the Species Accumulation Curves beyond {N 0, R(N0)}, respectively 
associated to “Chao” (solid line) and “Jackknife-2” ( dashed line) estimators ; f 1 = 41,  f2 = 12 ; 

∆0 Chao =  70, ∆0 JK-2 = 70. 
 

 
 

Fig. 10. Extrapolations of the Species Accumulation  Curves beyond {N 0, R(N0)} respectively 
associated to “Chao” (solid line) and “Jackknife-2” ( dashed line) estimators ; f 1 = 35,  f2 = 9 ; 

∆0 Chao =  68, ∆0 JK-2 = 61. 
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Indeed, faster achievement of completeness             
is a characteristic feature of the Species 
Accumulation Curve associated to “Chao” 
estimator, as compared to Species Accumulation 
Curves associated to any other type of estimator, 
in the same context. 
 
This is highlighted considering three examples, 
where comparisons are made between the 
extrapolated Species Accumulation Curves 
respectively associated to “Chao” estimator and 
to “Jackknife-2” estimator (both estimators 
relying upon the numbers f1 and  f2 of species 
recorded once and twice): Figs. 8, 9, 10. In these 
examples, the pair of values f1 and f2 are chosen 
to examine three cases: “Chao” estimate of the 
number of unrecorded species (= f1

2/(2f2)) being 
either (i) smaller, (ii) equal, (iii) larger than the 
corresponding “Jackknife-2” estimate (= 2f1 – f2). 
 
In all three cases, regardless of the sign of the 
gap between “Chao” and “Jackknife-2” estimates 
(negative [Fig. 8], zero [Fig. 9] or positive [Fig. 
10]), the Species Accumulation Curve associated 
to “Chao” estimator always reaches its 
asymptote far more rapidly than the Species 
Accumulation Curve associated to “Jackknife-2” 
estimator. This, once more, is in agreement                   
with the fact that the extrapolation associated                  
to "Chao" clearly refers to the hypothesis                  
of an ideally homogeneous distribution of                 
the species abundances in the sampled 
assemblage. 
 
* Comparing the extrapolations associated to 
“Chao” and “Jackknife” respectively: an 
illustrative case study 
 
A survey of butterfly fauna at Mount Gariwang-
san, Korea [11], was conducted along years 
2010 to 2015, encompassing 2037 observed 
individuals and 105 recorded species, with f1 = 
13.6 and  f2 = 15.2 (values obtained after 
prescribed regression of the crude values of the 
fx, in order to reduce the consequences of 
stochastic dispersion [7]). Accordingly, the 
estimated number of unrecorded species is ∆Ch = 
f1

2/(2 f2)) = 6.1 according to “Chao” estimator and 
∆J2 = 2f1 – f2 = 12.0 according to “Jackknife-2” 
estimator (with corresponding total species 
richness estimated to 111 or 117 species 
respectively).  
 
The extrapolations of the Species Accumulation 
Curve, respectively associated to “Chao”                 
and “Jackknife-2” estimators are plotted at                
Fig. 11. 

 
 

Fig. 11. Extrapolations of the Species 
Accumulation Curve beyond {N 0, R(N0)} 
respectively associated to “Chao” and 

“Jackknife-2” estimators, for a survey of 
Lepidoptera of Gariwang-san (field data from 
[11] ���� ∆0 Chao =  6 , ∆0 JK-2 = 12). Accordingly, 

the total species richness is estimated to 111 
and 117 species respectively. In fact, in 

agreement with the procedure of selection of 
the less biased estimation [5, 7], it is the 

“Jackknife-2” estimator and its associated 
extrapolation which are to be adopted rather 

than “Chao” 
 
These extrapolations may serve to predict the 
sampling effort that would be necessary to reach 
any given level of sampling completeness. In 
particular, the sampling efforts predicted to reach 
a quasi-exhaustive species inventory (say 
reaching total species richness minus one; that is 
110 and 116 species respectively) are strikingly 
different, depending on whether “Chao” estimator 
or “Jackknife-2” estimator is selected. For the 
extrapolation associated to “Chao” the sampling 
effort required is N = 4600 against N = 21000 for 
the extrapolation associated to “Jackknife-2”. 
This clearly highlights the importance of selecting 
the less-biased extrapolation [5, 7]. Here, 
between the extrapolations associated to “Chao” 
and to “Jackknife-2”, it is the latter which ought to 
be adopted, according to the procedure of 
selection described in [5]. The level of sampling 
completeness of this inventory of the butterfly 
fauna at Mount Gariwang-san, 105/117 = 90% 
thus appears fairly good. 
 

5. CONCLUSION 
 
Incomplete inventories of biodiversity invite to 
extrapolate the species accumulation process 
beyond the actually reached sample size, 
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ultimately trying to estimate the asymptotic, total 
species richness of the sampled assemblage of 
species. In this perspective, many attempts have 
been made in recent decades to find appropriate 
expressions for the extrapolation of the Species 
Accumulation Curve (reviewed in [8]), each of 
these expressions supposed to be as close as 
possible to some hypothetical “characteristic 
feature” of the Species Accumulation Curves. In 
fact, all these attempts were doomed to some 
form of failure, being confronted with the severe 
difficulty of identifying a common and 
generalizable feature for an entity as 
polymorphous as the Species Accumulation 
Curve actually is.  
 
Hence, the recent attempt by Chao & Chiu [1] to 
postpone the difficulty by limiting the scope and 
focusing only upon the very specific case when 
the species abundance distribution is ideally 
even or close to be so. This, indeed, 
considerably reduces the polymorphism of the 
Species Accumulation Curve, which, accordingly 
may be extrapolated more accurately. But, yet, 
not derived in a strictly satisfying manner, as has 
been shown above. 
 
In fact, as suggested previously, and 
demonstrated here, a general feature valid for all 
theoretical forms of Species Accumulation 
Curves R(N) (i.e. independently of the type of 
species abundance distribution) does exist 
indeed, derived from equation (1) above, that is : 
[∂x R(N)/∂N

x] = (-1)x-1 fx (N) /CN, x.  
 
This equation actually constrains the detailed 
shape of any kind of Species Accumulation 
Curve, by means of controlling the series of its 
derivatives, ∂x R(N)/∂N

x. 
 
Accordingly, satisfying this general relationship is 
a prerequisite to any relevant attempt to 
extrapolate the species accumulation process 
beyond actual incomplete sampling. And the 
general relevance of this constraining 
relationship allows to address, in turn, the 
extrapolation of the Species Accumulation Curve 
for any type of species abundance distribution as 
well. 
 
Coming back to the specific case of an ideally 
even distribution of species abundances, dealt 
with by Chao & Chiu [1], we proposed an 
alternative expression for the extrapolation, 
which is mathematically relevant (that is, in 
accordance with equation (1)). As such, this 
formulation actually differs formally from the 

expression proposed by the preceding authors 
and should therefore be considered as more 
reliable. 
 
ACKNOWLEDGEMENTS 
 
"The publications by Anne CHAO and by Ulrich 
BROSE, (in particular those mentioned here) 
have stimulated my interest to tackle the 
quantitative aspects of the process of species 
accumulation during progressive sampling of 
species assemblages on a theoretical basis." 
 
COMPETING INTERESTS 
 
Author has declared that no competing interests 
exist. 
 
REFERENCES 
 
1. Chao A, Chiu CH. Nonparametric 

estimation and comparison of species 
richness. In: eLS. John Wiley & Sons, Ltd: 
Chichester; 2016.  
DOI: 10.1002/9780470015902.a0026329 

2. Kittur B, Swamy SL, Bargali SS, Jhariya 
MK. Wildland fires and moist deciduous 
forests of Chhattisgarh, India: Divergent 
component assessment. Journal of 
Forestry Research. 2014;25(4):857-866. 

3. Behera SK, Sahu N, Mishra AK, Bargali 
SS, Behra MD, Tuli R. Aboveground 
biomass and carbon stock assessment in 
Indian tropical deciduous forest and 
relationship with stand structural attributes. 
Ecological Engineering (In Press); 2016. 

4. Gotelli NJ, Chao A. Measuring and 
estimating species richness, species 
diversity, and biotic similarity from 
sampling data. In: Levin S.A. (ed.) 
Encyclopedia of Biodiversity, second 
edition. Waltham, MA: Academic Press. 
2013;5:195-211. 

5. Béguinot J. Extrapolation of the species 
accumulation curve for incomplete species 
samplings: A new nonparametric approach 
to estimate the degree of sample 
completeness and decide when to stop 
sampling.  Annual Research & Review in 
Biology. 2015;8(5):1-9.    
DOI: 10.9734/ARRB/2015/22351 

6. Brose U, Martinez ND, Williams RJ. 
Estimating species richness: Sensitivity to 
sample coverage and insensitivity to 
spatial patterns. Ecology. 2003;84(9): 
2364-2377. 



 
 
 
 

Béguinot; ARRB, 11(4): 1-19, 2016; Article no.ARRB.30522 
 
 

 
14 

 

7. Béguinot J. Theoretical derivation of a 
bias-reduced expression for the 
extrapolation of the Species Accumulation 
Curve and the associated estimation of 
total species richness. Advances in 
Research. 2016;7(3):1-16.  
DOI: 10.9734/AIR/2016/26387; <hal-
01367803> 

8. Thompson GG, Withers PC, Pianka ER & 
Thompson SA. Assessing biodiversity with 
species accumulation curves; inventories 
of small reptiles by pit-trapping in Western 
Australia.  Austral Ecology. 2003;28:361–
383. 

9. Béguinot J. An algebraic derivation of 
Chao’s estimator of the number of species 
in a community highlights the condition 
allowing Chao to deliver centered 

estimates. International Scholarly 
Research Notices – Ecology. 2014;2014:6 
Article ID 847328.    
DOI: 10.1155/2014/847328 

10. Chiu CH, Wang YT, Walther BA, Chao A. 
An improved nonparametric lower bound 
of species richness via a modified Good-
Turing frequency formula. Biometrics. 
2014;70(3).  
DOI: 10.1111/biom.12200 

11. Lee CM, Kim SS, Kwon TS. Butterfly  
fauna in Mount Gariwang-san, Korea. 
Journal of Asia-Pacific Biodiversity. 2016; 
9:198-204. 

12. Lee SM, Chao A. Estimating population 
size via sample coverage for closed 
capture-recapture models.  Biometrics. 
1994;50(1):88-97. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 

Béguinot; ARRB, 11(4): 1-19, 2016; Article no.ARRB.30522 
 
 

 
15 

 

APPENDIX 
 

A.1 - Derivation of the constraining relationship b etween ∂xR(N)/∂N
x   and  f x(N) 

 
The shape of the theoretical Species Accumulation Curve is directly dependent upon the particular 
Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage of species. That 
means that beyond the common general traits shared by all Species Accumulation Curves, each 
particular species assemblage give rise to a specific Species Accumulation Curve with its own, unique 
shape, considered in detail. Now, it turns out that, in spite of this diversity of particular shapes, all the 
Species Accumulation Curves are, nevertheless, constrained by a same mathematical relationship 
that rules their successive derivatives (and, thereby, rules the details of the curve shape since the 
successive derivatives altogether define the local shape of the curve in any details). Moreover, it turns 
out that this general mathematical constraint relates bi-univocally each derivative at order x, [ 
∂

xR(N)/∂N
x ], to the number, fx(N), of species recorded x-times in the considered sample of size N. And, 

as the series of the fx(N) are obviously directly dependent upon the particular Distribution of Species 
Abundance within the sampled assemblage of species, it follows that this mathematical relationship 
between ∂xR(N)/∂N

x  and fx(N), ultimately reflects the indirect but strict dependence of the shape of the 
Species Accumulation Curve upon the particular Distribution of the Species Abundances (the so 
called S.A.D.) within the assemblage of species under consideration. In this respect, this constraining 
relationship is central to the process of species accumulation during progressive sampling, and is 
therefore at the heart of any reasoned approach to the extrapolation of any kind of Species 
Accumulation Curves. 
 
This fundamental relationship may be derived as follows. 
 
Let consider an assemblage of species containing an unknown total number 'S' of species. Let R be 
the number of recorded species in a partial sampling of this assemblage comprising N individuals. Let 
pi be the probability of occurrence of species 'i' in the sample This probability is assimilated to the 
relative abundance of species ‘i' within this assemblage or to the relative incidence of species ‘i' (its 
proportion of occurrences) within a set of sampled sites. The number ∆ of missed species 
(unrecorded in the sample) is ∆ = S – R. 
 
The estimated number ∆ of those species that escape recording during sampling of the assemblage is 
a decreasing function ∆(N) of the sample of size N, which depends on the particular distribution of 
species abundances pi: 
 

∆(N)  = Σi (1-pi)
N                                                                                                                                                                                   (A1.1) 

 
with Σi  as the operation summation extended to the totality of the 'S' species 'i' in the assemblage 
(either recorded or not) 
 
The expected number fx of species recorded x times in the sample, is then, according to the binomial 
distribution: 
 

fx  =  [N!/X!/(N-x)!] Σi [(1-pi)
N-x pi

x ]   = CN, x  Σi (1-pi)
N-x pi

x                                                      (A1.2)  
 
with CN, x  = N!/X!/(N-x)!  
 

We shall now derive the relationship between the successive derivatives of R(N), the theoretical 
Species Accumulation Curve and the expected values for the series of ‘fx’.  
 
According to equation (A1.2): 
 
►    f1 = N Σi [(1-pi)

N-1 pi] = N Σi [(1-pi)
N-1 (1- (1-pi))]  = N Σi [(1-pi)

N-1] - N Σi [(1-pi)
N-1(1-pi))]  = N Σi [(1-pi)

N-

1] - N Σi [(1-pi)
N].      
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Then, according to equation (A1) it comes: f1 = N (∆(N-1) - ∆(N))  = - N (∆(N) - ∆(N-1))   
= - N (∂ ∆(N)/∂N) = - N ∆'(N)    
 
where ∆'(N) is the first derivative of  ∆(N) with respect to N.    Thus:    
 

f1  =  - N ∆'(N)     ( = - CN,1  ∆'(N)  )                                                                                           (A1.3) 
 

Similarly: 
 
►   f2 = CN, 2 Σi [(1-pi)

N-2 pi²]     according to equation (A1.2) 
 
= CN, 2 Σi [(1-pi)

N-2 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)
N-2] - Σi [(1-pi)

N-2(1- pi²)]] 
= CN, 2 [Σi [(1-pi)

N-2] - Σi [(1-pi)
N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)

N-2] - Σi [(1-pi)
N-1(1+ pi)]] 

= CN, 2 [(∆(N-2) - ∆(N-1)) - f1/N ]     according to equations (A2.1) and  (A1.2) 
= CN, 2 [- ∆'(N-1) - f1/N]  = CN, 2  [ - ∆'(N-1) + ∆'(N)]   since  f1 = - N ∆'(N)     (cf. equation (A1.3)). 
= CN, 2 [(∂ ∆'(N)/∂N)] = [N(N-1)/2] (∂² ∆(N)/∂N²) = [N(N-1)/2] ∆''(N) 
 
where ∆''(N) is the second derivative of  ∆(N) with respect to N.    Thus: 
 

f2  =  [N(N-1)/2]  ∆''(N)     =  CN, 2  ∆''(N)                                                                                      (A1.4) 
 

►  f3 = CN, 3 Σi [(1-pi)
N-3 pi

3]   which, by the same process, yields: 
 
= CN, 3 [Σi (1-pi)

N-3 - Σi (1-pi)
N-2 - Σi [(1-pi)

N-2 pi] - Σi [(1-pi)
N-2 pi

2 )]]   
= CN, 3 [(∆(N-3) - ∆(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]  according to equations (A2.1) and  (A1.2) 
 
where f1* is the number of singletons that would be recorded in a sample of size (N - 1) instead of N.   
 
According to equations (A1.3) & (A1.4): 
   

f1*  =  - (N-1) ∆'(N-1)  =  - CN-1, 1  ∆'(N-1)    and    f2  =  [N(N-1)/2] ∆''(N)   = CN-1, 2  ∆''(N)              (A1.5) 
 
where ∆' (N-1)  is the first derivate of  ∆(N) with respect to N, at point (N-1).   Then,   
 
f3  = CN, 3 [(∆(N-3) - ∆(N-2)) + ∆'(N-1) - ∆''(N) ]   =  CN, 3 [ -∆'(N-2) + ∆'(N-1) - ∆''(N) ]   
=  CN, 3 [ ∆''(N-1) - ∆''(N) ]  = CN,3 [ - ∂ ∆''(N)/∂N ] =  CN, 3 [ - ∂

3 ∆(N)/∂N
3] = CN, 3 ∆'''(N) 

 
where ∆'''(N) is the third derivative of  ∆(N) with respect to N.  Thus : 
 

f3 =  - CN, 3 ∆'''(N)                                                                                                                     (A1.6) 
 

Now, generalising for the number fx of species recorded x times in the sample: 
 
►  fx = CN, x  Σi [(1-pi)

N-x pi
x]    according to equation (A1.2), 

 
= CN, x Σi [(1-pi)

N-x (1 - (1 - pi
x)) ]  = CN, x [Σi (1-pi)

N-x - Σi [(1-pi)
N-x (1 - pi

x)]]   
= CN, x [Σi (1-pi)

N-x - Σi [(1-pi)
N-x (1 - pi)( Σj pi

j )]]    
 
with Σj  as the summation from j = 0 to  j = x-1. It comes: 
 
fx  = CN, x [Σi (1-pi)

N-x - Σi [(1-pi)
N-x+1 ( Σj pi

j)]]   
= CN, x [Σi (1-pi)

N-x - Σi (1-pi)
 N-x+1 - Σk [(Σi (1-pi)

 N-x+1 pi
k )]] 

 
with Σk  as the summation from k = 1 to k = x-1 ; that is: 
 
fx  = CN, x [(∆(N-x) - ∆(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  (A1.2)) 
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where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  recorded k times 
during a sampling of size (N-x+1+k)  (instead of size N).  
  
The same demonstration, which yields previously the expression of f1* above (equation (A1.5)), 
applies for the fk* (with k up to x-1) and gives:    
 

fk* = (-1)k (C(N-x+1+k), k ) ∆
(k)

(N-x+1+k)                                                                                          (A1.7) 
 

where ∆ (k)
(N-x+1+k)  is the kth derivate of  ∆(N) with respect to N, at point (N-x+1+k).   Then,   

 
fx  = CN, x [(∆(N-x) - ∆(N-x+1)) - Σk ((-1)k ∆(k)

(N-x+1+k) )]      
       , 
which finally yields : 
  
fx  = CN, x [(-1)x (∂∆(x-1)

(N)/∂N) ] = CN, x [(-1)x (∂x
∆(N)/∂N

x)].   That is:  
 

fx = (-1)x CN, x ∆
(x)

(N)  = (-1)x CN, x [∂
x
∆ (N)/∂N

x]                                                                       (A1.8)  
 

where  [∂x ∆ (N)/∂N
x] is the xth derivative of  ∆(N) with respect to N, at point N.  

   
Conversely: 
 

[∂x 
∆(N)/∂N

x] = (-1)x fx /CN, x                                                                                                    (A1.9)  
 

Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much greater than 
x, so that the preceding equation simplifies as: 
 

[∂x 
∆(N)/∂N

x] = (– 1)x (x!/Nx) fx(N)                                                                                          (A1.10) 
 

In particular: 
 

[∂∆(N)/∂N] = f1(N)/N                                                                                                             (A1.11) 
 

[∂2 
∆(N)/∂N

2] = 2 f2(N)/N
2                                                                                                      (A1.12)   

              
This relation (A1.9) has general relevance since it does not involve any specific assumption relative to 
either (i) the particular shape of the distribution of species abundances in the sampled assemblage of 
species or (ii) the particular shape of the species accumulation rate. Accordingly, this relation 
constrains any theoretical form of species accumulation curves. As already mentioned, the shape of 
the species accumulation curve is entirely defined (at any value of sample size N) by the series of the 
successive derivatives [∂xR(N)/∂N

x] of the predicted number R(N) of recorded species for a sample of 
size N: 
 

[∂xR(N)/∂N
x] = (-1)(x-1) fx /CN, x                                                                                              (A1.13)  

 
with [∂xR(N)/∂N

x] as the xth derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-x)!/x! (since 
the number of recorded species R(N) is equal to the total species richness S minus the expected 
number of missed species ∆(N)).  
 
As above, equation (A1.13) simplifies in practice as: 
 

∂
xR(N)/∂N

x  =  (– 1)(x-1) (x!/Nx) fx(N)                                                                                       (A1.14) 
 

Equation (A1.13) makes quantitatively explicit the dependence of the shape of the species 
accumulation curve (expressed by the series of the successive derivatives [∂xR(N)/∂N

x] of R(N)) upon 
the shape of the distribution of species abundances in the sampled assemblage of species. 
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A2 - An alternative derivation of the relationship between ∂xR(N)/∂N
x  and f x(N) 

 
Consider a sample of size N (N individuals collected) extracted from an assemblage of S species and 
let Gi be the group comprising those species collected i-times and fi(N) their number in Gi. The number 
of collected individuals in group Gi is thus i.fi(N), that is a proportion i.fi(N)/N of all individuals collected in 
the sample. Now, each newly collected individual will either belong to a new species (probability 1.f1/N 
= f1/N) or to an already collected species (probability 1– f1/N), according to [12]. In the latter case, the 
proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that the newly collected 
individual will contribute to increase by one the number of species that belong to the group Gi (that is 
will generate a transition [i-1 → i] under which the species to which it belongs leaves the group Gi-1 to 
join the group Gi). Likewise, the probability that the newly collected individual will contribute to reduce 
by one the number of species that belong to the group Gi (that is will generate a transition [i → i+1] 
under which the species leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 
 
Accordingly: 
 

∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N) 
 

Leaving aside the very beginning of sampling, and thus considering values of sample size N 
substantially higher than f1, it comes: 
 

  ∂fi(N)/∂N  ≈  i.fi(N)/N – (i+1).fi+1(N)/N                                                                                         (A2.1) 
 
Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species that have 
been recorded in a sample of size N. The probability that a newly collected individual belongs to a still 
unrecorded species corresponds to the probability of the transition [0 → 1], equal to i.fi(N)/N with i = 1, 
that is: f1(N)/N (as already mentioned).  
 
Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   
 

∂R(N)/∂N = f1(N)/N                                                                                                                  (A2.2) 
 

In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:      
                         

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂2R(N)/∂N
2) + ∂R(N)/∂N 

 
On the other hand, according to equation (A2.1):  
 
∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 

 
N(∂2R(N)/∂N

2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 
 
And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 
 

∂
2R(N)/∂N

2  =  – 2f2(N)/N
2                                                                                                       (A2.3) 

 
Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N

2), it comes: 
 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N
2)]/∂N  =  – N(∂2R(N)/∂N

2) – N2/2.(∂3R(N)/∂N
3) 

 
As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 
 

– N(∂2R(N) /∂N
2) – N2/2.(∂3R(N)/∂N

3) = 2f2(N)/N – 3f3(N)/N 
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and as ∂2R(N)/∂N
2 = – 2f2(N)/N

2, according to equation (A2.3), it comes: 
 

∂
3R(N)/∂N

3  =  + 6f3(N)/N
3                                                                                                       (A2.4) 

 
More generally: 
 

∂
xR(N)/∂N

x  =  (– 1)(x-1) (x!/Nx) fx(N)                                                                                          (A2.5) 
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