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A Hybrid High-Order method for the convective
Cahn–Hilliard problem in mixed form

Florent Chave, Daniele A. Di Pietro and Fabien Marche

Abstract We propose a novel Hybrid High-Order method for the Cahn–Hilliard
problem with convection. The proposed method is valid in two and three space di-
mensions, and it supports arbitrary approximation orders on general meshes con-
taining polyhedral elements and nonmatching interfaces. An extensive numerical
validation is presented, which shows robustness with respect to the Péclet number.
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1 Cahn–Hilliard equation

Let Ω ⊂ Rd , d ∈ {2,3}, denote a bounded connected convex polyhedral domain
with Lipschitz boundary ∂Ω and outward normal n, and let tF > 0. The convective
Cahn–Hilliard problem consists in finding the order-parameter c : Ω × (0, tF ]→ R
and the chemical potential w : Ω × (0, tF ]→ R such that

dtc−
1

Pe
∆w+∇ · (uc) = 0 in Ω × (0, tF ] (1a)

w = Φ
′(c)− γ

2
∆c in Ω × (0, tF ] (1b)

c(0) = c0 in Ω (1c)
∂nc = ∂nw = 0 on ∂Ω × (0, tF ] (1d)
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where γ > 0 is the interface parameter (usually taking small values), Pe> 0 is the
Péclet number, u the velocity field such that ∇ ·u = 0 in Ω and Φ the free-energy
such that Φ(c) := 1

4 (1−c2)2. This formulation is an extension of the Cahn–Hilliard
model originally introduced in [2, 1] and a first step towards coupling with the
Navier–Stokes equations.

In this work we extend the HHO method of [3] to incorporate the convective
term in (1a). Therein, a full stability and convergence analysis was carried out for
the non-convective case, leading to optimal estimates in (hk+1+τ) (with h denoting
the meshsize and τ the time step) for the the C0(H1)-error on the order-parameter
and L2(H1)-error on the chemical potential. The convective term is treated in the
spirit of [4], where a HHO method fully robust with respect to the Péclet number
was presented for a locally degenerate diffusion-advection-reaction problem.

The proposed method offers various assets: (i) fairly general meshes are sup-
ported including polyhedral elements and nonmatching interfaces; (ii) arbitrary
polynomial orders, including the case k = 0, can be considered; (iii) when using
a first-order (Newton-like) algorithm to solve the resulting system of nonlinear al-
gebraic equations, element-based unknowns can be statically condensed at each it-
eration.

The rest of this paper is organized as follows: in Section 2, we recall discrete
setting including notations and assumptions on meshes, define localy discrete oper-
ators and state the discrete formulation of (1). In Section 3, we provide an extensive
numerical validation.

2 The Hybrid High-Order method

In this section we recall some assumptions on the mesh, introduce the notation, and
state the HHO discretization.

2.1 Discrete setting

We consider sequences of refined meshes that are regular in the sense of [5, Chap-
ter 1]. Each mesh Th in the sequence is a finite collection {T} of nonempty, disjoint,
polyhedral elements such that Ω =

⋃
T∈Th

T and h = maxT∈Th hT (with hT the di-
ameter of T ). For all T ∈ Th, the boundary of T is decomposed into planar faces
collected in the set FT . For admissible mesh sequences, card(FT ) is bounded uni-
formly in h. Interfaces are collected in the set F i

h, boundary faces in F b
h and we

define Fh :=F i
h∪F b

h . For all T ∈Th and all F ∈FT , the diameter of F is denoted
by hF and the unit normal to F pointing out of T is denoted by nT F .

To discretize in time, we consider for sake of simplicity a uniform partition
(tn)0≤n≤N of the time interval [0, tF ] with t0 = 0, tN = tF and tn− tn−1 = τ for all
1≤ n≤ N. For any sufficiently regular function of time ϕ taking values in a vector
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space V , we denote by ϕn ∈ V its value at discrete time tn, and we introduce the
backward differencing operator δt such that, for all 1≤ n≤ N,

δtϕ
n :=

ϕn−ϕn−1

τ
∈V.

2.2 Local space of degrees of freedom

For any integer l ≥ 0 and X a mesh element or face, we denote by Pl(X) the space
spanned by the restrictions to X of d-variate polynomials of order l. Let

Uk
h :=

(
×T∈Th P

k+1(T )

)
×

(
×F∈Fh P

k(F)

)

be the global degrees of freedoms (DOFs) space with single-valued interface un-
knowns. We denote by vh = ((vT )T∈Th ,(vF)F∈Fh) a generic element of Uk

h and by
vh the piecewise polynomial function such that vh|T = vT for all T ∈ Th. For any
T ∈ Th, we denote by Uk

T and vT = (vT ,(vF)F∈FT ) the restrictions to T of Uk
h and

vh, respectively.
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Fig. 1 Local DOF space for k = 0,1,2. Internal DOFs (in gray) can be statically condensed at each
Newton iteration.

2.3 Local diffusive contribution

Consider a mesh element T ∈Th. We define the local potential reconstruction pk+1
T :

Uk
T → Pk+1(T ) such that, for all vT := (vT ,(vF)F∈FT ) ∈Uk

T and all z ∈ Pk+1
T ,

(∇pk+1
T vT ,∇z)T = −(vT ,∆z)T + ∑

F∈FT

(vF ,∇z ·nT F)F

with closure condition
∫

T (p
k+1
T vT − vT ) = 0. We introduce the local diffusive bilin-

ear form aT on Uk
T ×Uk

T such that, for all (uT ,vT ) ∈Uk
T ×Uk

T
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aT (uT ,vT ) := (∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT ,vT ),

with stabilization bilinear form sT : Uk
T ×Uk

T → R such that

sT (uT ,vT ) := ∑
F∈FT

h−1
F (πk

F(uF −uT ),π
k
F(vF − vT ))F ,

where, for all F ∈ Fh, πk
F : L1(F)→ Pk(F) denotes the L2-orthogonal projector

onto Pk(F).

2.4 Local convective contribution

For any mesh element T ∈Th, we define the local convective derivative reconstruc-
tion Gk+1

u,T : Uk
T → Pk+1(T ) such that, for all vT := (vT ,(vF)F∈FT ) ∈ Uk

T and all
w ∈ Pk+1(T ),

(Gk+1
u,T vT ,w)T = −(vT ,u ·∇w)T + ∑

F∈FT

(vF ,(u ·nT F)w)F .

The local convective contribution bu,T on Uk
T ×Uk

T is such that, for all (uT ,vT ) ∈
Uk

T ×Uk
T

bu,T (uT ,vT ) :=−(uT ,Gk+1
u,T vT )T + su,T (uT ,vT ).

with local upwind stabilization bilinear form su,T : Uk
T ×Uk

T → R such that

su,T (uT ,vT ) := ∑
F∈FT

(
|u ·nT F |−u ·nT F

2
(uF −uT ),vF − vT )F .

Notice that the actual computation of Gk+1
u,T is not required, as one can simply use its

definition to expand the cell-based term in the bilinear form bu,T .

2.5 Discrete problem

Denote by Uk
h,0 := {vh = ((vT )T∈Th ,(vF)F∈Fh) ∈Uk

h|
∫

Ω
vh = 0} the zero-average

DOFs subspace of Uk
h. We define the global bilinear forms ah and bu,h on Uk

h×Uk
h

such that, for all (uh,vh) ∈Uk
h×Uk

h

ah(uh,vh) := ∑
T∈Th

aT (uT ,vT ), bu,h(uh,vh) := ∑
T∈Th

bu,T (uT ,vT ).

The discrete problem reads: For all 1≤ n≤ N, find (cn
h,w

n
h) ∈Uk

h,0×Uk
h such that
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(δtcn
h,ϕh)+

1
Pe

ah(wn
h,ϕh

)+bu,h(cn
h,ϕh

) = 0 ∀ϕ
h
∈Uk

h

(wn
h,ψh) = (Φ ′(cn

h),ψh)+ γ
2ah(cn

h,ψh
) ∀ψ

h
∈Uk

h

where c0
h ∈Uk

h,0 solves ah(c0
h,ϕh

) =−(∆c0,ϕh) for all ϕ
h
∈Uk

h.

3 Numerical test cases

In this section, we numerically validate the HHO method.

3.1 Disturbance of the steady solution

For the first test case, we use a piecewise constant approximation (k = 0), discretize
the domain Ω = (0,1)2 by a triangular mesh (h = 1.92 · 10−3) with γ = 5 · 10−2,
τ = γ2 and Pe = 1. The initial condition for the order-parameter and the velocity
field are given by

c0(x) := tanh(
2x1−1
2
√

2γ2
), u(x) := 20 ·

(
x1(x1−1)(2x2−1)
−x2(x2−1)(2x1−1)

)
, ∀x ∈Ω .

The result is depicted in Figure 2 and shows that the method is well-suited to capture
the interface dynamics subject to a strong velocity fields.

3.2 Thin interface between phases

For the second example, we also use a piecewise constant approximation (k = 0)
with a Cartesian discretization of the domain Ω = (0,1)2, where h = 1.95 · 10−3.
The interface parameter is taken to be very small γ = 5 · 10−3, the time step is
τ = 1 · 10−5 and Pe = 50. The initial condition for the order-parameter is taken
to be a random value between −1 and 1 inside a circular partition of the Cartesian
mesh and −1 outside. The velocity field is given by

u(x) :=
1
2
(1+ tanh(80−200‖(x1−0.5,x2−0.5)‖2)) ·

(
2x2−1
1−2x1

)
, ∀x ∈Ω .

See Figure 3 for the numerical result. The method is robust with respect to γ and is
also well-suited to approach the thin high-gradient area of the order-parameter.
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Fig. 2 Steady solution perturbed by a circular velocity field (left to right, top to bottom).

Fig. 3 Evolution of spinodal decomposition with thin interface (left to right, top to bottom).

3.3 Effect of the Péclet number

The Péclet number is the ratio of the contributions to mass transport by convection
to those by diffusion: when Pe is greater than one, the effects of convection ex-
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ceed those of diffusion in determining the overall mass flux. In the last test case, we
compare several time evolutions obtained with different values of the Péclet num-
ber (Pe ∈ {1,50,200}), starting from the same initial condition. We use a Voronoi
discretization of the domain Ω = (0,1)2, where h = 9.09 ·10−3, and use piecewise
linear approximation (k = 1). We choose γ = 1 ·10−2, τ = 1 ·10−4 and tF = 1. The
initial condition is given by a random value between −1 and 1 inside a circular
domain of the Voronoi mesh and −1 outside. The convective term is given by

u(x) :=
(

sin(πx1)cos(πx2)
−cos(πx1)sin(πx2)

)
, ∀x ∈Ω .

Snapshots of the order parameter at several times are shown on Figure 4 for each
value of the Péclet number. For each case, the method takes into account the value
of Pe and appropriately models the evolution of the order parameter by prevailing
advection to diffusion when Pe� 1.
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Fig. 4 Comparison at the same time between evolution of solutions with different Péclet number
(top to bottom). Left: Pe = 1, middle: Pe = 50, right: Pe = 200. Displayed times are t = 0,1 ·
10−2,6 ·10−2,2 ·10−1,5 ·10−1,1.


