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Abstract 1 

 2 

Relationships between daily precipitation and daily maximum and minimum temperature (Tx and Tn, 3 

respectively) are analyzed at station level over the Greater Horn of Africa (GHA).  Rainfall occurrence is 4 

associated with either above normal Tn (mostly in cool highland areas) or below normal Tn (especially 5 

lowland, hot environments and early parts of the rainy season). Tx generally displays a more consistent 6 

response to rainfall occurrence, with cooling peaking one day after the rainfall event. However there is 7 

often a persistence of this cooling several days after the rainfall event, and the amplitude of the cooling 8 

is also greater for heavy rainfall events. These temperature anomalies are thought to be a response to 9 

cloudiness (concurrent reduced Tx and concurrent enhanced Tn) and soil moisture (reduced Tx and Tn, 10 

suggested to reflect evaporative cooling). 11 

These relationships are of relevance to the interpretation of temperature trends. From 1973 to 2013, 12 

the GHA shows a clear warming signal, for both Tn (+0.20 to +0.25°C/decade depending on seasons) and 13 

Tx (+0.17 to +0.22°C/decade). Rainfall shows both negative (mostly between February and July) and 14 

positive trends (mostly in October-December). Given the superimposition of temperature and rainfall 15 

trends in parts of the GHA and the covariations between daily rainfall and both Tx and Tn, regression 16 

models are used to extract the rainfall influence on temperature, accounting for lag effects up to 4 days. 17 

The daily residuals from these models are used to depict temperature variations free from precipitation 18 

effects. At some stations, trends computed on these residuals noticeably differ from the raw Tx trends. 19 

When averaged across the GHA, these effects do not exceed -0.06 to +0.03°C/decade (depending on the 20 

month) for Tx, and are marginal for Tn, thus do not strongly modify the magnitude of the warming in 21 

the last 40 years. Nevertheless, these results show that precipitation-temperature relationships must be 22 

addressed when analyzing temperature changes.  23 

 24 

Keywords: 25 

Temperature; rainfall; eastern Africa; trends; warming 26 

  27 
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 28 

1. Introduction 29 

 30 

Many factors are involved in temporal temperature variations, both high- and low-frequency, and they 31 

often interact with each other. The attribution of global temperature change to anthropogenic factors 32 

is undisputed, but at regional or local scale the interpretation of observed trends in temperature is more 33 

complex. Anthropogenic trends, caused by enhanced global GHG concentrations or local land use 34 

changes, may be altered by decadal-scale natural climate variability, and in both cases the respective 35 

parts played by radiative and advective processes is often poorly known. In particular, the exact role of 36 

clouds is still unclear (Soden and Held 2006 ; Boé and Terray 2013). Beyond the complex issue of the 37 

influence of atmospheric composition changes on cloud formation, clouds themselves have a decisive 38 

effect on surface temperature. This influence is strongest at sub-daily time-scales, and the direction of 39 

this effect often differs between day and night (Groisman et al. 2000 ; Sun et al. 2000). Day-time cloud 40 

cover decreases incoming shortwave radiation, which therefore results, in places and seasons where 41 

temperature is dominantly controlled by the radiative balance, in lower temperatures than under clear 42 

sky conditions. It is expected that night-time cloud cover results in higher than normal temperature due 43 

to the reduction of outgoing terrestrial radiation. However, several factors (combination of cloud cover 44 

with warm or cold air advection, types and height of clouds…) make the relationship between 45 

temperature and cloudiness strongly space- and time-dependent.  46 

 47 

At interannual time-scales, several studies have shown that the temperature-cloudiness relationship is 48 

relatively strong in many places of the world. Tang et al. (2012) and Tang and Leng (2012a) found that 49 

the variance of European and North America summer temperature is partly explained by changes in 50 

cloudiness. Tang and Leng (2012b) showed evidence that in parts of Eurasia the interaction between 51 

daytime cloud cover and surface air temperature was strong enough to influence long-term trends in 52 

summer temperature change. Liu et al. (2008) noted that under an assumption of a temperature 53 

difference of -7K between cloudy and clear conditions, the effect of changes in cloud cover on regional 54 

temperature trends is non negligible. However, the question of temperature-cloudiness relationships is 55 

compounded by the paucity of reliable cloud cover data for the last decades, due to the reduction of 56 

manned observations in some regions (Dai et al. 2006) and the artifacts found in satellite products (Evan 57 

et al. 2007). 58 

 59 

A way to overcome this issue is to use precipitation data. Although precipitation cannot be readily 60 

considered as a true proxy for cloudiness, it has several advantages. First, rainfall data are available at a 61 

much denser network of stations and over longer periods than cloudiness data. Second, studying the 62 

relationship between temperature and precipitation enables to indirectly address both the cooling / 63 

warming effects of cloudiness and the cooling effects of surface moisture evaporation after a rainfall 64 

event.  Soil moisture has actually been shown to impact heat wave occurrence in Europe (Fischer et al. 65 

2007 ; Hirschi et al. 2011). The global effects of precipitation, cloudiness and soil moisture on diurnal 66 

temperature range have been documented by Dai et al. (1999) and Zhou et al. (2009), among others, 67 

but cloud cover and soil moisture trends in the tropics are very difficult to assess due to poor records. 68 

In the absence of cloudiness and soil moisture data, we shall demonstrate that precipitation-69 

temperature relationships undergo large spatial and seasonal variations which go a long way in helping 70 

to understand actual temperature variations. Further, our hypothesis is that a better knowledge of high-71 

frequency (and local) relationships between precipitation and temperature can shed light on lower 72 

frequency temperature variations (decadal and mutidecadal), and help in the attribution of trends.  73 

 74 

Temperature-precipitation relationships have been examined in previous studies dealing with global 75 

climate (Trenberth and Shea 2005 ; Déry and Wood 2005 ; Adler et al. 2008 ; Berg et al. 2014). These 76 
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studies found that in many parts of the world there are significant interannual correlations between 77 

monthly temperature and precipitation, but the spatial and seasonal patterns are complex. Positive 78 

correlations tend to dominate over northern mid-latitudes in winter, and some oceanic regions in the 79 

tropics, while negative correlations dominate the mid-latitudes in summer and tropical lands. However 80 

there is a clear lack of details about this relationship in the tropics. Furthermore, most studies are 81 

restricted to monthly and annual time-scales. Studies based on daily data are few (e.g., Isaac and Stuart, 82 

1992, for Canada) although this time-scale is better appropriated to have a glimpse of actual processes. 83 

Groisman et al (2000) shows that, even in the tropics, there are complex relationships between cloud 84 

occurrence and temperature. While a cooling effect is generally found, cloud cover result in warmer 85 

conditions at nighttime in the winter hemisphere, a moderate nighttime warming also seems to occur 86 

at mountain sites all year round, but based on a small data sample (Groisman et al. 2000).  We shall 87 

further explore this issue and demonstrate the usefulness of lead-lag relationships of the daily 88 

temperature and rainfall data. 89 

 90 

Our study will be devoted to the Greater Horn of Africa (GHA), including Tanzania, Kenya, Uganda, 91 

Sudan, South Sudan, Ethiopia, Eritrea, Djibouti and Somalia. There is still a very imperfect knowledge of 92 

temperature variations and trends in this part of Africa. Yet, the mountainous environment results in 93 

strong temperature gradients, with a range from hot tropical lowlands (either wet or semi-arid) to afro-94 

alpine montane climates, and an associated variety of ecosystems. The distribution range of a number 95 

of species is strongly temperature-dependent, and this extends to parasites and their vectors, like 96 

Plasmodium spp. and some mosquitoes of the Anophele genus, which transmit malaria. Temperature is 97 

suspected to have a strong influence in the increase of malaria outbreaks in several parts of the East 98 

African Highlands in the last decades (Stern et al., 2011 ; Omumbo et al., 2011), although some 99 

controversies still exist on the magnitude of the temperature rise. Temperature variations also affect 100 

water requirements of crops (e.g., Rosenzweig et al., 2014).  Hence, a better understanding of the causes 101 

and patterns of temperature variations and trends in the region is an important challenge.    102 

 103 

King’uyu et al. (2000) found large geographical variations in observed temperature trends across eastern 104 

and north-eastern Africa, with some neighboring locations at times showing opposite trends. Over 105 

Ethiopia, Fazzini et al. (2015) found a +1.1°C increase in both maximum and minimum temperature from 106 

1980 to 2010, although an average of 8 stations with longer records (1953-2010) shows that the rate of 107 

minimum temperature increase is twice that of maximum temperature. Christy et al. (2009), based on 108 

a thorough analysis of 100-yr of data across Kenya and Tanzania, including an adjustment for station 109 

inhomogeneities in the time-series, noted strong minimum temperature increases but much lower for 110 

maximum temperature whose rising became substantial only in the last (1979-2004) sub-period. They 111 

interpreted the differences between maximum temperature (Tx) and minimum temperature (Tn) trends 112 

as a response to complex changes in the boundary layer dynamics, with Tx being influenced by the 113 

daytime vertical connection to the deep atmosphere whereas Tn represents only a shallow layer. For 114 

Uganda, Christy (2013) also demonstrated much stronger temperature rises for Tn than for Tx across 115 

the twentieth century. Omondi et al. (2014) focused on temperature and precipitation extremes. They 116 

found them to be quite spatially consistent for both day-time and & night-time temperatures, but not 117 

for precipitation. 118 

 119 

A drying trend for the boreal spring season in the eastern part of the GHA has been documented by Lyon 120 

and Dewitt (2012) and Funk et al (2012). Williams et al. (2011) also reported a precipitation decrease in 121 

June-September over much of the summer-rainfall area of the Greater Horn of Africa (Sudan, western 122 

Ethiopia, Uganda) between 1948 and 2009. In Ethiopia, Mekasha et al. (2013) noted that trends of 123 

temperature and precipitation extremes vary considerably among stations located within a given eco-124 

environment. However, a significant drying trend (1960-2002) is found for the main rainy season (June-125 
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September) over several watersheds of south-western Ethiopia (Cheung et al., 2008). In Djibouti, Ozer 126 

and Mahamoud (2013) found a strong decline precipitation over the period 1966-2011, and a parallel 127 

temperature increase. For Sudan, Elagib and Mansel (2000) found a significant warming between 1941 128 

and 1996 in the central and southern parts of the country, and noted that the period of greater warmth 129 

coincided with that of rainfall depletion reported in the post mid-1960s. Maps of recent (1979-2010) 130 

temperature trends across Africa (Collins, 2011, her figure 5) actually show that significant trends 131 

basically occur in the parts of the continent experiencing seasonal dryness, whereas within the rainbelt 132 

trends are weaker and insignificant. This result suggests that a full interpretation of temperature trends 133 

need to take other climate variables, such as cloudiness or rainfall, into consideration. A separate 134 

analysis of maximum and minimum temperatures may also be desirable (Lobell et al 2007; Christy et al., 135 

2009). 136 

 137 

The study consists of three steps. First, the association between rainfall occurrence and temperature 138 

variations on a daily basis is examined. It is hypothesized that this will shed light on the indirect role 139 

played by cloudiness and evaporation on temperature. Maximum and minimum temperature will be 140 

separately considered, and the spatial and temporal patterns of the relationship will be carefully 141 

analyzed. The lead-lag aspects of the relationships will also be investigated. Second, long-term 142 

temperature trends (1953-2013 and 1973-2013) will be presented, at regional and local scales. At local 143 

scale, possible differences between temperature trends associated with wet and dry days will also be 144 

examined. Third, trends in rainfall occurrence will be studied. Any such trend may impact temperature 145 

trends given the hypothesized relationships between temperature and rainfall occurrence on a daily 146 

basis. A method will be defined to remove the contribution of variations in rainfall occurrence on 147 

temperature, and the subsequent adjusted temperature trends will be analyzed. 148 

 149 

2. Data and methods 150 

 151 

The study area comprises all countries belonging to the Greater Horn of Africa (GHA) sub-region (namely 152 

Djibouti, Eritrea, Ethiopia, Kenya, Somalia including Somaliland, Sudan, Tanzania and Uganda), between 153 

8°S and 21°N, and 29°E and 52°E. However, Sudan’s westernmost part, Tanzania’s southernmost part, 154 

Burundi and Rwanda are not included. The analyses rely on the local comparison of temperature and 155 

precipitation variations. They only consider observed station data, since there are still some 156 

inconsistencies within numerical simulations (therefore possibly in reanalyses) in their reproduction of 157 

temperature-precipitation relationships (Stuart and Isaac 1994 ; Trenberth and Shea, 2005 ; Berg et al., 158 

2014), and global gridded products are unable to document the sharp climatic gradients found in the 159 

GHA.  160 

 161 

2.1 Temperature data 162 

 163 

Daily maximum and minimum temperatures (Tx and Tn, respectively) are extracted from two main 164 

databases. The Global Historical Climate Network Daily (GHCND) data set (Menne et al., 2012) provides 165 

the longest time-series, with 29 stations having at least 30 years of data from 1953 onwards across the 166 

region. It has been supplemented by data from the Global Summary of the Day (GSOD) data set archived 167 

by NOAA (http://www1.ncdc.noaa.gov/pub/data/gsod). A few additional daily station temperature 168 

time-series from the Kenya Meteorological Department and the Somalia Water and Land Information 169 

Management unit (SWALIM) have also been incorporated.  170 

 171 

Basic quality control has been carried out (deletion of minimum temperatures outside the [-10 to +40°C] 172 

range, and of maximum temperatures outside the [0 to +58°C] range ; detection of major jumps in the 173 

time-series based on visual inspection of deseasonalised anomalies). 174 

http://www1.ncdc.noaa.gov/pub/data/gsod
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 175 

For reference temperature trends, gridded maximum and minimum temperature data from the Climate 176 

Research Unit (CRU TS 3.10) data set (Harris et al., 2014) are also used. They consist of observed data at 177 

monthly timescale, interpolated on a 0.5 x 0.5 latitude x longitude grid.  178 

 179 

2.2 Rainfall data 180 

 181 

Daily rainfall data originates from the Centre de Recherches de Climatologie (CRC) database at Université 182 

de Bourgogne. It mostly consists of data from GHCND and from the various national meteorological 183 

organizations. A few GHCND Sudan stations have been rejected due to many outliers in the post 1990 184 

time-series. Some data from GSOD have also been included, but after a careful check since in some years 185 

and stations reports of nil rainfall are dubious. 24-hour GSOD totals recorded on day 0 have been 186 

attributed to day -1, since the standard practice for daily rainfall is to record it at 0600 UTC (0900 East 187 

African Time) while most of the rain falls during the preceding day. This adjustment is normally already 188 

effective in data originating from national meteorological services. 189 

 190 

2.3 Combined data set 191 

 192 

The combined temperature and rainfall network consists of 95 stations (fig.1) representative of a wide 193 

range of elevations and climates. Mean annual maximum temperature ranges from 20.7°C at Robe 194 

(Ethiopian Highlands) to 37.9°C at Atbara (Nile Valley in northern Sudan), and mean minimum 195 

temperature ranges from 7.4°C at Robe to 26.2°C at Djibouti on the Gulf of Aden.  Lowland stations of 196 

the northern GHA, from Djibouti to northern Sudan through the coasts of Eritrea, as well as northeastern 197 

Somalia, are the driest, with mean annual rainfall below 200 mm (fig.1). The plains of Somalia, eastern 198 

Ethiopia, northern and eastern Kenya are also quite dry (200 to 600 mm annually). The Ethiopian 199 

Highlands, the Great Lakes area and parts of the Kenya and Tanzania Highlands are relatively wet, with 200 

mean annual rainfall in the range 1000-2000 mm. The Indian Ocean coast is arid along Somalia, and 201 

becomes wetter in Kenya and Tanzania (800-1200 mm). A similar gradient is found southwards along 202 

the Nile Valley in Sudan. 203 

 204 

The main analyses are based on the period 1953-2013, with different sets of data depending on the kind 205 

of analysis performed. The full data set, comprising stations with short duration of records, is used for 206 

the study of daily temperature anomalies associated with rain day occurrence. A more restricted 207 

network is used to analyze trends. 208 

 209 

2.4 Methods for the analysis of the relationship between daily temperature and rainfall 210 

 211 

For the study of daily temperature variations associated with rainfall occurrence, rain days are defined 212 

as those on which at least 1 mm precipitation is recorded. This classifies as dry days those with very light 213 

precipitation, although the accompanying cloudiness may have some effect on temperature. However, 214 

since such low intensity rainfall events are often missed out and recorded as zero rainfall, it is safer to 215 

adopt a 1 mm threshold. Maximum and minimum temperature anomalies associated with rainfall 216 

occurrence are then computed for a period of 7 days before to 7 days after the rain day. Note that this 217 

may include additional rainy days, but in the composite analyses we do not consider whether the days 218 

before or after the central day are actually wet or dry. This is due to the fact that in wet seasons / regions, 219 

it is impossible to find sequences of 15 days comprising dry days only but for the central day. The issue 220 

will however be further discussed below. Temperature anomalies are expressed as departures from the 221 

monthly temperature average. Each temperature anomaly profile, consisting of 15 days, is thus 222 

computed for each month and each station separately. No consideration is made of the period of data 223 
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availability, since the daily rainfall-temperature relationship is believed to be quite robust. However a 224 

minimum of 400 days is required for a station to be retained, and a minimum sample of 10 rain days in 225 

a month (all years together). 795 stations-months meet these requirements. The 795 profiles combining 226 

maximum and minimum temperature anomalies are classified using a k-means algorithm, based on 227 

squared Euclidean distances. For the sake of simplicity, a basic partition in 3 clusters is presented here.  228 

 229 

To further document the relationship between rainfall and temperature and take into account the role 230 

of both rainfall occurrence and intensity with a lead time of up to 4 days, stepwise multiple linear 231 

regression (MLR) models are defined, for each station, with daily temperature as the dependent variable 232 

and a set of 10 potential predictors describing rainfall. Five of them are binary (“dummy”) variables 233 

describing rainfall occurrence from the day of temperature recording (d0) to 4 days before (coded 1 for 234 

a rain-day of at least 1 mm, and coded 0 for a dry day). Five additional predictors describe rainfall 235 

amounts for the same days. Note that there is an evident covariation between rainfall occurrence and 236 

rainfall amounts. However, in most cases the attempt to use as predictors occurrence only, or amounts 237 

only, resulted in significantly lower skills of the MLR models, hence both variables were kept. 238 

Additionally, there is a rationale for considering separately rainfall occurrence and amounts. While 239 

rainfall occurrence may be seen as a rough proxy for cloudiness, rainfall amount impacts soil moisture, 240 

thus implying two different driving mechanisms for temperature variations (i.e., through the radiative 241 

balance and latent heat flux, respectively). Variables reaching the 0.95 significance were added 242 

iteratively to the MLR models, until the addition of other predictors did not further improve the model. 243 

This was done on a monthly basis, to factor out the effect of the seasonal cycle.  The multiple regression 244 

is devised for explanatory purposes only, not prediction, therefore no cross-validation is carried out.  245 

 246 

2.5 Methods for trends analysis 247 

 248 

Temperature trends are next investigated at both regional and local scales. At regional scale, a 249 

temperature index for the GHA is computed over the period 1953-2013 by spatially averaging 250 

temperature anomalies of all stations having at least 4 years of data. Note that all anomalies are 251 

computed with respect to the period 1961-1990, used as reference, even if the station data do not fully 252 

cover this period. To do that, CRU temperatures for the grid-point nearest to each station are extracted. 253 

The difference D between the CRU mean temperature recorded on the years Y for which data are 254 

available at the station and the 1961-1990 mean CRU temperature is computed. Local (station) 255 

temperature anomalies with respect to 1961-1990 are then retrieved by adding D to the locally–derived 256 

anomalies for years Y.  257 

 258 

Trends in spatially-averaged temperatures are investigated through least square linear regressions. In 259 

order to assess the reliability of the trends thus obtained, and of the choices made in data averaging, a 260 

comparison is made with the CRU temperature data extracted for the grid-points nearest to the stations. 261 

Note that it is inadequate to compute separate regional (GHA average) temperature indices of wet-days 262 

and dry-days since the temperature – rainfall relationships differ between stations (see below). 263 

 264 

Local trends (for each station) are determined over the period 1973-2013, over which the space-time 265 

data availability is best. Over this period, 30 to 70 stations are available each year. In any given year, 266 

only stations-months for which at least 3 wet and 3 dry days are available are used. Other years are set 267 

to missing. These apparently low thresholds actually account for interannual variability in wet and dry 268 

days frequency, and for dry seasons / locations at which rain occurs only on a few days (for instance, the 269 

mean number of rain days in semi-arid northeastern Kenya during April, the wettest month, is as low as 270 

5 to 7 days out of 30 days). Similarly, in very wet seasons / stations, there are not many dry days. From 271 

the initial data base, only 22 stations with at least 20 years of data can be retained. Least square linear 272 
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regressions are then applied to monthly mean maximum and minimum temperature, separately for wet 273 

and dry days. Note that a one-day lag is considered between temperature and the rainfall occurrence / 274 

absence (see results on lag-composites under section 3.1). 275 

 276 

Trends in rain day frequency (RDF) and rainfall amounts are next computed. RDF is the ratio between 277 

the number of wet days and the number of days available. This was used to account for the existence of 278 

isolated days with missing temperature and/or rainfall records. In order to assess the effect of 279 

temperature data availability, trends based on both all rainfall data and days with available temperature 280 

information were compared. 281 

 282 

Finally, the possible influence of rainfall trends on temperature is examined. The method is based on 283 

the stepwise multiple linear regression (MLR) models computed earlier. Daily temperature variations 284 

explained by rainfall occurrence and amounts from day 0 to day-4 are computed. The daily residuals of 285 

temperature from these models are used to depict temperature variations free from the contribution 286 

of precipitation change. Monthly mean temperatures are then computed from these residuals, and are 287 

subject to local trend detection using least-square regressions over the years 1973-2013. These trends 288 

are compared to those found for raw mean monthly temperatures, in order to determine whether 289 

temperature trends are weaker / enhanced after extracting the contribution of rainfall trends. 290 

 291 

Note that a parallel method based on daily rainfall occurrence only has been used. The temperature of 292 

a wet day at a given station was converted to that of a “pseudo-dry day”, by adding the average 293 

difference between wet and dry days for the corresponding month and station. The same procedure 294 

was carried out to take into account lead-lag relationships between rainfall occurrence and 295 

temperature. The general results were fairly similar to those obtained from the stepwise MLR, but with 296 

this method it is uneasy to assess the combined contribution of rainfall occurrence during several 297 

consecutive days, therefore only the MLR results are presented. 298 

 299 

Another simpler method to assess the temperature trends free from the rainfall contribution has been 300 

defined using monthly mean temperature and rainfall at each station. Temperatures were linearly 301 

regressed against monthly precipitation, and the trends in the residuals were compared to those 302 

obtained from the raw temperature time-series. It will be shown (section 3.4) that the results are broadly 303 

similar to those obtained with the above method. Although this latter method is simpler, the one based 304 

on daily time-series will be preferred since this time-scale provides useful information on the possible 305 

mechanisms and the timing of the interactions between rainfall and temperature.     306 

 307 

3. Results 308 

 309 

3.1 Daily temperature variations associated with rainfall occurrence 310 

 311 

The 3 types of daily temperature anomaly profiles retained from the k-means analysis are displayed on 312 

figure 2 (top panel, Tx). All show a decrease in maximum temperature associated with the rainfall event, 313 

with a magnitude much weaker for cluster 2 (-0.7°C) than for clusters 1 and 3 (about -1.3°C). Also note 314 

the asymmetry of the profiles : the cooling generally peaks one day after the rain occurrence, except for 315 

cluster 1 where anomalies are similar on day 0 and day +1. The return to average temperature is slow 316 

for all types, while before the rainfall event a small temperature anomaly can be found on day -1 only 317 

(clusters 1 and 3).  318 

 319 

The 3 clusters are much more strongly differentiated by their minimum temperature profiles (fig.2, Tn). 320 

Cluster 1 is associated with a warming, peaking at +1.2°C on day 0, and a relatively symmetrical pattern 321 
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suggesting a gradual warming before the rainfall event and a gradual cooling after that. On the contrary, 322 

cluster 3 displays a decrease in minimum temperature, which is however short-lived, peaks on day +1 (-323 

0.7°C) and shows no precursor signal. Cluster 2 has a flat temperature profile, with a very small rise of 324 

minimum temperature mirroring the small decrease of maximum temperature. 325 

 326 

Four sample stations illustrating clusters 1 and 3 are presented in figure 3. Thick lines denote 327 

temperature anomalies from 7 days before to 7 days after a rainfall event of any intensity, while thin 328 

lines consider events recording over 10 mm only. Meru and Nairobi (cluster 1 in April), in the highlands 329 

near Mount Kenya, show a typical pattern of reduced maximum temperature (-0.5 to -0.8°C one day 330 

after a rainfall event of any intensity) and increased minimum temperature (+0.3 to 0.4°C). For maximum 331 

temperature, there is clear persistence of negative anomalies long after the rainfall event. Increased 332 

cloudiness may explain both the increased minimum temperature (through reduced outgoing longwave 333 

radiation) and the decreased maximum temperature (decreasing incoming shortwave radiation), 334 

although for the latter additional cooling may result from evaporation of surface soil moisture, even 335 

some time after rainfall occurred.  It is noteworthy that these anomalies (especially for Tx) are larger, 336 

reaching -1°C, when the composite is restricted to the >10mm precipitation events, suggesting that the 337 

cooling effect is stronger after a more intense precipitation. The occurrence of some significant (though 338 

weaker) anomalies before day 0 is explained by the fact that not all rain events occur as isolated rain 339 

days. Garissa and Wajir (cluster 3 in April) are also located in Kenya but in the eastern lowlands. The 340 

climate is hotter and drier, although April is the peak rainfall month of the MAM rainy season. A marked 341 

cooling is found for maximum temperature (around -1.2°C on day +1). Maximum temperature is also 342 

significantly below normal on the day of the event, and after day +1 (around -0.5°C). Minimum 343 

temperature also deviates significantly form normal, but negatively, contrary to what found in the 344 

highlands, and for a shorter period of time than for maximum temperature. It is suggested that these Tn 345 

anomalies mainly reflect surface cooling associated with increased evaporation, since a change in 346 

cloudiness would more likely result into higher minimum temperature. Like at the two other stations, 347 

temperature anomalies are larger when selecting only heavy (>10mm) precipitation events. 348 

 349 

The spatial patterns of the 3 types of temperature profiles are actually far from random (fig.2, bottom 350 

panels). Type 3 tends to occur at low elevation, in the dry areas, especially during the MAM and OND 351 

rainy seasons in northeastern Kenya, eastern Ethiopia and Somalia, in central Sudan during the early 352 

part of the JJAS rainy season. It is also found all around Lake Victoria in January (relatively dry season) 353 

and at some locations in western Ethiopia in April. As suggested above, it is hypothesized that the 354 

decrease of both Tx and Tn mainly reflects surface cooling associated with short-lived disturbances, 355 

increased evaporation, in hot environments. By contrast, type 1 is mostly associated with highland 356 

stations (mainly Ethiopian and Kenya Highlands above 1500 m), except from July to September where it 357 

is superseded by cluster 2. The Tn increase is suggested to reflect increased cloudiness, associated with 358 

larger-scale disturbances, sometimes actually present before the precipitation event itself. Interactions 359 

with mid-latitude systems in the boreal winter and spring seasons are known to contribute to rainfall 360 

occurrence during these seasons in Eritrea, Ethiopia and sometimes as far as Kenya (Habtemichael and 361 

Pedgley 1974 ; Okoola 1989 ; Camberlin and Philippon, 2002). An alternative hypothesis is that 362 

precipitation events accompany synoptic-scale cold air advection, although near the equator the 363 

temperature change related to this mechanism is likely to be small.  Finally, cluster 2 is found in more 364 

diverse environments: in the highlands during boreal summer (July-September), in the lowlands (e.g., 365 

eastern Kenya) in the dry seasons, in central Sudan in the second part of the JJAS rainy season (not 366 

shown) as well as along the Indian Ocean coast from July. With the exception of dry season lowland 367 

stations (where rainfall events are rare and of low intensity), this mostly corresponds to locations where 368 

convective rainfall dominates, but in rather moist environments (e.g., late in the rainy season). It can be 369 

hypothesized that the daytime cooling effect (Tx) is reduced because the surface is already moist. 370 
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Similarly, the nighttime cooling is reduced and compensated by a higher cloudiness, resulting into 371 

virtually no signal in Tn.   372 

 373 

Although the above mechanisms are speculative only, these results clearly show that the temperature 374 

response to rainfall occurrence is not unique. A decrease of maximum temperature is generally found 375 

shortly following a wet event, but its magnitude and durability varies both spatially and seasonally. The 376 

response of minimum temperature is even more contrasted, with both cooling (drier lowland stations) 377 

and warming (cooler highlands stations). An important outcome is that the commonly used diurnal 378 

temperature range (DTR) is an ambiguous variable, whose variations cannot be properly interpreted 379 

without separately considering the behavior of maximum and minimum temperature.  380 

 381 

While the strongest association between rainfall occurrence and temperature is at one-day lag, 382 

significant temperature anomalies are often found several days after the rainfall event. To further 383 

document this issue, as well as the role of rainfall intensity, stepwise MLR models are defined, for  each 384 

station and each month, which relate daily temperature on day 0 to precipitation occurrence and and 385 

rainfall amounts, for day 0 to day -4. Figure 4 shows which predictors are picked up in the regression 386 

models (at the 0.95 significance level), as a percentage of all models (stations), for the GHA as a whole. 387 

For Tx, predictors depicting rainfall occurrence are those retained most often, especially on day 0 and 388 

day -1. In the wet months of April and October as much as 75-85% of the models pick up both rainfall 389 

occurrence and rainfall amounts. However, a large percentage of the models additionally retain rainfall 390 

occurrence in the preceding days (day -2 to day -4, each one being picked up in about 60% of the April 391 

models). Rainfall amounts have a generally smaller contribution, but still explain part of the temperature 392 

variance unaccounted for by rainfall occurrence. While the amount on day 0 is generally of little 393 

relevance, that on day -1 contributes much more, and at longer lead times amounts may even have a 394 

larger contribution than occurrence (e.g., see day -4 in October). The right parts of the panels in figure 395 

4 show the distribution, for all the stations sampled, of the multiple correlation coefficient between 396 

temperature and the precipitation predictors, in the stepwise models. In the MAM and OND seasons, 397 

the median multiple correlation is close to 0.5. This indicates than in half the stations, at least 25% of 398 

the Tx variations can be explained by rainfall from day -4 to day 0. As a result, precipitation variations 399 

cannot be ignored in the interpretation of temperature variations and trends.  400 

 401 

The same analysis is carried out for minimum temperature (fig.5). Predictors are mostly restricted to day 402 

0 and day-1. The incidence of precipitation events before day -2 is generally small or negligible. Multiple 403 

correlations are lower than for maximum temperature, indicating that precipitation explains a smaller 404 

part of minimum temperature variations, but day-to-day variations of Tn are damped compared to those 405 

of Tx.  406 

 407 

3.2 Temperature trends  408 

 409 

Interannual variations and long-term trends of temperature for GHA as a whole are shown in figure 6, 410 

for the years 1953-2013 and on a seasonal basis (seasons are defined here based on the overall rainfall 411 

regimes). The comparison with the CRU data shows that the two data sets are consistent. Despite the 412 

gaps in the daily temperature records, and the uneven spatial distribution of the stations, the time-series 413 

correlate at 0.79 to 0.90 for Tx and 0.81 to 0.85 for Tn. Linear trends are also very similar between the 414 

two data sets, with those based on station data differing from the CRU data by no more than 415 

0.03°C/decade. All seasons show warming trends, for both Tx and Tn. Based on our data set, minimum 416 

temperature increased at a high rate (+0.20 to +0.25°C/decade). The trend in maximum temperature is 417 

slightly weaker, but still strong (+0.17 to +0.22°C/decade). These values are close to or slightly above 418 

those found by Collins (2011) for mean temperature over Africa as a whole in the period 1979-2010. 419 
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Only marginal differences are found between seasons, although the northern summer (June-September) 420 

shows the largest warming trends for both Tn and Tx over GHA. 421 

 422 

Regional trends mask out some local variations. Local trends are examined over the period 1973-2013 423 

using a smaller network of stations, enabling a separation of wet and dry days (fig.7). The frequency 424 

distribution of Tx and Tn trends shows that, for all seasons and stations combined, dry days tend to 425 

exhibit a slightly stronger warming than wet days, but the difference is relatively small. Median Tx trend 426 

for the 22 stations used in this analysis is at +0.16°C/decade for wet days, and +0.20°C for dry days. For 427 

Tn, which shows an overall stronger warming than Tx, the difference is slightly larger (+0.25 and 428 

+0.32°C/decade for wet and dry days respectively). Seasonally (fig.7, bottom), the difference between 429 

the Tx trends of wet and dry days is largest in January-February and October-December ; it is absent in 430 

the two other seasons. For Tn, the differences are more consistent, dry days experiencing a stronger 431 

warming throughout the year. In apparent contradiction to figure 6, January-February exhibits the 432 

strongest Tn warming, but this is biased by the fact that much of the GHA except its southernmost part 433 

is dry during this season, hence only stations in the south could be used to compute the differential wet 434 

day and dry day trends, whereas in figure 4 all GHA stations and a longer period (1953-2013) are used.  435 

 436 

Maps of local trends are presented in figure 8 (only the MAM and OND seasons are displayed). They 437 

confirm that the differences in trends between wet and dry days are generally not big. In MAM and at 438 

most stations, Tn trends following dry days are slightly stronger than those obtained for wet days. The 439 

same applies to Tx trends in OND. Although trends are not strongly different in the northern and 440 

southern parts of the GHA, there are larger local discrepancies between neighboring stations. However, 441 

trends for dry days tend to be spatially more uniform, whereas for wet days sharper spatial variations 442 

prevail in the amplitude and sign of the trends (see Tx in both MAM and OND on fig.8).  443 

 444 

As an example of how temperature variations differ between wet and dry days, the stations of Garissa 445 

(eastern drylands of Kenya) and Nairobi Airport (Kenya Highlands) are extracted, for OND 1973-2011 446 

(fig.9). Both common features and discrepancies emerge. The two stations are illustrative of the fact 447 

noted over the GHA that Tn shows a more upward trend than Tx. Garissa actually shows a small Tx 448 

decrease in the period. In both stations, the trends for wet and for dry days are quite consistent. 449 

However, trends for wet days generally show a slightly smaller increase (and a larger decrease for Tx at 450 

Garissa) than trends for dry days. This is again illustrative of the results obtained for the GHA as a whole. 451 

Other interesting features are the larger interannual variations obtained for Tx than for Tn, and the wider 452 

gap between wet and dry days in the maximum than in the minimum temperatures. As noticed above 453 

(section 3.1), an outstanding feature is that wet days at lowland, dry locations (e.g., Garissa) tend to 454 

result into lower temperatures for both Tx and Tn, whereas at highland stations (e.g., Nairobi) only Tx is 455 

below normal, while Tn is above normal. 456 

 457 

On the whole, several of the above results indicate that wet occurrences markedly affect temperatures 458 

in the GHA. This is obvious at daily time-scale, although geographical variations do occur in the way 459 

temperatures are impacted. There also appears to be some differences in the long-term temperature 460 

trends when dry and wet days are analysed separately. Spatially more consistent temperature trends 461 

are often obtained when considering only dry days. The next step is therefore to look for possible 462 

changes in rainfall frequency, and whether they could affect temperatures. 463 

 464 

3.3 Trends in rainfall frequency and amounts 465 

 466 

Trends in the frequency of rain days (RDF) are computed on a monthly and station basis. In order to 467 

match the study of temperature trends, the period of study is restricted to 1973-2013. A minimum 468 
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number of 15 daily observations per month is needed to compute RDF, and at least 30 years of data to 469 

compute trends. 40 stations satisfy this requirement (no stations in Sudan). The number of stations 470 

having simultaneous daily temperature data is smaller (13, mainly in Kenya). To assess the 471 

representativeness of these stations, a comparison is made between the RDF trends based on the whole 472 

rainfall data set and the trends based on the stations having both rainfall and temperature data 473 

(“restricted network”). 474 

 475 

Figure 10a shows the distribution of monthly RDF trends (all stations and months together). It is almost 476 

symmetrical, with both positive and negative trends and a median close to zero (no trend). However, 477 

7.5% of the months and stations do show a positive trend exceeding +2.5% per decade (i.e., over 10% 478 

increase in rain days over 1973-2013), and 12.9% of the series show a negative trend below -2.5% per 479 

decade. The distribution of trends based on all data is quite similar to that of trends based on the 480 

restricted network. This gives confidence on the use of the restricted network to document rainfall 481 

trends in the region. Figure 10b shows the mean in RDF trends across the GHA region on a monthly basis. 482 

Negative trends dominate the period from February to September. The rainfall decrease is largest in 483 

April-May, reflecting the current drying trend found over the region during boreal spring (Lyon and 484 

Dewitt, 2012 ; Funk et al., 2012). October and November singularize by a marked increase in rainfall 485 

occurrence. Nicholson (2015) also noted a higher October-November rainfall between 1997 and 2012 486 

compared to the earlier years.  487 

 488 

Figure 10 shows that trends based on the restricted network quite adequately mimic those obtained 489 

from the full network, although in some months (e.g., December) there are noticeable discrepancies. 490 

Trends in RDF are also compared to those observed for monthly rainfall amounts averaged over the 491 

GHA, available for a much larger number of stations (fig.10b, dashed line with crosses). The seasonal 492 

trends are fairly consistent, again with the exception of December. This makes us believe that, for the 493 

most part, results based on the restricted network provide a fair view of the actual trends for GHA as a 494 

whole.  495 

 496 

The spatial patterns of the RDF trends by season (fig.11) confirm the marked decrease in rain day 497 

frequency in March-May, over most of the GHA region. Negative RDF trends also dominate in January-498 

February, although weaker and more erratic. A quite consistent decrease is found during the June-499 

September period as well, mostly over Uganda, Ethiopia and western Kenya, although some stations 500 

depart from this pattern. October-December trends are mostly positive, with the largest increases over 501 

Kenya and Tanzania. Note the negative trends over Uganda are more uncertain due to the incomplete 502 

GSOD rainfall data in the 1990s and 2000s. However, some negative rainfall trends over the last decades 503 

have been documented by other studies (Lyon and DeWitt, 2012 ; Williams et al., 2012 ; Liebmann et 504 

al., 2014). Diem et al. (2014), based on 1983-2012 African Rainfall Climatology version 2 (ARC2) rainfall 505 

estimates, also found decreasing rainfall over Uganda, but (unexpectedly) due to decreasing intensities 506 

rather than a change in rainfall days. 507 

 508 

Trends in mean monthly rainfall amounts (fig.12) are fairly similar to those of rainfall occurrence. There 509 

is a balance between positive and negative trends. Positive trends dominate in the period from October 510 

to January while negative trends dominate between February and May. In some months, especially June 511 

and July, there is less agreement between the trends depending on the data sets used in the 512 

computation, as a result of greater spatial variations than in the rest of the year. Otherwise, even the 513 

restricted network of stations (for which both daily temperature and precipitation data are available) is 514 

adequate to portray general trends over the region.  The spatial patterns of the trends in rainfall 515 

amounts are quite similar to those of RDF and are therefore not presented. 516 

 517 
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3.4 Temperature trends adjusted for the contribution of rainfall change 518 

 519 

There is evidence of a superimposition, in some areas and seasons, of temperature and precipitation 520 

trends over the period 1973-2013. This is the case over Kenya and Ethiopia in March-May for example, 521 

where both a warming and a drying up are noticed (fig.8 and 11). Given the relationships found at daily 522 

time-scale between temperature and rainfall occurrence, an attempt is made to quantify the 523 

contribution of the rainfall trend to that in temperature. The temperature signal at daily time-scale 524 

associated with rainfall occurrence and intensity, as described in section 3.1, is extracted from the raw 525 

daily temperature data (see methods under section 2.5). Monthly temperature values are then 526 

computed from both the raw temperature data and the adjusted (contribution of precipitation trend 527 

removed) temperature data.  528 

 529 

Taking the station of Nairobi-Airport as an example, figure 13 displays interannual variations and linear 530 

trends of mean April (top panel) and November (bottom panel) maximum temperatures. April raw Tx 531 

shows a marked warming trend (+0.25°C/ decade). April is also characterized by a strong precipitation 532 

decline. After correcting the daily Tx data from precipitation contribution (basically, drier conditions 533 

resulting into higher Tx), the temperature trend is still positive but much weaker (+0.03°C / decade). In 534 

November reciprocally, raw Tx shows a weak negative long-term trend (-0.02°C/decade ; fig.13, bottom) 535 

. However, this is partly the result of a general increase in precipitation. Removing the precipitation 536 

change contribution gives a warming of +0.13°C/decade.  This example shows that, at some stations and 537 

in certain months, precipitation trends interfere with those of temperature.  The precipitation 538 

contribution can be either an increase or a decrease of temperature trends.  539 

 540 

For April, figure 14 shows for each station the raw maximum temperature trends (left panel), the 541 

temperature trend resulting from changes in precipitation amounts (central panel, and the residual 542 

temperature after the effect from precipitation trends is deducted (right panel). At many stations, 543 

especially in Kenya, the drying up noted in April translates into a warming, explaining part of the raw 544 

temperature increase. After deducting the precipitation contribution, Tx trends are generally weaker. 545 

However, the warming is still obvious. Inter-station variations in trends magnitude are quite strong, but 546 

an interesting fact is that the variability in Tx trends slightly reduces when adjusted Tx temperatures are 547 

used instead of raw data. The same is actually found in all other months, except January. This is 548 

suggesting that part of the spatial variations between stations in temperature trends is related to local 549 

peculiarities in precipitation variability.  550 

 551 

These analyses have been repeated for all months, for both Tx and Tn. The results are summarized in 552 

figure 15, which shows the average temperature trends across all the available stations in the GHA 553 

(1973-2013, bold red lines, showing coefficients of regression in °C per decade). These are merely rough 554 

estimates of temperature trends for the sub-region as a whole since the distribution of available stations 555 

is uneven, with Kenya being over-represented. The plots distinguish trends obtained from raw 556 

temperature data (solid lines) and those obtained from adjusted data (after removing the rainfall 557 

contribution, dashed lines with stars). The precipitation trend is also plotted. For Tn, there is little 558 

difference between the raw and adjusted temperature trends. This is because the contribution of 559 

precipitation on minimum temperature is generally smaller and less persistent than on maximum 560 

temperature. The contribution may also be either positive or negative depending on the location and 561 

season (section 3.1). Therefore, when averaged over the GHA, these effects tend to cancel out. For 562 

maximum temperature, the contribution of precipitation trends is stronger. In several months (mainly 563 

from February to July), decreasing precipitation trends have a warming effect. However, though 564 

noticeable, this effect is small (0.01 to 0.06°C/decade) compared to the overall magnitude of the 565 

warming (+0.15 to +0.26°C/decade). The months of October and November distinctly stand out as a 566 
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period where, reciprocally, warming rates tend to be negatively impacted by the precipitation trends. 567 

This season has become wetter in the recent decades over much of the GHA, impacting maximum 568 

temperature. Adjusted Tx trends tend to be slightly higher (+0.02 to 0.03°C/decade) after deducting the 569 

cooling effect associated with enhanced rainfall. For the year as a whole, precipitation trends have a 570 

detectable but small contribution  on Tx trends (adjusted trend +0.156°C/decade against 571 

+0.168°C/decade for the unadjusted trend), but no effect on Tn trends.  572 

 573 

Trends (raw and adjusted from precipitation contribution) have also been computed but based on 574 

monthly means and a simple regression extracting the contribution of precipitation variations from the  575 

monthly temperature, instead of using daily data and a multiple regression model as above. The trend 576 

coefficients are broadly similar (fig.15, thin green lines), although on individual months there are 577 

discrepancies due to the fact that the number of days to compute monthly means is not always the same 578 

from year to year. The main observation is that the extraction of rainfall variations from the temperature 579 

signal leads to the same conclusion as when using daily data. A noticeable effect of rainfall trends on 580 

temperature coefficients is found mostly for Tx, during months in which the precipitation trend is most 581 

obvious (lower trend coefficients in April-June, as rainfall has decreased, and higher trend coefficients 582 

in October as rainfall has increased). However, the difference between the raw and residual trends is, 583 

as above, quite small. This result suggests that monthly data could be used to extract the effect of 584 

precipitation variations from temperature time-series, although working on daily data enables to better 585 

understand the likely processes at work.   586 

 587 

4. Conclusion 588 

 589 

The composite analyses presented in this study showed that in most of the GHA there is a clear 590 

relationship between rainfall occurrence (>= 1mm) and daily temperature, with temperature anomalies 591 

associated with the wet events being usually highly significant. Maximum temperature generally 592 

displays a distinct cooling, peaking one day after the rainfall event, but there is often a persistence of 593 

negative Tx anomalies long after the rainfall event. The independent contribution of passed rainfall 594 

events to Tx variations (sometimes up to 4 days earlier) is confirmed through multiple regression. The 595 

amplitude of the Tx response is also often proportional to the rainfall amount. Minimum temperatures 596 

show a weaker and spatially contrasted response to rainfall occurrence. In some regions (mostly cool 597 

highland areas) rainfall occurrence is associated with above normal Tn. In other regions (especially 598 

lowland, hot environments) it results in below normal Tn. The Tn anomalies are also much less persistent 599 

than for Tx. The spatial variations in the sign of the Tn signal and the amplitude of the Tx signal are 600 

suggested to reflect different mechanisms of the rainfall-temperature association. Given these results, 601 

it should be noted that the commonly used diurnal temperature range (DTR) is somewhat ambiguous, 602 

since it cannot be properly interpreted without separately considering the behavior of maximum and 603 

minimum temperature and their respective relationship with other weather variables such as rainfall 604 

and cloudiness.  605 

 606 

These rainfall-temperature relationships should first be interpreted as the effect of cloudiness on net 607 

radiation. Increased cloudiness may explain both the increased minimum temperature at many stations 608 

(through reduced outgoing longwave radiation) and the decreased maximum temperature (decreasing 609 

incoming shortwave radiation). However, the temporal asymmetry of the Tx cooling with respect to the 610 

rainfall event suggests that in addition to the cooling associated with cloud cover, the persistent soil 611 

moisture anomaly resulting from the precipitation event also contributes to cooling. This is confirmed 612 

by the fact that the cooling is stronger when the rainfall events are heavier. Another finding is that the 613 

nighttime warming  associated with rainfall occurrence (and supposed increased cloud cover) is not 614 

ubiquitous. In some cases (mainly hot climates, in the early part of the rainy season), a Tn decrease (not 615 
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increase) is found which tends to replicate, with damped anomalies, the pattern found for Tx. This could 616 

simply reflect the fact that starting out from a lower Tx would result in a lower Tn during the following 617 

night, even if the nighttime decrease was to be the same as on dry days. However, it is suggested that 618 

these Tn anomalies, given the overall dry and hot environment (contrary to what found in the highland 619 

areas and at the end of the rainy season), could also reflect surface cooling associated with increased 620 

evaporation. This hypothesis would be in line with Koster et al. (2006) and Miralles et al. (2012) who 621 

demonstrated that the soil moisture-temperature coupling is highly variable in space and time. Miralles 622 

et al. (2012) found that a stronger coupling is expected in transition zones between wet and dry climates, 623 

as well as at times of soil moisture deficit and high atmospheric water demand. This is typical of the early 624 

part of rainy seasons in the GHA lowlands. These variations in the temperature signal associated with 625 

rainy events, either in space (e.g. highlands vs lowlands) or in time (e.g. between the early and late parts 626 

of the rainy season, as in June-September in Sudan for instance) indicate that, even in tropical 627 

environments, any overgeneralization on the interpretation of temperature variations and trends should 628 

be avoided. 629 

 630 

These remarks are of relevance when analyzing climate change, especially temperature trends. Most of 631 

the GHA show warming trends, for both Tx and Tn and with marginal differences between seasons. From 632 

1953 to 2013, minimum temperature increased at a high rate (+0.20 to +0.25°C/decade depending on 633 

seasons, for a GHA average). The trend in maximum temperature was only slightly weaker (+0.17 to 634 

+0.22°C/decade). When dry days and wet days are analyzed separately, and for all stations and seasons 635 

combined (over the period 1973-2013 to account for rainfall data availability), dry days tend to exhibit 636 

a slightly stronger warming than wet days. Other findings are the larger interannual variations obtained 637 

for Tx than for Tn (a feature found in most of the tropics ; see for instance observations made at 638 

Khartoum, Sudan, by Elagib, 2011), and the temperature gap between wet and dry days being wider for 639 

the maximum than the minimum temperatures.  640 

 641 

By contrast to temperatures, monthly trends in both rainfall occurrence and amounts since 1973 show 642 

quite symmetrical distributions, with a balance between positive and negative trends. Trends in rain 643 

days exceeding 10% between 1973 and 2013 are found at 7.5% and 12.9% of the months and stations 644 

for positive and negative trends, respectively. The largest negative trends in rainfall occurrence and 645 

rainfall amounts are found in April-May over most of the region, in agreement with Lyon and Dewitt 646 

(2012) and Funk et al. (2012). By contrast, a distinctive increase in rainfall occurrence and rainfall 647 

amounts is found in October-December. 648 

 649 

In parts of the GHA and some seasons, rising temperatures in the last 40 years therefore coincide with 650 

(increasing or decreasing) precipitation trends. Given the response of both Tx and Tn to rainfall 651 

occurrence at daily time-scale, regression models are used to extract the rainfall influence on 652 

temperature variations, accounting for lag effects up to 4 days. The daily residuals of temperature from 653 

these models are used to depict temperature variations free from the effect of precipitation variations. 654 

Trends computed on the monthly means of these residuals are then compared to those found for raw 655 

mean monthly temperatures. At stations where the rainfall trend is strong, removing the rainfall 656 

contribution results in noticeable changes in linear temperature trends (either enhancement or 657 

attenuation).  658 

 659 

However, at the scale of the GHA as a whole, these effects do not strongly modify the sign and 660 

magnitude of the warming in the last 40 years. In the February-July period, adjusted maximum 661 

temperature trends after removing the contribution of the generally downward rainfall trend show a 662 

slightly reduced warming (+0.18°C/decade on average, instead of +0.21°C/decade for raw Tx data). On 663 

the contrary, the Tx increase in October-November is slightly attenuated by the positive rainfall trend 664 
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found at this time of the year. On the whole the removal of the rainfall contribution tends to smooth 665 

out the seasonal pattern of Tx trends, resulting in a more uniform warming across the year. For Tn, 666 

adjusting for rainfall contribution has virtually no impact on the overall temperature trends. This results 667 

from the fact that rainfall occurrence is associated with either an increase or a decrease of temperature 668 

depending on the location and time of the year.  669 

 670 

Precipitation trends, although they only have a marginal effect at the scale of the GHA, are to be taken 671 

into account in the attribution of temperature trends. As pointed out by Trenberth and Shea (2005), 672 

neither temperature nor precipitation records should be interpreted without considering their strong 673 

covariability. They noted that warming in the United States has partly been lessened due to increases in 674 

cloudiness and precipitation, with more energy going into evaporation and less into sensible heating. 675 

Besides the effect of cloud cover and surface moisture on temperature, a warmer atmosphere and land 676 

surface impact the water cycle, including precipitation rates (Held and Soden, 2006 ; Wentz et al., 2007). 677 

Although the present study does not challenge at all this assumption, neither does it underestimate the 678 

role played by energy gradients in large-scale atmospheric dynamics and associated precipitation 679 

occurrence, it also draws attention to the fact that in the tropics temperature variations are strongly 680 

dependent on rainfall. This relationship is best evidenced by separating maximum and minimum 681 

temperature, and working at daily time-scale, but it also holds at interannual time-scales (Déry and 682 

Wood, 2005 ; Berg et al., 2014). As an outcome of this dependence to rainfall, skillful projections of 683 

rainfall patterns are key to the accurate estimation of future warming at regional scale.  684 

 685 

  686 
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List of figures 786 

 787 

Fig.1 : Station network for composite analysis of daily temperature, and mean annual rainfall 788 

map (1961-1990, CRU data, in mm). Filled circles indicate stations for which at least 10,000 daily 789 

temperature records are available over the period 1953-2013. 790 

 791 

Fig.2 : Main 3 patterns of composite temperature anomalies from 7 days before to 7 days after 792 

the occurrence of a rainfall event, on a monthly and station basis, based on a k-means clustering 793 

of temperature profiles. Top panel : mean profiles ; bottom panels : spatial distribution of the 3 794 

clusters for the months of January, April, July and October. X denotes stations and months with 795 

not enough rain days for the profile to be computed. Areas above 1000 meters are shaded. 796 

 797 

Figure 3 : Composites of April daily temperature anomalies at two lowland stations in Kenya 798 

(Garissa and Wajir) and two highland stations (Meru and Nairobi), from 7 day before to 7 day 799 

after a precipitation event. The vertical bar indicates the reference day on which precipitation 800 

occurs. Stars show significant anomalies (P= 0.95) according to Student’s t-test. Thick lines stand 801 

for precipitation events of any intensity, thin lines for precipitation exceeding 10 mm. 802 

 803 

Figure 4 : Rainfall predictors (day 0 to day -4) selected in stepwise multiple regression models 804 

explaining maximum temperature variations (day 0), for the months of January, April, July and 805 

October. Values correspond to the percentage of models (i.e., stations) for which a given 806 

predictor is picked up. Both rainfall occurrence (left/blue bars) and rainfall amounts 807 

(right/purple bars) are used. On the right of each panel is shown a box-plot of the multiple 808 

correlation coefficients (across the models defined for all stations of the network). 809 

 810 

Figure 5 : same as figure 4 but for minimum temperature. 811 

 812 

Figure 6 : Trends and interannual variations of seasonal mean maximum temperature (left 813 

panels) and minimum temperature (right panels), 1953-2013, for the GHA regional index. Blue 814 

thick lines : average temperature anomaly for available stations (see text) ; red thin lines : CRU 815 

data ; upper green lines : number of stations used to compute the station index. The correlation 816 

coefficient between the station index and the CRU index is shown on top. 817 

 818 

Figure 7 : Seasonal linear temperature trends over the period 1973-2013 for the 22 stations 819 

having long times-series, for days following a wet day (solid lines) and following a dry day 820 

(dashed lines). Left panels : maximum temperature ; right panels : minimum temperature. Top 821 

panels : frequency distribution across all stations and seasons ; bottom panels : median trends 822 

for each season. 823 

 824 

Figure 8 : Temperature trends (1973-2013) for MAM (top panels) and OND (bottom panels), and 825 

for days following a wet day (left panels) and those following a dry day (right panels). Filled 826 

circles denote warming, hollow circles denote cooling. The size and color of the circles indicate 827 

the magnitude of trends in °C/decade. 828 

 829 

Figure 9 : Mean OND temperature time-series for Nairobi Jomo Kenyatta International Airport 830 

(top) and Garissa, Kenya (bottom). Maximum temperatures are on the left panels and minimum 831 

temperatures on the right panels ; blue lines with circles show temperature on wet days, red 832 

lines with stars show dry days (enabling a one-day lag between rainfall and temperature). Scales 833 

for left and right panels are the same. 834 
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 835 

Figure 10 : Monthly linear trends of rain-day occurrence (RDF) over the period 1973-2013 over 836 

the GHA as a whole. (a) frequency distribution across all stations and months ; (b) mean RDF 837 

trends for each month across all stations. The different lines refer to different sets of data (see 838 

text). In (b), the change in regional mean rainfall amounts based on monthly rainfall data is also 839 

shown (dashed line with crosses). 840 

 841 

Figure 11 : Trends in rain days frequency (1973-2013) for January-February, March-May, June-842 

September and October-December, expressed as a percentage change per decade. Filled circles 843 

denote positive trends, hollow circles denote negative trends. The size and color of the circles 844 

indicate the magnitude of trends in percent per decade. 845 

 846 

Figure 12 : Same as figure 10 but for monthly rainfall amounts. 847 

 848 

Figure 13 :  Interannual variations and trends of maximum temperature at Nairobi-Airport (1973-849 

2011) : monthly means for April and November. Raw data (solid line with circles) and after 850 

correction from rainfall contribution (dashed line with stars). The upper dashed line shows 851 

rainfall variations. Straight lines are linear trends, with slopes as indicated in the legend. 852 

 853 

Figure 14 : Trends in April maximum temperature (1973-2013) : raw Tx data (left panel), Tx trend 854 

induced from precipitation trends (central panel), and Tx trend adjusted from precipitation 855 

contribution (right panel). Filled circles denote positive trends and hollow circles negative 856 

trends. The size and color of the circles indicate the magnitude of trends in °C per decade. Note 857 

that the scale of the central panel differs from that of the two others. 858 

 859 

Figure 15 : Monthly and yearly trends of maximum temperature (left panel) and minimum 860 

temperature (right panel) as an average over the GHA, 1973-2013, in °C per decade. Solid line 861 

with stars : raw temperature data ; dashed line with diamonds : temperature trend after 862 

removing the  precipitation contribution. Bold red lines show trends obtained from daily 863 

multiple regression models, thin green lines show trends obtained from monthly simple 864 

regression.  The lower line (dashed with circles) shows the precipitation trends (mm.yr-1). 865 

 866 
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 868 

 869 
 870 

Fig.1 : Station network for composite analysis of daily temperature, and mean annual rainfall 871 

map (1961-1990, CRU data, in mm). Filled circles indicate stations for which at least 10,000 daily 872 

temperature records are available over the period 1953-2013. 873 
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 875 

 876 
 877 

Fig.2 : Main 3 patterns of composite temperature anomalies from 7 days before to 7 days after 878 

the occurrence of a rainfall event, on a monthly and station basis, based on a k-means clustering 879 

of temperature profiles. Top panel : mean profiles ; bottom panels : spatial distribution of the 3 880 

clusters for the months of January, April, July and October. X denotes stations and months with 881 

not enough rain days for the profile to be computed. Areas above 1000 meters are shaded.  882 
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 883 

 884 
 885 

Figure 3 : Composites of April daily temperature anomalies at two lowland stations in Kenya 886 

(Garissa and Wajir) and two highland stations (Meru and Nairobi), from 7 day before to 7 day 887 

after a precipitation event. The vertical bar indicates the reference day on which precipitation 888 

occurs. Stars show significant anomalies (P= 0.95) according to Student’s t-test. Thick lines stand 889 

for precipitation events of any intensity, thin lines for precipitation exceeding 10 mm. 890 

 891 
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 893 
 894 

Figure 4 : Rainfall predictors (day 0 to day -4) selected in stepwise multiple regression models 895 

explaining maximum temperature variations (day 0), for the months of January, April, July and 896 

October. Values correspond to the percentage of models (i.e., stations) for which a given 897 

predictor is picked up. Both rainfall occurrence (left/blue bars) and rainfall amounts 898 

(right/purple bars) are used. On the right of each panel is shown a box-plot of the multiple 899 

correlation coefficients (across the models defined for all stations of the network). 900 
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 902 
 903 

Figure 5 : same as figure 4 but for minimum temperature 904 

 905 
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Figure 6 : Trends and interannual variations of 

seasonal mean maximum temperature (left 

panels) and minimum temperature (right panels), 

1953-2013, for the GHA regional index. Blue thick 

lines : average temperature anomaly for available 

stations (see text) ; red thin lines : CRU data ; upper 

green lines : number of stations used to compute 

the station index. The correlation coefficient 

between the station index and the CRU index is 

shown on top. 
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Figure 7 : Seasonal linear temperature trends over the period 1973-2013 for the 22 stations 

having long times-series, for days following a wet day (solid lines) and following a dry day 

(dashed lines). Left panels : maximum temperature ; right panels : minimum temperature. Top 

panels : frequency distribution across all stations and seasons ; bottom panels : median trends 

for each season. 
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Figure 8 : Temperature trends (1973-2013) for MAM (top panels) and OND (bottom panels), and 

for days following a wet day (left panels) and those following a dry day (right panels). Filled 

circles denote warming, hollow circles denote cooling. The size and color of the circles indicate 

the magnitude of trends in °C/decade. 
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Figure 9 : Mean OND temperature time-series for Nairobi Jomo Kenyatta International Airport 

(top) and Garissa, Kenya (bottom). Maximum temperatures are on the left panels and minimum 

temperatures on the right panels ; blue lines with circles show temperature on wet days, red 

lines with stars show dry days (enabling a one-day lag between rainfall and temperature). Scales 

for left and right panels are the same. 
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Figure 10 : Monthly linear trends of rain-day occurrence (RDF) over the period 1973-2013 over 

the GHA as a whole. (a) frequency distribution across all stations and months ; (b) mean RDF 

trends for each month across all stations. The different lines refer to different sets of data (see 

text). In (b), the change in regional mean rainfall amounts based on monthly rainfall data is also 

shown (dashed line with crosses). 
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Figure 11 : Trends in rain days frequency (1973-2013) for January-February, March-May, June-

September and October-December, expressed as a percentage change per decade. Filled circles 

denote positive trends, hollow circles denote negative trends. The size and color of the circles 

indicate the magnitude of trends in percent per decade. 
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Figure 12 : Same as figure 10 but for monthly rainfall amounts 
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Figure 13 :  Interannual variations and trends of maximum temperature at Nairobi-Airport (1973-

2011) : monthly means for April and November. Raw data (solid line with circles) and after 

correction from rainfall contribution (dashed line with stars). The upper dashed line shows 

rainfall variations. Straight lines are linear trends, with slopes as indicated in the legend. 
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Figure 14 : Trends in April maximum temperature (1973-2013) : raw Tx data (left panel), Tx trend 

induced from precipitation trends (central panel), and Tx trend adjusted from precipitation 

contribution (right panel). Filled circles denote positive trends and hollow circles negative 

trends. The size and color of the circles indicate the magnitude of trends in °C per decade. Note 

that the scale of the central panel differs from that of the two others. 
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Figure 15 : Monthly and yearly trends of maximum temperature (left panel) and minimum 

temperature (right panel) as an average over the GHA, 1973-2013, in °C per decade. Solid line 

with stars : raw temperature data ; dashed line with diamonds : temperature trend after 

removing the  precipitation contribution. Bold red lines show trends obtained from daily 

multiple regression models, thin green lines show trends obtained from monthly simple 

regression.  The lower line (dashed with circles) shows the precipitation trends (mm.yr-1). 


