SUPPORTING INFORMATION

Lanthanide coordination polymers with 1,2phenylenediacetate.

Insa Badiane^{a,b}, Stéphane Freslon^a, Yan Suffren^a, Carole Daiguebonne^a, Guillaume Calvez^a, Kevin Bernot^a, Magatte Camara^b and Olivier Guillou^a.

^a INSA Rennes, UMR 6226 "Institut des Sciences Chimiques de Rennes", F-35708 Rennes

^b Université Assane Seck de Ziguinchor, LCPM – Groupe "Matériaux Inorganiques: Chimie Douce et Cristallographie", BP. 523 Ziguinchor – Sénégal

,

Molecular formula	$Nd_2C_{30}O_{16}H_{33}$	$La_2C_{30}O_{16}H_{33}$	$Tb_2C_{30}O_{16}H_{36}$	$Ho_2C_{30}O_{16}H_{36}$	Er ₂ C ₃₀ O _{16.5} H ₃₃	$Pr_2C_{30}O_{16.5}H_{33}$	$Dy_2C_{30}O_{16}H_3$
System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
a (Å)	26.2906 (18)	26.271 (14)	26.2699 (4)	26.317 (4)	26.317 (3)	26.223 (7)	26.2718 (9)
b (Å)	16.1172 (11)	16.149 (8)	16.0274 (2)	16.004 (3)	16.1589 (19)	16.097 (4)	16.0042 (6)
c (Å)	7.8327 (5)	7.966 (4)	7.6724 (1)	7.6263 (12)	7.8459 (9)	7.852 (2)	7.6441 (3)
β (°)	93.173 (5)	92.850 (9)	93.345 (1)	93.471 (2)	93.124 (2)	93.031 (4)	93.389 (2)
$V(Å^3)$	3313.9 (4)	3375 (3)	3224.87 (8)	3206.1 (9)	3331.6 (7)	3309.8 (15)	3208.41 (20)
Z	4	4	4	4	4	4	4
Formula weight (g mol ⁻¹)	937.04	926.38	958.36	978.42	992.08	939.38	973.56
Space group (No.)	C2/c (n°15)	C2/c (n°15)	C2/c (n°15)				
D_{calc} (g cm ⁻³)	1.878	1.823	1.97	2.027	1.978	1.885	2.01538
$\mu (\text{mm}^{-1})$	3.173	2.570	4.426	4.976	5.08	2.99	4.70
R (%)	1.75	5.05	2.94	3.30	1.4	1.9	2.2
R _W (%)	10.357	13.315	8.04	12.4	11.3	10	5.5
GoF	1.053	1.055	1.003	1.069	1.09	1.081	1.06
N° CCDC	953279	952811	635048	635081	963497	963495	669663
Reference	44	44	47	47	46	46	45

Figure S1. UV-vis absorption spectrum of an aqueous solution of Na₂o-pda (c = $4.3 \ 10^{-5} \ \text{mol.L}^{-1}$).

Figure S2. Experimental and simulated (on the basis of crystal structure) powder diffraction patterns of $[La_2(0-pda)_3(H_2O)_4, 4H_2O]_{\infty}$ (1.).

Figure S3. Experimental and simulated (on the basis of the crystal structure from reference [47]) powder X-ray diffraction patterns of microcrystalline compounds $[Ln_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ for Ln = Ce-Nd, Sm-Lu and Y (2).

Figure S4. Refined cell parameters for microcrystalline compounds $[Ln_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ for Ln = Ce-Nd, Sm-Lu and Y (**2**).

Figure S5. Thermal analyzes of microcrystalline $[Gd_2(0-pda)_3(H_2O)_2, 2H_2O]_{\infty}$.

Figure S6. Powder X-ray diffraction diagrams for microcrystalline $[Tb_{2-2x}Gd_{2x}(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ with $0 \le x \le 0.9$.

Figure S7. Powder X-ray diffraction diagrams for microcrystalline $[Tb_{2-2x}Eu_{2x}(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ with $0 \le x \le 0.9$.

Figure S8. Refined cell parameters for microcrystalline $[Tb_{2-2x}Gd_{2x}(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ with $0 \le x \le 0.9$.

Figure S9. Refined cell parameters for microcrystalline $[Tb_{2-2x}Eu_{2x}(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ with $0 \le x \le 0.9$.

Figure S10. Thermal analyzes of microcrystalline $[La_2(0-pda)_3(H_2O)_4, 4H_2O]_{\infty}(1)$.

Figure S11. Temperature-dependent X-ray powder diffraction of microcrystalline [La₂(o-pda)₃(H₂O)₄,4H₂O]_{∞} (1).

Figure S12. Temperature-dependent powder X-ray diffraction diagrams of microcrystalline $[Gd_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ between room temperature and 250°C under nitrogen atmosphere.

Figure S13. IR spectrum of microcrystalline $[Gd_2(0-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ recorded at 375°C (N₂ flux) and 970°C (air flux).

Figure S14. Top: Excitation ($\lambda_{em} = 615 \text{ nm}$) and emission ($\lambda_{exc} = 395 \text{ nm}$) spectra for microcrystalline [Eu₂(o-pda)₃(H₂O)₂,2H₂O]_∞. Bottom: Excitation ($\lambda_{em} = 545 \text{ nm}$) and emission ($\lambda_{exc} = 379 \text{ nm}$) spectra for microcrystalline [Tb₂(o-pda)₃(H₂O)₂,2H₂O]_∞.

Table S2. Chemical analyzes for compounds that constitute families (1) and (2).						
Chamical formula	MW (g.mol ⁻¹)	%C	%H	%O	%Ln	
Chennear Iorniula		calc. (found)	calc. (found)	calc. (found)	calc. (found)	
$[La_2(o-pda)_3(H_2O)_4, 4H_2O]_{\infty}$	998.45	36.1 (36.0)	4.0 (4.1)	32.1 (32.2)	27.8 (27.7)	
$[Ce_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	928.81	38.8 (39.0)	3.5 (3.5)	27.6 (27.6)	30.1 (29.9)	
$[Pr_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	930.39	38.7 (38.7)	3.5 (3.4)	27.5 (27.4)	30.3 (30.5)	
$[Nd_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	937.05	38.5 (38.7)	3.4 (3.5)	27.3 (27.0)	30.8 (30.8)	
$[Sm_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	949.29	38.0 (38.2)	3.4 (3.3)	27.0 (27.0)	31.6 (31.5)	
$[Eu_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	952.50	37.8 (37.8)	3.4 (3.4)	26.9 (27.0)	31.9 (31.8)	
$[Gd_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	963.07	37.4 (37.4)	3.3 (3.5)	26.6 (26.4)	32.7 (32.7)	
$[Tb_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	966.43	37.3 (37.5)	3.3 (3.1)	26.5 (26.4)	32.9 (33.0)	
$[Dy_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	973.57	37.0 (36.9)	3.3 (3.3)	26.3 (26.2)	33.4 (33.6)	
$[Ho_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	978.44	36.8 (36.9)	3.3 (3.4)	26.2 (26.3)	33.7 (33.4)	
$[Er_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	983.09	36.7 (36.5)	3.3 (3.3)	26.0 (26.2)	34.0 (34.0)	
$[Tm_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	986.44	36.5 (36.5)	3.3 (3.4)	25.9 (25.8)	34.3 (34.3)	
$[Yb_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	994.65	36.2 (36.0)	3.3 (3.1)	25.7 (25.9)	34.8 (35.0)	
$[Lu_2(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$	998.51	36.1 (36.2)	3.2 (3.2)	25.6 (25.6)	35.1 (35.0)	
$[Y_2(o\text{-}pda)_3(H_2O)_2, 2H_2O]_\infty$	826.39	43.6 (43.5)	3.9 (4.0)	31.0 (31.0)	21.5 (21.5)	

	% (ex	pected)	% (measured)		
	Gd	Tb	Gd	Tb	
x=0.9	90	10	86.4 ± 4	13.6 ± 4	
x=0.8	80	20	83.7 ± 2	16.3 ± 2	
x=0.7	70	30	72 ± 6	28 ± 6	
x=0.6	60	40	64.7 ± 2	35.3 ± 2	
x=0.5	50	50	52.3 ± 0.7	47.7 ± 0.7	
x=0.4	40	60	43.4 ± 3	56.6 ± 3	
x=0.3	30	70	30.8 ± 2	69.2 ± 2	
x=0.2	20	80	20.4 ± 0.8	79.6 ± 0.8	
x=0.1	10	90	10 ± 2	90 ± 2	

Table S3. Relative	<mark>lanthanide</mark> ra	ratios for $[Tb_{2-2x}Gd_{2x}(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ with $0.1 \le x \le 0.9$
--------------------	----------------------------	---

Table S4. Relative lanthanide ratios for $[Tb_{2-2x}Eu_{2x}(o-pda)_3(H_2O)_2, 2H_2O]_{\infty}$ with $0.1 \le x \le 0.9$					
	% (exj	pected)	% (measured)		
	Eu	Tb	Eu	Tb	
x=0.9	90	10	91.4 ± 2	8.6 ± 2	
x=0.8	80	20	81 ± 2	19 ± 2	
x=0.7	70	30	74 ± 4	26 ± 4	
x=0.6	60	40	62.3 ± 4	37.7 ± 4	
x=0.5	50	50	48 ± 2	52 ± 2	
x=0.4	40	60	43.3 ± 2	56.7 ± 2	
x=0.3	30	70	31 ± 2	69 ± 2	
x=0.2	20	80	17 ± 3	83 ± 3	
x=0.1	10	90	12 ± 2	88 ± 2	