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Environmental signal processing: new trends and applications

In the last years, environmental monitoring was shown to be a major application field of modern signal processing and machine learning techniques. In particular, it provides some interesting problems for which specific signal methods were proposed. In this session, we aim to review some recent advances in this topic. We propose a taxonomy of the major trends in environmental surveillance according to the characteristics of the sensing devices, i.e., (i) for a unique sensor or an array of sensors (e.g., bio-sensor, chemical sensor arrays), (ii) for remote observation, and (iii) using large-scale sensor networks.

Introduction

Environmental pollution is a major problem faced by the world. Indeed, studies show the effects of pollution levels-e.g., in air [START_REF] Lelieveld | The contribution of outdoor air pollution sources to premature mortality on a global scale[END_REF] or water [START_REF] Wright | The physical impacts of microplastics on marine organisms: A review[END_REF]-on health, and more generally on biodiversity [START_REF] Bobbink | The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural european vegetation[END_REF]. Human activity is also shown to be the main origin of climate change [START_REF]Climate change[END_REF], which particularly affects billions of lifes.

As a consequence, monitoring environmental phenomena has been investigated for several decades. Environmental surveillance not only consists of monitoring air, water, or soil pollutant levels or surface temperature, but also of observing noise and light pollution in urban areas, which have consequences on health and biodiversity [START_REF] Stephen | Noise pollution: non-auditory effects on health[END_REF][START_REF] Francis | Noise pollution changes avian communities and species interactions[END_REF][START_REF] Longcore | Ecological light pollution[END_REF]. Such a surveillance has been possible using sensors, and with their increasing number emerged specific signal processing and/or machine learning techniques. In this paper, we aim to review some of these techniques-and some associated open challenges-as well as to briefly introduce the papers of the special session on environmental signal processing of the 2017 ESANN conference.

The remainder of the paper reads as follows. In Section 2, we focus on approaches for single sensors and sensor arrays met in, e.g., source apportionment and bio-chemical sensors. Section 3 shows how remote sensing can be used in environmental monitoring. Section 4 covers some approaches for large-scale sensor networks. We finally conclude in Section 5.

Chemometrics for single sensor and sensor arrays

Processing single environmental sensors or sensor arrays arised as a major topic in environmental monitoring, known under the name of chemometrics. Indeed, while sensors used in source apportionment provide fine particulate analyzed by chemists which must then be numerically processed to enhance their interpretability, there has also been an increasing need to process data from chemical/bio-sensors which might have nonlinear responses. We review hereafter some of these aspects.

Source apportionment

Source apportionment aims at estimating the impacts of emissions from different sources of pollutants based on ambient data registered at monitoring sites. It has been used for many applications, to monitor indoor [START_REF] Ouaret | Indoor air pollutant sources using blind source separation methods[END_REF] or outdoor air [START_REF] Limem | Non-negative matrix factorization under equality constraints-a study of industrial source identification[END_REF], sea [START_REF] Luo | Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the northern South China Sea[END_REF], and soil pollution [START_REF] Zuo | Source apportionment of polycyclic aromatic hydrocarbons in surface soil in tianjin, china[END_REF], for example. The awareness of the increasing pollution and the necessity to find answers to these issues has led to some growing interest and increasing number of scientific studies, as recently reviewed in [START_REF] Hopke | Review of receptor modeling methods for source apportionment[END_REF].

Among the classical source apportionment techniques, the receptor model assumes that a chemical mass measure is a non-negative linear combination of the masses of source profiles, weighted by their associated contribution over time. This model relies on the law of conservation of mass and implicitly assumes that air suspended particles or sedimentary matter are not reacting along their path toward the sensor. The receptor model may then be written as a non-negative matrix factorization product, i.e.,

X ≈ G • F, (1) 
where X accounts for the n × m concentration matrix (in ng/m 3 ), G is the n × p contribution matrix gathering the loadings of all the sources over time and F is the p × m profile matrix, where a profile is a source signature involving all the chemical species proportions (in ng/ng). In some studies, e.g., [START_REF] Ouaret | Indoor air pollutant sources using blind source separation methods[END_REF], the above matrices X and F are defined regarding the considered particle-size distribution. Principal Component Analysis (PCA) has been used in numerous receptor models for a long time [START_REF] Hopke | It's time to drop principal components analysis as a 'receptor model[END_REF]. However, the non-negativity property was lost and, as a consequence, other techniques-i.e., Positive (PMF) / Non-negative Matrix Factorization (NMF)-emerged as an alternative [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF] which became the standard receptor model. However, the unicity of their solution is not guaranteed [START_REF] Viana | Source apportionment of particulate matter in europe: a review of methods and results[END_REF] and data might be corrupted by outliers. Lastly, the profiles in F sum to one. As a consequence, some (possibly-robust) informed NMF techniqueswhich restrict the space of admissible solutions-were recently proposed to that end, e.g., [START_REF] Limem | Non-negative matrix factorization under equality constraints-a study of industrial source identification[END_REF][START_REF] Plouvin | Enhanced NMF initialization using a physical model for pollution source apportionment[END_REF][START_REF] Chreiky | Robust informed split gradient NMF using Alpha Beta-divergence for source apportionment[END_REF].

Chemical sensors

While linear chemometrics methods have been massively proposed during the last decades, an increasing number of problems require specific methods for processing chemical-or bio-sensors which may provide highly nonlinear readings. Such sensors are usually grouped into an array and aim to deliver the concentration of chemical species present in the air, rivers, or a given analyte. In some problems, the objective consists of estimating the concentrations of several chemical profiles, which may be achieved using some Ion-Selective Electrode arrays (ISE) or bio-sensors located at fixed positions. Usually, this step is achieved in a supervised way by learning neural networks-e.g., for electronic tongues [START_REF] González-Calabuig | High dimensionality voltammetric biosensor data processed with artificial neural networks[END_REF]-which is costly. As an alternative, some authors proposed unsupervised techniques to work in a plug and sense way. This turns out to be a nonlinear source separation problem, which is known to be a hard task [START_REF] Comon | Handbook of blind source separation : independent component analysis and applications[END_REF]Ch. 14].

Nonlinear source separation is mainly solved by assuming a known nonlinear mixture model where some parameters must be estimated. In chemical sensor arrays, the Nernst equation provides a scaled logarithmic dependency between the output voltage v i of the i-th sensor and the mixed ionic activity, i.e.,

v i (n) = e i + RT z i F log   s i (n) + j =i a ij s j (n) z i z j   , (2) 
where s j (n) and z j account for the ionic activity and the valence of the j-th species, respectively, R and F are the gas and Faraday constants, respectively, and T is the temperature. This model is difficult to deal with, because of the power term appearing inside the logarithm. In the case of equal valences, the authors in [START_REF] Duarte | Source separation in chemical analysis : Recent achievements and perspectives[END_REF] describe this equation as a general post-nonlinear model andassuming that the source signals are independent-propose a simplified inverting process which reads

y k (n) = P i=1 w ki exp(f i + h i v i (n)), (3) 
where the parameters w ki , f i , and h i have to be tuned according to an independence criterion. To prevent the algorithm to be stuck into a local minimum, Bayesian approaches [START_REF] Duarte | A bayesian nonlinear source separation method for smart ion-selective electrode arrays[END_REF]-enabling to describe the complete distribution of the source signals-may also be used, to the price of a high computational load. Despite the great number of studies in nonlinear unmixing for chemical sensing, there are many assumptions which govern the proposed solutions, which may be hard to fulfill in real case studies. Some global solutions in real conditions are still expected.

Environmental monitoring using hyperspectral imagery

Hyperspectral (HS) sensing technologies allowed many opportunities of new applications over the past two decades. Most HS sensors are embedded in airborne or spaceborne platforms. Spectral, spatial, and temporal resolution has reached an unprecedented level and enabled uncountable applications requiring fine identification of materials or estimation of physical parameters. HS imaging has been increasingly used for earth surveillance, e.g., for soil, sea, soil-water interfaces and also astrophysical observations [START_REF] Kaufmann | EnMAP a hyperspectral sensor for environmental mapping and analysis[END_REF]. Moreover, HSI can be used to monitor industrial discharges-e.g., atmospheric effluents, storage of solid residues, liquid residues and sludges-with might have an impact on environment and health [START_REF] Manolakis | Long-wave infrared hyperspectral remote sensing of chemical clouds: A focus on signal processing approaches[END_REF]. Such an increasing number of applications need sophisticated signal processing algorithms because of the complexity to extract relevant information, the high dimensionality and the size of the hyperspectral data, the (linear or nonlinear) spectral mixing, the measurement process. The framework used in these topics is rooted on signal and image processing, statistical inference, and machine learning fields.

Data and hypotheses

HS imaging (HSI) aims to acquire HS datacubes which consists of collected spectral vectors sorted as a tensor denoted X ∈ R n1×n2×n b . Each image of n = n 1 × n 2 pixels represents the radiance in n b spectral bands of the wavelength interval covered by the embedded sensor(s). Usually, the values in X smoothly vary along the spectral bands and the spatial pixels, and thus live in a low-dimensional manifold. Spectral information can then be denoised-using, e.g., PCA-while smooth spatial variations are well-suited for supervised classification [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. When processing HS data, one must take into account some physical and optical considerations-e.g., the surface and ground-leaving reflectances, the effects of illumination, the angle of view, etc-and each interface between surface, atmosphere and sensor leads to a correction or a calibration process. Such considerations yield some signal processing techniques that we present below.

Hyperspectral processing techniques

As explained above, HSI gained a massive interest from the scientific community since two decades. Many data processing techniques were proposed to extract insightful information from hyperspectral data cubes, as recently reviewed in [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. We briefly recall them below, with more emphasis on a few of them.

One main family of data processing techniques consists of enhancing the interpretability of the hyperspectral images by denoising (restoration) and fusing data cubes (spatial, spectral, spatial-spectral data fusion). In particular, several authors are interested in pansharpening [START_REF] Loncan | Hyperspectral pansharpening: A review[END_REF] (or sharpening [START_REF] Chen | Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods[END_REF]), i.e., the fusion of a panchromatic (or a multispectral) image with an HS one, which provide a good spatial and spectral resolution, respectively. The pansharpened image then combines the good spatial and spectral accuracy of both images.

Classification is also an important topic met in HSI. It consists of assigning a unique label to each spatial pixel of an hyperspectral cube, corresponding to a given class. A high spatial resolution is a very desirable property for classification techniques-divided as supervised, unsupervised, and semi-supervised techniques [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]-so that most data only contain pure pixels. A pure pixel represents a predominant signature and is thus naturally linked to a class. However, a trade-off between spatial and spectral resolution must be chosen in HSI, as both cannot increase concurrently. As a consequence, hyperspectral unmixing (HU) techniques-a.k.a. blind source separation-were proposed to enhance classification performance.

In HU, the Linear Mixture Model (LMM) is widely used and most HU approaches unfold the above datacube X to derive a n × n b matrix, denoted Y hereafter. Each column of Y contains the spectral information located at a given spatial pixel of X and the LMM methods provides the following mixture model:

min M,A Y -M A F , s.t. A ≥ 0, 1 T p A = 1 n , (4) 
where A contains the non-negative fractional abundance vectors of the LMMi.e., the mixing parameters which sum to 1-and M contains the spectral signatures of the materials-named endmembers-and 1 p stands for the p × 1 vector of ones. Actually, HU has some similarities with the source apportionment problem introduced in Subsection 2.1, except that the rows of F sum to one in source apportionment while the columns of A sum to one in HU, thus yielding different NMF solutions. Main unmixing strategies assume the existence of pure pixels for each endmember-and are based on sparsity and/or geometric properties-or the absence of a few endmembers in some pixels, using volume-based approaches to perform HU in that case [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. Several problems are currently investigated, i.e., the estimation of the intrinsic dimensionality [START_REF] Chang | Estimation of number of spectrally distinct signal sources in hyperspectral imagery[END_REF]-i.e., the number of endmembers in Y -the endmember variability [START_REF] Revel | Impact of the initialisation of a blind unmixing method dealing with intra-class variability[END_REF] for both LMM but also nonlinear mixing models which are increasingly studied [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF].

Both the classification and HU can be used for HS target detection, where one aims to detect and identify man-made or natural clutters from the HSI variations [START_REF] Manolakis | Long-wave infrared hyperspectral remote sensing of chemical clouds: A focus on signal processing approaches[END_REF].

Sensor networks for environmental monitoring

During the last decades, sensors have been massively spread around the world to provide fine grained yet accurate environmental analytics (e.g., temperature, air quality, etc) [START_REF] Rundel | Environmental sensor networks in ecological research[END_REF]. A taxonomy of such environmental sensor networks is provided in [START_REF] Hart | Environmental sensor networks: A revolution in the earth system science?[END_REF] and some insight about specific problems is provided. These problems have been studied in the literature since the work in [START_REF] Hart | Environmental sensor networks: A revolution in the earth system science?[END_REF] and we now summarize this work, together with some more recent open challenges.

Dealing with sensor inaccuracies

One of the first issues met with sensor networks is the possible lack of trust in the readings provided by the sensors. Indeed, the latter can be miscalibratedresulting in biased scientific analyzes [START_REF] Karl | Possible artifacts of data biases in the recent global surface warming hiatus[END_REF]-but their readings may also suffer from the presence of outliers, due to sensor faults for example, or to data loss. We discuss about both issues hereafter.

Sensor calibration is an important step in environmental monitoring which should be regularly performed. This is usually done in a laboratory where the sensor readings y(t) are mapped to a controlled physical input x(t), so that the the sensor calibration function F can be learned. Once learned and assuming that F is invertible, it is then possible to derive x(t) from the sensor readings.

However, such a calibration task is not possible in many environmental problems, either because the sensors are not accessible like, e.g., in remote sensing [START_REF] Carfantan | Statistical linear destriping of satellite-based pushbroom-type images[END_REF], or because they are so numerous that it would be too time consuming to do so. As a consequence, some blind calibration or self-calibration techniques were proposed. They aim to calibrate the sensors from their readings and might be possibly using other calibrated sensor readings for that purpose.

In order to perform blind calibration, it is first necessary to know the sensor model F in order to estimate its intrinsic parameters. Most authors-e.g., [START_REF] Balzano | Blind calibration of sensor networks[END_REF][START_REF] Wang | Moments based blind calibration in mobile sensor networks[END_REF][START_REF] Dorffer | Blind calibration of mobile sensors using informed nonnegative matrix factorization[END_REF]-assume it is affine, i.e., F is defined by an offset and a gain. A few ones consider an extended nonlinear model which might be piecewise linear [START_REF] Wang | Blindly calibrating mobile sensors using piecewise linear functions[END_REF] or polynomial [START_REF] Wang | Calibrating nonlinear mobile sensors[END_REF][START_REF] Dorffer | Nonlinear mobile sensor calibration using informed semi-nonnegative matrix factorization with a Vandermonde factor[END_REF]. As an alternative to both above models which are function of a single input x(t), many sensors-e.g., miniaturized gas sensor-are driven by multiple-say M -inputs, e.g., the sensed gas concentration, the ambient temperature and the humidity [START_REF] Piedrahita | The next generation of low-cost personal air quality sensors for quantitative exposure monitoring[END_REF]. In that case, the simplest model of F(.) is multilinear. Moreover, as the sensors must be regularly calibrated, this means that their response drifts with time. Some authors propose to incorporate this drift inside the sensor response model [START_REF] Piedrahita | The next generation of low-cost personal air quality sensors for quantitative exposure monitoring[END_REF]. Once the sensor model is known, calibration can be performed, either simultaneously for the whole sensor network (macro-calibration [START_REF] Whitehouse | Macro-calibration in sensor/actuator networks[END_REF]), or sequentially for each individual sensor (micro-calibration [START_REF] Saukh | Reducing multi-hop calibration errors in largescale mobile sensor networks[END_REF]). Many macro-calibration techniques are based on the statistical moments of the sensed phenomenon [START_REF] Carfantan | Statistical linear destriping of satellite-based pushbroom-type images[END_REF][START_REF] Wang | Moments based blind calibration in mobile sensor networks[END_REF], or assume the sensed phenomenon to be low-rank and project the readings on a previously learned subspace [START_REF] Balzano | Blind calibration of sensor networks[END_REF]. These approaches can be applied to mobile and fixed sensors. On the contrary, most micro-calibration methods were proposed for mobile sensors. While a few of them are based on moments [START_REF] Lee | A blind calibration scheme exploiting mutual calibration relationships for a dense mobile sensor network[END_REF], many assume the sensors to be in rendezvous [START_REF] Saukh | On rendezvous in mobile sensing networks[END_REF]. Two sensors in rendezvous are in the same spatio-temporal vicinity and should thus acquire the same phenomenon. As a consequence, assuming that some sensors are calibrated, it is possible to perform calibration by regression of both the calibrated and the uncalibrated sensor readings in rendezvous [START_REF] Saukh | Reducing multi-hop calibration errors in largescale mobile sensor networks[END_REF]. As an alternative to this strategy, the authors in [START_REF] Dorffer | Blind calibration of mobile sensors using informed nonnegative matrix factorization[END_REF][START_REF] Dorffer | Nonlinear mobile sensor calibration using informed semi-nonnegative matrix factorization with a Vandermonde factor[END_REF] revisited macro-calibration by discretizing along space and time an observed area, using the rendezvous definition. Within this framework, self-calibration can be tackled as a structured matrix factorization problem with missing entries.

As explained above, sensor readings might also suffer from outliers [START_REF] Zhang | Outlier detection techniques for wireless sensor networks: A survey[END_REF] and missing data [START_REF] Giannopoulos | Application of tensor and matrix completion on water treatment data[END_REF]. Interestingly, both problems can be tackled by some approaches-denoted robust principle component analysis or matrix/tensor completion, respectively-which use the same intrinsic assumption. If the sensor network is dense enough, it should oversample the observed phenomenon, i.e., if the observed data are arranged into a matrix or a tensor, the latter should be low-rank. Low-rank modeling attracted a lot of interest in the last decade and recent reviews on the topic can be found in, e.g., [START_REF] Zhouchen | A review on low-rank models in data analysis[END_REF] (for sparse outlier removal) and [START_REF] Davenport | An overview of low-rank matrix recovery from incomplete observations[END_REF] (for low-rank completion). Specific techniques for environmental applications were proposed, to deal with outliers in ozone measurements [START_REF] Harrou | Ozone measurements monitoring using data-based approach[END_REF] and with missing information in seismic data [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF] or in wireless sensor networks [START_REF] Giannopoulos | Application of tensor and matrix completion on water treatment data[END_REF].

Physics-driven inverse problems

At one point, environmental monitoring aims to derive some accurate information about a sparsely sensed phenomenon. Several authors combine models with some signal processing tools. For example, the authors in [START_REF] Roussel | Estimation of a semi-physical GLBE model using dual EnKF learning algorithm coupled with a sensor network design strategy: Application to air field monitoring[END_REF][START_REF] Ranieri | Near-optimal sensor placement for linear inverse problems[END_REF][START_REF] Roy | Spatio-temporal sensor management for environmental field estimation[END_REF] proposed an approach to optimize the location of the sensors with respect to the sensed field. While one may assume the sensors to move in order to reduce the uncertainties of a physical model [START_REF] Roussel | Estimation of a semi-physical GLBE model using dual EnKF learning algorithm coupled with a sensor network design strategy: Application to air field monitoring[END_REF], the authors in [START_REF] Ranieri | Near-optimal sensor placement for linear inverse problems[END_REF][START_REF] Roy | Spatio-temporal sensor management for environmental field estimation[END_REF] propose to only use a subset of available sensors which minimize such uncertainties.

Similarly, some work was performed to estimate (i) the positions of the punctual sources of emission [START_REF] Ranieri | Sampling and reconstruction of time-varying atmospheric emissions[END_REF], (ii) the shape of non-punctual sources [START_REF] Murray-Bruce | Solving inverse source problems for sources with arbitrary shapes using sensor networks[END_REF], and (iii) the source emission wavefronts [START_REF] Martinez-Camara | The fukushima inverse problem[END_REF] as an inverse problem.

Lastly, some authors propose to decompose a sensed phenomenon as linear combinations of interpretable modes, e.g., using non-negative decomposition of latent variables [START_REF] Lopez-Radcenco | Non-negative decomposition of geophysical dynamics[END_REF].

Privacy-preserving issues in partipatory science

Nowadays, environmental sensor networks are heterogeneous as some sensors can be fixed or mobile [START_REF] Hart | Environmental sensor networks: A revolution in the earth system science?[END_REF]. In the latter case, they can be carried by robots [START_REF] Dunbabin | Robots for environmental monitoring: Significant advancements and applications[END_REF] or volunteers in participatory science [START_REF] Roy | Understanding citizen science & environmental monitoring[END_REF]. This last situation has been particularly studied in the literature. Indeed, with the increase use of smartphones and their abilities to connect to sensing devices, it is quite easy to propose a large-scale experiment but also to reverse enginneer the geolocated data to find who are the volunteers. As a consequence, privacy-preserving techniques were proposed [START_REF] Christin | A survey on privacy in mobile participatory sensing applications[END_REF] and mainly consists of modifying (i) the sensed values and (ii) the locations of these readings, which both might affect the performance of the tasks discussed in this section. A few methods, e.g., [START_REF] Markert | Private rendezvous-based calibration of low-cost sensors for participatory environmental sensing[END_REF][START_REF] Harrane | Toward privacy-preserving diffusion strategies for adaptation and learning over networks[END_REF], take into consideration such an issue by processing data at the sensor scale while sharing as few information as possible with neighbour sensing devices but such a hot topic is still open.

Conclusion and discussion

To conclude, environmental monitoring is a major application field for signal processing and machine learning. Due to the impact of climate change and pollution levels, together with the intrinsic interest from the politics and the population, environmental data processing techniques must be carefully driven to keep a high level of trust. We reviewed some current problems regarding the sensor scale (single sensor/sensor array, remote sensing, large-scale sensor networks) but could not cover other very interesting problems, such as the multimodal fusion of data issued from all these sensor technologies.

The remainder of the Environmental Signal Processing session follows the same structure as this paper: chemical sensor processing [START_REF] Ouaret | Indoor air pollutant sources using blind source separation methods[END_REF][START_REF] González-Calabuig | High dimensionality voltammetric biosensor data processed with artificial neural networks[END_REF], remote sensing HU [START_REF] Revel | Impact of the initialisation of a blind unmixing method dealing with intra-class variability[END_REF], and signal processing for/using sensor networks [START_REF] Murray-Bruce | Solving inverse source problems for sources with arbitrary shapes using sensor networks[END_REF][START_REF] Lopez-Radcenco | Non-negative decomposition of geophysical dynamics[END_REF][START_REF] Giannopoulos | Application of tensor and matrix completion on water treatment data[END_REF].