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bLaboratory XLIM UMR CNRS 7252, University of Poitiers, France

Abstract

As labeled graphs are particularly well adapted to represent objects in the context of topology-based
geometric modeling, graph transformation theory is an adequate framework to implement modeling
operations and check their consistency. In this article, objects are defined as a particular subclass of
labeled graphs in which arc labels encode their topological structure (i.e. cell subdivision: vertex, edge,
face, etc.) and node labels encode their embedding (i.e. relevant data: vertex positions, face colors, volume
density, etc.). Object consistency is therefore defined by labeling constraints which must be preserved along
modeling operations that modify topology and/or embedding. In this article, we define a class of graph
transformation rules dedicated to embedding computations. Dedicated graph transformation variables
allow us to access the existing embedding from the underlying topological structure (e.g. collecting all the
points of a face) in order to compute the new embedding using user-provided functions (e.g. compute
the barycenter of several points). To ensure the safety of the defined operations, we provide syntactic
conditions on rules that preserve the object consistency constraints.

Keywords: DPO graph transformation, topology-based geometric modeling, graph transformation with
variables, labeled graphs, generalized maps, consistency preservation, static analysis, algebraic data types.

1. Introduction

In the early 1970s, the concept of graph transformation became of interest in computer science.
Derived from string and tree rewriting techniques, this rule-based approach offers a very natural way to
describe complex transformations on an intuitive level. For example, anyone observing the transformation
given in Figure 1 easily understands the change made in the company organization: the new CEO hires a
plant director who is in charge of manufacturing and purchase. Nowadays, thanks to their expressiveness,
graph transformations have applications in many areas such as software engineering [1], concurrent and
distributed systems [2], visual modeling [3] or database design [4].

Our interest concerns the application of graph transformations to topology-based geometric mod-
eling [5], a field that deals with the representation and manipulation of objects according to their
topological structure (cell subdivision) and their embedding (other types of information attached to their
topological cells). As topological structures can be represented as a particular class of graphs, the use of
graph transformations to define modeling operations have already been proposed in the past [6, 7, 8].

In this article, we propose a generic graph transformation approach that allows the implementation
of modeling operations of any application domain. Indeed, object constructions and transformations
depend on the targeted domain; e.g. add or remove some matter to sculpt (arts), add a window on a
wall (architecture), rotate a gear (engineering), combine partial scans (archaeology), etc. The definition
and implementation of such operations are always time-comsuming and tedious. Every single operation
has to be designed, coded, debugged and optimized. It is even common nowadays that modelers include
a cleaning post-treatment function to fix inconsistencies in transformed objects when operations are too
complex to maintain object consistency along the operation code. As this article will show, this need
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Figure 1: An example of graph transformation expressiveness

for a reliable and flexible framework to define and implement modeling operations can be efficiently
addressed by graph transformations.

Let us take consider two operation examples with the face triangulation of Figure 2(a) and the edge
removal of Figure 2(b)) in the case of colored 2D objects. In both figures, the topological structure of
the object under transformation contains four faces (two triangles, a square and a pentagon) glued all
together, while the embedding associates a color to each face. Note that both operations simultaneously
transform the topological structure and the embedding. The face triangulation topologically subdivides
the face into triangles, while from the embedding point of view, colors are computed for the new faces
as the mix of the subdivided face color and the neighboring face color. The edge removal topologically
consists in merging two neighboring faces by removing the shared edge while the embedding modification
consists in mixing the two original face colors.

(a) Face triangulation (b) Edge removal

Figure 2: Two modeling operations

Using the topological model of generalized maps [9, 10, 5], objects are defined as a particular subclass
of labeled graphs in which arc labels encode their topological structure and labeling constraints define
their consistency. The implementation of modeling operations with graph transformations requires some
dedicated features of graph transformations. In [11, 6, 12], we previously introduced dedicated rule
variables to generically handle the topological genericity of modeling operations, i.e. to automatically
compute the topological transformation depending on the cell size. For example, such variables allow to
define the topological triangulation of any face (triangle, rectangle, pentagon, etc.) by a single rule.

This article addresses the embedding aspect of modeling operations. Considering a representation of
embedded generalized maps as labeled graphs introduced in [13] and in which node labels and associated
labeling constraints encode object embedding, we will study under which conditions relabeling graph
transformations of [14] preserve the embedding consistency of the object under modeling. For example,
in the case of the edge removal of Figure 2(b), we will ensure that by construction, after the application
of the corresponding rules, all nodes of the resulting face end up labeled with the same color. Based
on [15], we will then introduce a rule-based language that allows the new embedding to be generically
computed (e.g. to compute the mix of face colors for any colored object). Using dedicated graph
transformation variables and terms, the resulting rule schemes will provide the means of both accessing
the existing embedding through the topological structure and applying functions provided by the user
with embedding data types. For example, the triangulation of Figure 2(a) will be defined by a rule
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scheme in which the colors of the created faces are computed by applying the user function “mix of
two colors” to the subdivided face color and the respective adjacent face colors. As the safety of this
user-oriented language is as essential as its expressiveness, we will provide syntactic conditions to guide
rule scheme design and ensure object consistency preservation.

The presented variables and terms are comparable to the attribute variables introduced by B. Hoffman
in [15] which allow one to associate new labels to arcs and nodes by applying computations on initial
labels associated to arcs and nodes of the graph under transformation. However, aside from their
embedding manipulation possibilities, they offer two additional benefits from a graph transformation
point of view. First, they take advantage of the regularity of graphs representing nD objects (which can
be retrieved in other graph structures) to avoid any additional identifier naming for variables: nodes are
directly used as identifiers to access embedding data and are considered as the default variables of a rule
(they are called node variables in the sequel). Secondly, the design of geometric modeling operations
requires accessing and modifying embedding values of not only nodes occurring in the matched pattern of
the rule, but also of nodes located beyond the rule pattern. Let us briefly illustrate this novelty. For the
face triangulation of Figure 2(a), we need to access the colors of neighbor faces without matching the face
in the rule pattern in order to allow the possibility of a non-existent neighbor (e.g. the yellow triangle
has no adjacent face on the right). Similarly, for the edge removal of Figure 2(a), all nodes of the two
adjacent faces must have their color changed to the mixed color, while the rule pattern must be limited
to the removed edge in order to keep the operation generic in respect to the face sizes (otherwise, the
rule would specifically define the removal of an edge between a triangle and a rectangle). We therefore
introduce operators dedicated to the traversal of topological structures starting from a given node, and a
step-by-step rule scheme instantiation mechanism that carefully propagates modifications of embedding
values.To our knowledge, such traversals and modifications of graphs beyond the pattern matched by
the rule are original with respect to all existing frameworks of graph transformations with variables,
including our own approach for topological transformations [11, 6].

This paper is organized as follows. First, Section 2 presents related works mostly consisting of the
existing L-sytem approaches of geometric modeling (usually referred as procedural modeling), and of
some successful graph transformation applications which include the biological study case at the origin
of this work. Section 3 then presents the labeled graph transformation fundamentals of our work. In
particular, we describe relabeling graph transformations introduced by [14] that will allow us to modify
objects. We also present the use of variables in graph transformations as introduced by [15]. The context
of topological-based geometric modeling is then presented in Section 4. We focus on the topological model
of generalized maps [10] and we give the conditions from [6] under which graph transformations preserve
the topological consistency. Section 5 then similarly presents our embedded version of generalized maps
and conditions under which basic graph transformations preserve the embedding consistency. The
next three sections focus on the rule-based language dedicated to embedding modifications. Section 6
introduces the rule scheme syntax, in particular terms that allow generic computation of new embedding
values from existing ones in the object (e.g. to mix two unspecified face colors). Section 7 presents
the rule scheme application, especially how schemes are instantiated to propagate minimally defined
modifications (e.g. automatically change the color of all nodes of one face). Section 8 provides syntactic
conditions on rule schemes to ensure embedding consistency preservation. Section 9 then presents some
applications of this work. In particular, after providing few other rule examples, we present both a
practical application to physical simulation and the implemented software tool that runs this simulation
and any other prototyped modeler. Finally, Section 10 presents some concluding remarks.

2. Related works

This section presents the motivations and the origins of our graph transformation-based approach of
geometric modeling. First, we present the rule-based approaches of geometric modeling (mostly based
on L-systems) that have already proved to be successful in order to model some particular object classes.
Secondly, we present similar issues (i.e. issues involving similar structural transformations in a controlled
and safe manner) that have already been tackled by graph transformations.
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2.1. Procedural modeling

Formal rule languages have been used for twenty-five years in the context of geometric modeling, and
are usually referred as procedural modeling techniques. These techniques focus on creating a model from
a rule set, rather than editing the model via user input. They are particularly useful to model objects
that are too cumbersome to be modeled by hand or objects that already exists in the physical world.

(a) Romanesco broccoli (b) Nautilus shell (c) Frost crystals

Figure 3: Fractals in nature

The concept of procedural modeling originates in the fractal notion introduced by Benoit Mandel-
brot [16]. Fractals are mathematical sets that exhibit repeating patterns displayed at every scale. They
have proved particularly useful as similar regular patterns can be found in the shape of natural objects
(e.g. symmetries, trees, spirals, meanders, waves, foams, tessellations, cracks and stripes). For example,
the Romanesco broccoli, the nautilus shell and the frost fractals of Figure 3 can all be mathematically
modeled by fractals.

(a) Bluebell growth (b) Pines (c) Leaf grothw (d) Fruit structure

Figure 4: Plants modeling based on L-Systems

From the observation of similar, but weaker, regularities in most plants, biologist Aristid Lindenmayer
introduced L-systems [17] to model plant growth and development. L-Systems basically consist in a set
of production rules that have to be successively applied from a given axiom until a stop condition is
satisfied. They are therefore suited to represent arborescent structures, such as the flowers in Figure 4(a)
[18], or the trees in Figure 4(b) [19]. Moreover, L-systems have already been used in a topological-based
context in [20] to model leaf growth as in Figure 4(d), in [21] to model flowers, or in [22] to model
internal structure of fruits as in Figure 4(d). Nowadays, L-systems are behind the vegetation of most
video games or movies involving CGI, usually created through the SpedTree toolkit1.

Applications of L-systems are not limited to plants. In particular, [23] introduced a new type of
grammar dedicated to automatically model buildings. In the same way as with plants, building designs
are derived using grammars that define building shapes. For example, the three buildings in Figure 5(a)
from [24] are generated from the same shape grammar. Moreover, 3D models of existing buildings can
also be generated from aerial pictures [25] in order to be displayed in navigation applications. For the

1http://www.speedtree.com/
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(a) Buildings modeling based on shape grammars (b) Street creation system applied to Manhattan

Figure 5: Urban modeling based on L-Systems

same purpose, L-systems have also been extended to automatically model street networks of cities, as
represented in Figure 5(b) from [26]. Note that similar grammars are also used as a corrective measure to
build navigation maps from construction plans and aerial photographs. Indeed, because of human errors
and necessary adaptive measures, the reality on the ground frequently differs from the construction
plans.

Let us finally emphasize the reason why we ruled out L-systems to design the language of a generic
geometric modeler. Such a language must cover any potential application domain (computer-aided
design and manufacturing, mechanical engineering, architecture, geology, archaeology, medical image
processing, scientific visualization, movies, video games, . . . ), and therefore it must address a large
class of modeling operations. In all the presented applications, L-systems and graph grammars are
defined by a limited set of high-level operations such as creating a new branch, inserting a floor or
subdividing a district with a road. These high-level rules do not contain all the low-level transformations
on actual object representations and therefore each of them has its own dedicated implementation and
consistency preservation mechanism. This lack of adaptability and robustness entails that every added
rule requires additional implementation and debugging efforts, which is particularly undesirable for a
generic modeler. L-systems are therefore a good solution for specific modeling issues but not for generic
modeling purposes.

2.2. Graph transformation applications

As Section 3 will present the graph transformation theory, the following subsection outlines the
advantages of this approach without going into every detail. First, conversely to L-systems, graph
transformations operate at low-level on graph structures and therefore rules are self-contained. For a
given graph transformation class, it is therefore possible to apply all rules with a single rule application
engine. This point is crucial in the design of a generic modeling tool as it minimizes the implementation
and debugging efforts. Moreover, such a low-level definition ensures that given some required graph
properties (e.g. for geometric consistency), it is therefore possible to express conditions on rules that
will consistently maintain those properties along graph transformations. Finally, graph transformations
also allow the use of high-level variables based on this strong low-level theoretical ground, therefore
offering as much expressive power as L-systems.

Among applications that already take advantage of graph transformations, the best known is surely
software engineering as graph transformations provide the tools to tackle the variety of problems inherent
to software design. Graph transformations already address program refactoring, syntax and semantics of
visual languages, visual modeling of behavior and programming, software specifications and evolution,
security policies, etc. [2, 1, 27]. The variety of problems is also reflected in the multiplication of dedicated
tools (e.g. EMorF, Fujaba, Gremlin, Henshin, eMoflon, DiaGen) in addition to the established generic
graph transformation tools (e.g. GrGen.NET, GP, Groove, AGG, GMTE).

But graph transformations also have numerous applications aside from software engineering. In the
field of computer graphics, graph transformations have been used for shape recognition purposes. In
particular, in [28, 29], attributed grammars were defined to describe and classify the syntactic structures
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of two-dimensional shapes. However, although it proved to be functional, the final system that was
using a combination of syntactic and statistical pattern recognition techniques was abandoned for purely
statistical approaches that were shown to be more efficient.

(a) Role of the Golgi Apparatus

(b) The “plates” hypothesis (c) The “tower” hypothesis

Figure 6: Our first study case: the Golgi apparatus

As L-systems, graph transformations also have applications in biology. But as they operate at a lower
level on graph structures, their applications concern more specifically molecular biology [30, 31, 32], i.e.
the synthesis and interactions of DNA, RNA, and proteins. Among them, we investigated in [11] the
processing of proteins by the Golgi apparatus. In particular, as this process involves the packaging of
proteins into membrane-bound vesicles, the use of graph transformations is particularly useful to model
the involved topological evolutions illustrated in Figure 6(a). Transition vesicles carrying proteins are
absorbed by the Golgi apparatus and secretion vesicles are created while proteins have been processed
and packaged. To implement and run simulations on the different hypotheses proposed by biologists for
the Golgi’s operation (e.g. the “plates” and the “tower” hypothesis simulations illustrated in Figure 6(b)
and 6(c)), we proposed in [6] graph transformation variables dedicated to topological transformations,
along with syntactic conditions on rules that ensure the topological consistency of transformed objects.
These variables allowed us to generically abstract topological cells (vertices, edges, faces, volumes) and
their transformations.

To extend the use of these variables, we showed that they offer a safer and easier design of topological
operations to design a topological-based geometric modeler [33], rather that the use of traditional ad-hoc
implementations that are fastidious to code and vulnerable to consistency bugs. But the topological
transformations are not the only issues at stake to design topological-based geometric modeler. Concrete
applications deal with several data types attached to the topological structure and called embeddings.
Embeddings usually include standart geometric data describing the shape of the objects (e.g. points,
curves, surfaces) and specific data that depend on the targeted application (e.g. molecule concentration
for biology, rock density for geology, material for architecture). For example, the Golgi simulations of
Figure 6 involved several embeddings whose transformations had to be carefully hard-coded: vertex 3D
positions to define the evolving model shape, protein quantities carried by the different volumes, and
membrane porosity associated to the faces between volumes.

Therefore, the proposed graph transformation-based language must also address these multiple
embeddings. In [13], we defined a new graph category that allow nodes to have multiple labels in order
to simultaneously represent the multiple embedding types (e.g. a face being labelled by both its color
and its porosity) and proved the existence of graph transformations in this category. We also introduced
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a new type of dedicated variables and operators to express embedding transformations in rules. In this
article, we present the final version of these variables as they are implemented in the tool set Jerboa [34]
that allows a geometric modeler kernel to be generated from a set of rules and that will be presented in
Section 9. As for topological variables, we also introduce syntactic conditions on rules that ensure the
embedding consistency of transformed objects.

3. Graph transformations

Graphs are non-linear structures, defined by a set of objects, usually called vertices or nodes, and
a set of links between these objects, usually called edges or arcs. To avoid confusion with the specific
vocabulary of geometric modeling, we will subsequently prefer to use the word “node” rather than
the word “vertex”, and the word “arc” rather than “edge” when refering to graph elements. Graphs
are often depicted in a diagrammatic form with dots or circles to represent nodes and lines or curves
to represent arcs between nodes, directed or undirected. Graph transformations commonly refer to
rule-based languages designed to manipulate graphs. Among all graph transformation approaches, we
choose the so-called double-pushout approach (or DPO) [35, 36, 27] for several reasons: our previous
works took place in the DPO framework; to our knowledge, [15] is the only framework dedicated to the
generic manipulation of variables in graph transformations, which is expressed in the DPO framework;
most importantly, we want to take advantage of the well-founded DPO framework given in [14] which
allows the relabeling of nodes and arcs in graph transformations.

3.1. Double-pushout graph transformation

In the DPO approach, a transformation is expressed using two gluing diagrams defined in terms
of category theory. More precisely, these diagrams are pushouts in the category of graphs and graph
morphisms. In order to make the presentation more intuitive, let us consider the simple example of a
DPO graph transformation given in Figure 7. The rule is given at the top of Figure 7 by the three
graphs L, K and R and by the two graph inclusions2 L←↩ K ↪→ R. In this example, nodes of graphs
are identified by letters (a, b or c) and are labeled by numbers (1, 3 or 5 while arcs are anonymous and
labeled by numbers (2 or 4). Intuitively, the left-hand side of the rule L is the pattern to transform, the
right-hand side R is the transformed pattern, and the interface K is the preserved part common to both
L and R. The graph morphism L→ G allows the matched pattern (graph L) to be identified inside the
graph under transformation (graph G) (in Figure 7, the match morphism coincides with the inclusion).

a b(L)

1 3 a b
(K)

1
a b
(R)

13
2

3

a b

(G)

1 3

c5

a b

(D)

1 3

c5
a b

(H)

1 3

c5

(1) (2)

2
2

2 2
2

4 44

Figure 7: DPO graph transformation

In the first pushout (1), all elements (nodes and arcs) in L that are not in K are removed in D. In
the example, the two arcs that loop on nodes a and b are removed: graph D results from the removing
of loops on both nodes a and b in graph G. In the second pushout (2), all elements of R that are not
already in K are added while all elements in K are preserved. In the example, an arc is added between

2One can generally consider standard graph morphisms instead of only considering inclusions.
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the two preserved nodes a and b (graph H). When the match L→ G meets some conditions, then the
transformation is well defined, and the double-pushout construction defines a unique graph H (up to
graph isomorphism), that is the result of the application of the graph transformation L ←↩ K ↪→ R
through the match morphism L→ G.

a
1

b
(L)

7
a
1

(R)

32
a b
(K)

b
21

Figure 8: A relabeling rule

In classical DPO transformations, graph morphisms have to preserve both arc and nodes labels, and
therefore prevent relabeling. Note that the relabeling of an arc can still be achieved by removing it
while adding an arc with the new label between the same source and target nodes, but this not the case
for the relabeling of a node. Consequently, we prefer the DPO approach of [14] that considers partially
labeled graphs and therefore allows relabeling. Let us take the example of the relabeling rule of Figure 8.
In the left-hand side L, node b is initially labeled by 7 while it is relabeled by 3 in the right-hand side
R, and therefore unlabeled in the interface K. Note that the two morphisms K ↪→ L and K ↪→ R on
partially labeled graphs L, K, R do not preserve labeling, in particular the undefined label of b.

We now present the main definitions and results of [14] on partially labeled graph transformations.

3.2. Graph transformations on partially labeled graphs

A partially labeled graph G = (VG, EG, sG, tG, lG,V , lG,E) consists of two finite sets VG and EG of
nodes and arcs, two source and target functions sG, tG : EG → VG, and two partial labeling functions3

lG,V : VG → CV and lG,E : EG → CE , where CV and CE are fixed sets of node and arc labels. We
say that G is totally labeled if lG,V and lG,E are total functions. A path in a graph G is a sequence
e1...ek of arcs of G with 1 ≤ k, such tG(ei) = sG(ei+1) for each 1 ≤ i < k. sG(e1) and tG(ek) are
respectively called the path source and the path target and the word lG,E(e1)...lG,E(ek) is called the
path label. Moreover, if sG(e1) = tG(ek), the path is called a cycle. From now on, partially labeled
graphs are simply called graphs. Let us point out that in the following, all graphs G of the form
(VG, EG, sG, tG, lG,V , lG,E) will be symmetric, that is, for all edge e in EG, there will be an edge e′ in
EG, such that sG(e′) = tG(e), tG(e′) = sG(e) and lG,E(e′) is defined if and only if lG,E(e) is defined, and
in this case, lG,E(e′) = lG,E(e). So, instead of considering a framework built over directed graphs, we
could have considered only undirected graphs. We finally prefer to manipulate directed graphs and to
require them to be symmetric, both to directy benefit from the results of [14] expressed for directed
graphs and to anticipate the adaptation of our work for topological models other than generalized maps.

A graph morphism g : G→ H between two graphs G and H consists of two functions gV : VG → VH
and gE : EG → EH that preserve sources, targets and labels, that is, sH ◦gE = gV ◦sG, tH ◦gE = gV ◦ tG,
and lH(g(x)) = lG(x) for all4 x in Dom(lG). A morphism g is injective (resp. surjective) if gV and
gE are injective (resp. surjective), and is an isomorphism if it is injective, surjective and preserves
undefinedness5. In the latter case, G and H are isomorphic. Furthermore, we call g an inclusion if
g(x) = x for all x in G. An inclusion is denoted by the symbol ↪→ (or the symbol ←↩ if the target graph
is introduced first). Finally, morphism composition is defined componentwise as function compositions.

Definition 1 (Rule). A rule r : L←↩K ↪→R consists of two inclusions K ↪→L and K ↪→R such that:

(1) for all x ∈ L, lL(x) = ⊥ implies x ∈ K and lR(x) = ⊥,
(2) for all x ∈ R, lR(x) = ⊥ implies x ∈ K and lL(x) = ⊥. J

3Given two sets A and B, a partial function f : A → B is a function from subset A′ of A to B. The set A′ is the
domain of f and is denoted by Dom(f). We say that f(x) is undefined, and write f(x) =⊥, if x is in A−Dom(f).

4To simplify, we amalgamate nodes and arcs in statements that hold for both sets, by omitting the indices E and V .
5i.e. if lH(g(x)) =⊥ for all x in G\Dom(lG).
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Regarding [14], our rules are simplified since they are built with two inclusions for both sides instead
of only one for the left-hand side. We call L the left-hand side, R the right-hand side and K the interface
of r. Note that conditions (1) and (2) are trivially satisfied when L and R are totally labeled.

Since objects will be represented by totally labeled graphs, a first idea would be to only consider
totally labeled graphs in order to simplify definitions: unlabeled elements could be then handle with a
dedicated label denoting its own irrelevance. However, this trick would later be inadequate to instantiate
rule schemes in Section 7 as this process requires dedicated propagation mechanisms on partially labeled
graphs in order to build consistently labeled graphs.

A diagram of graph morphisms, as Figure 9(a), is a pushout if (i) K→R→H = K→D→H and (ii)
for every pair of graph morphisms (R→H ′, D→H ′) with K→R→H ′ = K→D→H ′, there is a unique
morphism H→H ′ such that R→H ′ = R→H→H ′ and D→H ′ = D→H→H ′. The same diagram is
a pullback if property (i) holds and (iii) if for every pair of graph morphisms (K ′→R,K ′→D) with
K ′→R→H = K ′→D→H, there is a unique morphism K ′→K such that K ′→R = K ′→K→R and
K ′→D = K ′→K→D. A pushout is natural if it is also a pullback.

K

��

// R

��
D // H

0

(a)

L oo ? _

m (1)
��

K �
� //

(2)
��

R

��
G oo ? _D �

� // H
0

(b)

Figure 9: A diagram and a direct derivation

Definition 2 (Direct derivation). A direct derivation from a graph G to a graph H via a rule
r : L←↩K ↪→R consists of two natural pushouts as Figure 9(b), where m : L → G, called the match
morphism, is injective. We write G⇒r,m H if there exists such a direct derivation. J

In [14], authors studied under which conditions usual constructions in the category of totally labeled
graphs such as pushouts, pullbacks or direct derivations can be transferred into the category of partially
labeled graphs. In particular, properties concerning direct derivations are similar to those on totally
labeled graphs. A match morphism m : L → G satisfies the dangling condition with respect to the
inclusion L←↩ K, if no node in m(L)\m(K) is incident to an arc in G\m(L). Given a rule r : L←↩K ↪→R
and a match morphism m : L→ G, there exists a direct derivation as in Figure 9(b) if and only if m
satisfies the dangling condition. Moreover, in this case, D and H are unique up to isomorphism, and H
is totally labeled if and only if G is totally labeled.

3.3. Graph transformation with variables

To meet the various application needs, graph transformations have been enriched with variables
to make them generic. Intuitively, rules with variables describe as many concrete rules as there are
possibilities to instantiate variables with concrete elements. Different types of variables have been
introduced to enrich graph transformations. For example, attribute variables allow label computations
[37] or labeling constraints [38, 39], while graph variables [40, 41] and hyperedge variables [42, 43] allow
structural transformations (i.e. modifications of whole graphs connected to some attachment nodes
designated by the rule pattern).

We will not use these variables in this article, but we will use the framework for graph transformation
with variables introduced in [15] as it provides general guidelines to deal with any variable type in graph
transformations. We briefly describe its main elements: the rule scheme syntax, the instantiation of
variables, and the whole rule application process.
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Rule scheme. The sets CV and CE of node and arc labels are extended by a set X of variable
names. Graphs built over6 are called graph schemes. Then a rule scheme is a rule r : L←↩K ↪→R where
L, K, and R are graph schemes. The kernel G of G is the graph obtained by removing all labels that
contain a variable occurrence.

Instantiation. A substitution function σ specifies how variable names occurring in a rule scheme are
substituted. From the instanciation of variables in the graphs L, K, R, yielding to the graphs denoted
respectively as Lσ, Kσ and Rσ, the instanciation of a rule scheme r : L←↩K ↪→R according to σ defines
a particular rule instance rσ : Lσ ←↩ Kσ ↪→ Rσ. Note that rσ is a rule without variables as defined in
Definition 1.

Rule application. Let G be a graph, and r : L←↩K ↪→R be a rule scheme.

1. Identify a kernel match m : L→ G of the kernel L of L in G (if it exists);
2. If possible, find a substitution σ such that there exists a morphism m : Lσ → G extending m;
3. Construct the instance rσ : Lσ ←↩ Kσ ↪→ Rσ and apply rσ to get the direct derivation G⇒rσ,m H.

In [15], this framework is used for three types of variables with specific purposes: attribute variables,
clone variables and graph variables. Depending on the variable type, the substitution, and therefore the
instantiation, differ, but the generic framework remains valid. By following it, we already introduced
in [6, 33] another type of variables that allow generic transformations of topological structures and which
proved the relevance of [15] for introducing new types of graph transformation variables.

a
x

b
(L)

z
a
x

(R)

x+yy
a b
(K)

b
yx

Figure 10: A rule scheme with attribute variables

For the embedding aspect of geometric operations, we first thought that the attribute variables
of [15] were expressive enough. Their usage is illustrated by the rule scheme of Figure 10. For the
matched arc, the new label of the target node becomes the sum of the initial label of the source node
and of the initial label of the arc. Intuitively, the application of this rule scheme to a graph allows
one to deduce a substitution of attributed variables occurring on the left-hand side L, and to compute
the new labels by evaluation of the expressions of the right-hand side R. Note that the substitution
σ = {x 7→ 1, y 7→ 2, z 7→ 7} would allow to derive the previous rule of Figure 8, according that + is
evaluated as the usual addition operation.

But attribute variables do not exactly fit our usage as we need to access the node labels through the
node names to allow topological structure traversal (e.g. to access the adjacent face color in the case of
the colored triangulation given in the introduction). In the sequel, we will introduce dedicated variables,
but, roughly speaking, they will come down to attribute variable indirections in the most basic cases.
Note also that by convention, rule schemes will be identified by dotted double lines circling their L, K
and R graphs (see Figure 10) while single dotted lines are used for rule instance graphs (see Figure 8).

3.4. Data types

In our setting, objects will be modeled by labeled graphs whose nodes are labeled by geometric or
dedicated data (thereafter referred to as embedding) such as the color of a face or the 2D position of a
point. These data are clearly typed and provided with functions to perform computations on them.

In addition, as a same embedding value can appear multiple times in an object (e.g. in the transformed
object of Figure 2, two faces have the same color), we need to identify these multiple occurrences when

6Labels of nodes or arcs are either variables of X or expressions built over variables of X.
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collecting object embedding values. We therefore consider for each type τ , the type τ•, multiset of
elements of type τ . A multiset may be viewed as a function that associates its multiplicity (a natural
number) to each element. We use the following notation: JK for the empty multiset (of any type τ•),
Ja1, . . . apK for a multiset with p occurrences of elements of type τ . For example, the multiset that
contains the element A with the multiplicity 1, the element B with the multiplicity 2, and where all
other elements are of multiplicity 0, is denoted JA,B,BK. Similarly, the multiset of face colors of the
transformed object of Figure 2 is denoted J ,  ,  ,  K.

We then present the main elements of term construction and evaluation.

Signature. A data type signature Ω = (S, F ) consists of a set S of type names and a family of
function names provided with a profile on S ∪ S• where S• = {s• | s ∈ S} is the set of multisets over
types in S. A function name f provided with a profile s1 . . . sm+1 with si ∈ S ∪ S• for i ∈ 1..m+ 1 is
denoted f : s1 × . . .× sm → sm+1.

Terms. For an S-indexed family X =
∐
s∈S Xs of variables, the set TΩ(X) =

∐
s∈S∪S• TΩ(X)s of

terms over Ω is the least set satisfying:

• for all variables x in Xs, x ∈ TΩ(X)s;

• for all function names f : s1×. . .×sm → sm+1 in F , for all terms t1 ∈ TΩ(X)s1 , . . . , tm ∈ TΩ(X)sm ,
then f(t1, . . . , tm) ∈ TΩ(X)sm+1

.

We note t : s a term t in TΩ(X)s.

Algebra. An Ω-algebra A consists of an S-indexed family of nonempty sets
∐
s∈S As and for each

f : s1 × . . .× sm → sm+1 in F , of a function fA : As1 × . . .×Asm → Asm+1
where for si ∈ S•, that is

si = s• for some s in S, Asi = {Ja1, . . . , apK | 0 ≤ p,∀k ∈ 0..p, ak ∈ As}.

Evaluation. For σ =
∐
s∈S σs an S-indexed family of assignments σs : Xs → As, the evaluation

σ : TΩ(X)s → As of a term t : s is defined as:

• for all variables x in Xs, σ(x) = σs(x);

• for all function names f : s1 × . . . × sm → sm+1 in F and all terms t1 : s1, . . . , tm : sm,
σ(f(t1, . . . , tm)) = fA(σ(t1), . . . , σ(tm)).

In order to design a modeling operation, the user is expected to provide both a data type signature
Ω = (S, F ) and an Ω-algebra A, with all the data types and functions required by its application
domain to define its modeling operations. In the sequel, the considered user types are point 2D,
vector 2D and color, that respectively model 2D positions, 2D vectors and face colors. They are
provided with all classical functions such as + : point 2D × vector 2D → point 2D that represents the
translation of a point by a vector, center : point 2D × point 2D → point 2D that computes the center
of two points, bary : point 2D• → point 2D that computes the barycenter of a multiset of points, or
mix : color × color → color that defines the average color of two given colors. The algebra A will be
left implicit. When needed, the carrier set Aτ of a data type τ will be simply denoted bτc.

Note that multisets could also have been introduced by considering a higher order approach as a
starting point, i.e. by introducing type constructions such as sets, lists or tuples of elements of the same
type. But the resulting data types would have been richer than necessary, since we would have at our
disposal types such as sets of sets of elements, and we only need a generic type for denoting multisets of
basic type elements. Our presentation of data types minimally meets this need by semantically imposing
all multiset properties such as commutativity of the element insertion, specification of the element
multiplicity, etc., but also offers a simple and concise notation for multisets.

4. Topological generalized maps as partially labeled graphs

In topology-based modeling, objects are defined according to:
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Figure 11: Object inconsistencies

• their topological structure - i.e. their cell subdivision (vertices, edges, faces, volumes) and the
adjacency relations between these cells; for example, the three objects of Figure 11(a) have the
same topological structure: a closed face F that has four edges and four vertices;

• their embedding, which includes all other types of information attached to their topological cells,
including the geometric information required to capture their shape; for the objects of Figure 11(a),
geometric points are attached to topological vertices and colors are attached to faces.

There are many topological structures that allow one to represent different classes of objects:
tetrahedral [44] or polyhedral [45, 46, 5], fixed dimension (2D [45] or 3D [46]) or dimension-independent [44,
5], and most of them can be seen as a particular class of graphs. Among those, we choose the topological
model of generalized maps (or G-maps) [9, 10, 5] because its mathematical definition can be rather
easily encoded within a formal framework. In G-maps, the topological structure is handled by both the
graph structure and the arc labels, while the embedding is defined by the node labels.

More precisely, the class of G-maps that represents valid objects is defined by labeling constraints.
Hence, to define modeling operations with graph transformations, we investigate under which conditions
G-map constraints, and so object consistency, are preserved along transformations. Examples of
inconsistencies are given in Figure 11: an edge with a single extremity instead of two, or two faces glued
along a vertex instead of an edge are topological inconsistencies, while a face embedded with two colors
instead of one, or without any defined color are embedding inconsistencies.

4.1. Generalized maps

A

B C

D E

F

G

u v

w
x y

z

(a)

2

2

2

2

2

2

(b)

1

11

1 1

11

(c)

d
b

c
a

m n
l

j

k

i
g h

e f

0 0

0
0

0

00

(d)

Figure 12: Topological decomposition of a geometric 2D object

The representation of an object as a G-map intuitively comes from its decomposition into topological
cells (vertices, edges, faces, volumes, etc.). For example, the 2D topological object of Figure 12(a) can
be decomposed into a 2-dimensional G-map. The object is first decomposed into faces in Figure 12(b).
These faces are linked along their common edge with a 2-relation: the index 2 indicates that two cells
of dimension 2 (faces) share an edge. In the same way, faces are split into edges connected with the
1-relation in Figure 12(c). At last, edges are split into vertices by the 0-relation to obtain the 2-G-map of
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Figure 12(d). Nodes obtained at the end of the process are the G-map ones and the different i-relations
become labeled arcs: for a 2-dimensional G-map, i belongs to {0, 1, 2}.

Therefore, G-maps are particular graphs whose arcs are labeled by integers: for a dimension n,
n-G-maps are partially labeled graphs such that arcs are totally labeled in CE = [0, n] where [0, n] is
the interval of integers between 0 and n. G-maps are undirected7: thus, for each i-arc of source v, of
target v′, there is also a corresponding reversed i-arc of source v′ and target v. As usual, double reversed
arcs are graphically represented by undirected arcs (see Figure 12(d)). Note that in order to be more
readable, in all figures given subsequently, we use the graphical codes introduced in Figure 12 (black line
for 0-arcs, red dashed line for 1-arcs and blue double line for 2-arcs) instead of writing a label near the
corresponding arc. So, the way undirected arcs will be drawn will implicitly indicate their label values.
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Figure 13: Orbits adjacent to e

Topological cells are not explicitly represented in G-maps but implicitly defined as subgraphs. They
can be computed using graph traversals defined by an originating node and a given set of arc labels. For
example, in Figure 13(a), the 0-cell (vertex) adjacent to e is the subgraph which contains e, the nodes
that can be reached from node e using 1-arcs or 2-arcs (nodes c, e, g and i) and the arcs themselves.
This subgraph is denoted by G〈1 2〉(e), or simply 〈1 2〉(e) if the context (graph G) is obvious, and
models the vertex B of Figure 12(a). In Figure 13(b), the 1-cell adjacent to e (edge w) is the subgraph
G〈0 2〉(e) that contains node e and nodes reachable through 0-arcs and 2-arcs (nodes e, f, g and h),
and the corresponding arcs. Finally, in Figure 13(c), the 2-cell adjacent to e (face F) is the subgraph
denoted by 〈0 1〉(e) and built from node e with 1-arcs and 2-arcs.

In fact, topological cells (face, edge or vertex) are particular cases of orbits denoting subgraphs built
from an originating node and a set of labels. The different orbit types of an n-G-map are all possible
subsets of [0, n] and are classically denoted by an ordered word o of edge labels placed in brackets 〈o〉.
In addition to the already mentioned orbit types (〈0 1〉 for face, 〈0 2〉 for edge, 〈1 2〉 for vertex), let
us give some other examples of orbit types: the orbit 〈0〉(e) in Figure 13(d) represents the half-edge
adjacent to e, and the orbit 〈0 1 2〉(e) in Figure 13(e) represents the whole connected component. We
say that a label i belongs to an orbit 〈o〉 if i occurs in the word o.

The following definition introduces the notions of topological graphs (which include G-maps but also
their transformation patterns), orbits, orbit equivalences, and orbit completions. In particular, these
last two notions will be useful later in the article to handle embedding transformations. Note also that
according to the notation commonly used in geometric modeling, the arc labeling function of topological
graph is denoted by α.

7Undirected graphs, also called symmetric graphs, are such that for each arc of source n and of target n′, there exists a
symmetric arc, of source n′ and of target n.
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Definition 3 (n-topological graph and orbit). A partially labeled graph G = (V,E, s, t, lV , α) is an
n-dimensional topological graph if the arc labeling function α is a total function with codomain CE=[0, n].

For 〈o〉 an orbit type of dimension n, let ≡G〈o〉 be the equivalence orbit relation defined on V × V as
the reflexive, symmetric and transitive closure built from arcs with labels in o, i.e., ensuring that for
each arc e of G labeled by a letter in o, we have s(e) ≡G〈o〉 t(e).

For any node v of G, the 〈o〉-orbit of G = (V,E, s, t, lV , α) adjacent to v, denoted by G〈o〉(v), is
defined as the least subgraph (V ′, E′, s′, t′, l′V , α

′) of G whose set V ′ of nodes includes {v} ∪ {v′ | v′ ∈
E, ∃w ∈ V ′, v′ ≡G〈o〉 w}, whose set E′ of arcs includes {e | s(e) ∈ V ′, t(e) ∈ V ′, α(e) ∈ o} and whose
s′, t′, l′V and α′ are restrictions of corresponding fonctions in G to the sets V ′ or E′. If the context is
clear, G〈o〉(v) is simply denoted 〈o〉(v).

J

More generally, for any subgraph G′ ↪→ G, the 〈o〉-completion of G′ in G, denoted by G〈o〉(G′), is
defined as the least subgraph (V ′′, E′′, s′′, t′′, l′′V , α

′′) of G whose set V ′′ of nodes includes VG′ ∪{v′′ | v′′ ∈
E, ∃w ∈ V ′′, v′′ ≡G〈o〉 w}, whose set E′′ of arcs includes {e | s(e) ∈ V ′′, t(e) ∈ V ′′, α(e) ∈ o} and
whose s′, t′, l′V and α′ are restrictions of corresponding fonctions in G to the sets V ′′ or E′′.
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Figure 14: Completions

Let us take two examples to illustrate the notion of completion. The topological graph of Figure 14(a)
is the 〈1 2〉-completion of 〈0 2〉(e), i.e the vertex completion of the edge adjacent to node e. Symmetrically,
the Figure 14(b) presents the 〈0 2〉-completion of the vertex 〈1 2〉(e).

Let us now give the consistency constraints that objects defined as G-maps must satisfy.

Definition 4 (Generalized map). An n-dimensional generalized map, or n-G-map, is a partially
labeled n-topological graph G = (V,E, s, t, lV , α) that satisfies the following topological consistency
constraints:

• Symmetry constraint: G is undirected,

• Adjacent arc constraint: each node is the source node of exactly n + 1 arcs respectively labeled
from 0 to n,

• Cycle constraint: for every i and j such that 0 ≤ i ≤ i+ 2 ≤ j ≤ n, there exists a cycle labeled by
ijij starting from each node. J

These constraints ensure that objects represented by embedded G-maps are consistent manifolds
[10]. In particular, the cycle constraint ensures that in G-maps, two i-cells can only be adjacent along
(i− 1)-cells. For instance, in the 2-G-map of Figure 12(d), the 0202-cycle constraint implies that faces
are stuck along topological edges. Let us notice that thanks to loops (see 2-loops in Figure 12(d)), these
three constraints also hold at the border of objects.
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4.2. Basic topological transformations

Within a geometric modeler, operations defined on objects are called topological (respectively
geometric) if their main purpose is to change the topological structure (respectively the embedding).
Obviously, some operations fall under both aspects, as the rounding operation that consists in the
replacement of a vertex or a sharp edge by a curved surface [47].

Roughly speaking, topological operations are applications that allow one to build new generalized
maps from generalized maps. The definition of topological operations by graph transformation rules
advantageously facilitates the study of stating whether or not the resulting graphs are also generalized
maps. To achieve this, rules on generalized maps have to preserve by construction the topological
constraints of Definition 4.

In previous works [11, 6, 12], we elaborated the following syntactic conditions that precisely ensure
the preservation of topological consistency:

Theorem 1 (Topological consistency preservation). Let r : L←↩ K ↪→ R be a graph transforma-
tion rule, G an n-G-map and m : L→ G a match morphism.

The direct transformation G⇒r,m H produces an n-G-map H if the following conditions of topological
consistency preservation are satisfied:

• Symmetry condition: the three graphs L, K and R are undirected n-topological graphs.

• Adjacent arcs condition:

– preserved nodes of K are sources of arcs having the same labels in both the left-hand side L
and the right-hand side R;

– removed nodes of L\K and added nodes of R\K must be source of exactly n+1 arcs respectively
labeled from 0 to n.

• Cycle condition: for all (i, j) such 0 ≤ i ≤ i+ 2 ≤ j ≤ n,

– any added node of R\K is the source of an ijij-cycle;

– any preserved node of K which is the source of an ijij-cycle in L, is also the source of an
ijij-cycle in R;

– any preserved node of K which is not the source of an ijij-cycle in L is source of the same
i-arcs and j-arcs in L and R. J

The interested reader can find the proof of this theorem in [6]. In particular, we demonstrated that
the dangling condition (see Subsection 3.2) is always ensured when a rule that satisfies those conditions
is applied to a G-map.

Theorem 1 only expresses sufficient conditions to produce G-maps starting from G-maps, and not
necessary conditions. It is intended to be like this: first of all, in line with the way experts in geometric
modeling manipulate models, we restrict ourselves to undirected graphs and thus, we require that all
graphs are undirected, without this condition being necessary. Indeed, clearly, we could write rules
with graphs which are not symmetric. Thus, conditions provided by Theorem 1 have the interest of
corresponding to the intuitions of experts in geometric modeling: this is particularly the case for the
last two conditions: for example, the adjacent arcs condition simply requires that after transformation,
all nodes should have exactly n+ 1 arcs labeled from 0 to n, which is exactly part of the definition of
G-maps. It is the same for the third condition of Theorem 1, with respect to the cycle constraint. Up
to our knowlege, these conditions make it possible to write a sufficiently large class of representative
modeling operations.

Intuitively, the adjacent arcs condition (combined with the symmetry condition) ensures that every
node concerned by the rule application ends up being the source and the target of exactly one i-arc
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Figure 15: Non-respect of adjacent arcs condition

for each i ∈ [0, n] in the transformed object. The first point requires that preserved nodes have their
adjacent i-arcs in both sides of the rule. Indeed, by construction, i-arcs that are not matched by the
rule are preserved in the transformed graph. For example, the rule of Figure 15(a) adds a 0-arc between
nodes e and h in R without matching any 0-arc in L. Consequently, in the resulting graph H, nodes e
and h have both their original 0-arc issued from G and the 0-arc added in R, and therefore H is not a
G-map. The second point requires that added or removed nodes have exactly one i-arc for each i ∈ [0, n].
Indeed, nodes can only be consistently added with all their adjacent arcs. Similarly, removing a node
without matching a given i-arc would imply that an i-arc remains in the transformed G-map with the
source node or the target node missing. For example, the rule of Figure 15(b) removes node f without
matching its adjacent 1-arc and 2-arc. Consequently, the resulting graph H contains two dangling arcs.
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Figure 16: Non-respect of cycle condition

The cycle condition ensures that every node transformed by the rule ends up belonging to an
ijij-cycle for all 0 ≤ i ≤ i+ 2 ≤ j ≤ n. The first point requires that added nodes belong to an ijij-cycle
in R, as all their adjacent arcs belong to R. For example, the rule of Figure 16(a) adds two nodes o
and p without their 0202-cycle in R. Consequently, they do not belong to such a cycle in the resulting
graph H. The second point requires that preserved nodes which belong to an ijij-cycle in L also belong
to such a cycle in R. Similarly to the previous point, their adjacent i-arcs and j-arcs belong to R,
therefore the ijij-cycle has to belong to R. The last point requires that preserved nodes which do not
belong to an ijij-cycle in L have their adjacent i-arcs and j-arcs also preserved. As a matter of fact,
any modification of those arcs might break the ijij-cycle as it is only partially matched by the rule.
For example, in Figure 16(b), by removing the 0-arc between nodes e and h in the rule, we break the
0202-cycle in the resulting graph H.
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5. Embedded generalized maps and their basic transformations

Our approach is generic, both in terms of the dimension of the objects and of the nature of the
considered embedding. For simplicity purposes, in the following n-G-maps will be simply denoted as
G-maps. Moreover, all illustrative examples will be given for 2D objects with either one of the two
embedding data types of Figure 11(a): we will either consider 2D positions attached to topological
vertices or colors attached to faces. However, realistic objects simultaneously handle several data types
holding on different topological cells.

5.1. Embedding representation

The topological structure of n-G-maps have been defined as labeled graphs where the arc label set is
CE = [0, n]. We complete here this definition with node labels to represent the embedding. We already
sketched that every dedicated embedding has its own data type and is defined on a particular kind of
topological cell: in our example, positions are attached to vertices and colors to faces.

A node labeling function defining an embedding will be typed both by a topological orbit type and a
data type. We characterize such a node labeling function as an embedding operation π : 〈o〉 → τ where π
is the operation name, τ is its data type and 〈o〉 is its domain given as an n-dimensional orbit type.
Hence, for a G-map embedded on an embedding π : 〈o〉 → τ , the node label set CV is the set of values
bτc of type τ and when the profile of π is obvious, the node labeling function is simply noted π. Thus, a
G-map provided with a single embedding will be a particular case of partially labeled graph, generically
denoted as a tuple (V,E, s, t, π, α).
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Figure 17: Two embedding operations

In this article, we consider the following embedding operations:

• pos : 〈1 2〉 → point 2D the embedding that associates 2D positions (values of type point 2D) with
vertices (〈1 2〉-orbits) of 2-G-maps (see Figure 17(a));

• col : 〈0 1〉 → color the embedding that associates colors (values of type color) with faces (〈0 1〉-
orbits) of 2-G-maps (see Figure 17(b)).

Moreover, as an embedding operation π : 〈o〉 → τ is characterized by its domain orbit, it is expected
that in an embedded G-map G = (V,E, s, t, π, α), all nodes of a common 〈o〉-orbit share the same label
by π, also called π-label. For example, in Figure 17(a), nodes c, e, g and i that belong to the same
vertex orbit 〈1 2〉 are labeled by the same value B. Similarly, in Figure 17(b), nodes a, b, c, d, e and f
that belong to the same face are labeled with the same yellow color. This property is captured by an
embedding constraint that embedded8 G-maps have to satisfy [13].

8To be in agreement with the community of geometric modeling, we chose the term ”embedded” rather than the term
”attributed”, most commonly used in the graph transformation community.
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Definition 5 (Embedded graph and embedded generalized map). Let π : 〈o〉 → τ be an embed-
ding operation of dimension n ≥ 0 with 〈o〉 an orbit type of dimension n and τ a data type.

• Embedded graph: A graph embedded on π, or π-embedded graph, is an n-topological graph
G = (V,E, s, t, π, α) where π labels nodes on CV = bτc.

• Embedding consistency constraint: A π-embedded graph satisfies the embedding consistency
constraint if for all nodes v and w such that v ≡〈o〉 w, π(v) = π(w) or π(v) = ⊥ or π(w) = ⊥.

• Embedded G-map: A π-embedded G-map is an n-G-map embedded on π satisfying the embedding
consistency constraint and such that π is a total function (i.e. Dom(π) = V ). J

Note that the embedding consistency constraint allows an 〈o〉-orbit to be partially π-labeled as long
as the defined π-labels are equal. Therefore, as embedded G-maps are totally labeled, the constraint
entails that all nodes of any 〈o〉-orbit share the same embedding value, i.e. for all nodes v and w such
that v ≡〈o〉 w, π(v) = π(w) with π(v) 6= ⊥.

Intuitively, the topological structure of any π-embedded graph G can then be found by forgetting
node labels. For G = (V,E, s, t, π, α), Gα = (V,E, s, t,⊥, α) denotes the underlying topological structure
where the everywhere undefined function ⊥ replaces the node labeling function π.

As ≡〈o〉 defines a partition of the set V of nodes of a π-embedded graph G that satisfies the embedding
consistency constraint, it allows to build a quotient graph of G along 〈o〉-orbits. For the quotient set of
nodes, we consider the set of 〈o〉-orbits of G. As all nodes of an 〈o〉-orbit of G are unlabelled or share
the same π-label, the resulting quotient node directly inherits this shared π-label if this label exists. For
the quotient set of arcs, we consider the set of arcs inherited from G by redefining source and target
nodes with their corresponding quotient nodes and by preserving their labels.
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x y

v

(a) Vertices/2D positions

u

v

(b) Faces/colors

Figure 18: Quotients of the embedded 2-G-maps given in Figure 17

For example, the quotient along 〈1 2〉-orbits of the embedded G-map of Figure 17(a) is the graph of
Figure 18(a). As nodes c, g, e and i belong to the same vertex orbit, they share the same embedding B
and give rise to the B-labeled quotient node v in Figure 18(a). The resulting quotient graph contains 5
nodes, one per 〈1 2〉-orbit, with a well-defined π-label. Let us note that by construction, arcs with labels
belonging to the orbit type 〈1 2〉 become loops. As a consequence, all 1-arcs and 2-arcs adjacent to c, e,
g or i are transformed into loops on node v in the quotient graph.

Similarly, Figure 18(b) presents the quotient along 〈0 1〉-orbits of the 2-G-map of Figure 17(b).
Nodes a, b, c, d, e and f of the triangle face give rise to the yellow quotient node u while the nodes of
the square face give rise the blue quotient node v. In the case of Figure 17(b), we get two nodes with
two different colors. Of course, it would have been possible to get nodes sharing the same color. Indeed,
it would suffice that the initial G-map contains several faces sharing the same color.
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Definition 6 (Embedding quotient). Let G = (V,E, s, t, π, α) be a graph embedded on π : 〈o〉 → τ
that satisfies the embedding consistency constraint.

The π-quotient9 graph of G is the graph G/π = (V/π, E/π, s/π, t/π, π/π, α/π) defined by:

• V/π = V/≡〈o〉 ;

• E/π = E with ∀e ∈ E/π, α/π(e) = α(e), s/π(e) = [s(e)] and t/π(e) = [t(e)];

• for [v] in V/≡〈o〉 , π/π([v]) = π(w) if there exists w in G〈o〉(v) such that π(w) 6= ⊥, otherwise
π/π([v]) = ⊥.

The π-quotient morphism q : G→ G/π is defined by: ∀v ∈ V , qV (v) = [v] and qE = id. J

Note that as embedded G-maps both satisfy the embedding consistency constraint and are totally
labeled, their quotient graphs are also totally labeled.

5.2. Basic embedding transformations

As π-embedded G-maps constitute a particular class of partially labeled graphs, we now investigate
how modeling operations on embedded G-maps that modify their geometry can be defined using graph
transformation rules (see Definition 1). As an example, we consider the two operations given in Figure 19
that apply on objects with the position embedding pos : 〈1 2〉 → point 2D. The vertex translation of
Figure 19(a) in a purely geometric operation as it does not affect the topological structure. Position B is
translated to F . Conversely, the edge folding of Figure 19(b) affects both the topological structure and
the embedding. An edge of the square face is split into two edges by introducing a new vertex which is
embedded by the point 2D value G.
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(a) Vertex translation
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G
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A

B C

D E
(b) Edge folding

Figure 19: Two operations on the position embedding

In this section, we explore to what extent basic geometric modeling operations designed for a
particular embedded G-map can be defined as basic graph transformations as introduced in Definition 1.
The key point is to ensure these consistency constraints of embedded G-maps are preserved along rules
applications, provided that rules satisfy some syntactic conditions.

In the same way that we gave in Theorem 1 syntactic conditions for the preservation of topological
consistency constraints, we here investigate syntactic conditions to ensure that embedded G-maps are
transformed into embedded G-maps. Let us take the example of the vertex translation of Figure 19(a).
Intuitively, we could consider at first sight the rule of Figure 20(a). Unfortunately, such a rule is not
appropriate for our needs. Indeed, by matching node e of the rule of Figure 20(a) with node e of the
G-map of Figure 17(a), its application results in the graph given in Figure 20(b). Clearly, this graph
does not satisfy the embedding consistency constraint as node e does not have the same label as the
other nodes of its vertex orbit (c, g and i).

9Let X be a set and ≡ an equivalent relation on X, the equivalence class [x] of any element x ∈ X is defined as
[x] = {y ∈ X | x ≡ y}, and the quotient set X/≡ is the set {[x] | x ∈ X}.
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Figure 20: Incoherent translation

To avoid this, all node labels of an embedding orbit should be modified simultaneously and in the
same manner. For example, the rule of Figure 21(a) matches (respectively rewrites) a full vertex orbit in
L (respectively in R): indeed, all nodes are connected with both 1-arcs and 2-arcs. In fact, both L and
R are full 〈1 2〉-orbits. Thus, the application of this rule to the pos-embedded 2-G-map of Figure 17(a)
along the identity match morphism gives the pos-embedded 2-G-map of Figure 21(b). The following
theorem introduces syntactic conditions on rules that ensure embedding consistency preservation.
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Figure 21: Coherent translation

Theorem 2 (Preservation of the embedding consistency). Let π : 〈o〉 → τ be an embedding
operation, r : L ←↩ K ↪→ R be a π-embedded graph transformation rule that satisfies conditions of
topological consistency preservation, G a π-embedded G-map and m : L→ G a match morphism.

The direct transformation G⇒r,m H produces a π-embedded G-map if the following conditions of
embedding consistency preservation are satisfied:

• Embedding consistency: L, K and R satisfy the embedding consistency constraint of Definition 5.

• Full match of transformed embeddings: if v is a node of K such that πL(v) 6= πR(v), then every
node of R〈o〉(v) is labeled and is the source of exactly one i-arc for each i of 〈o〉.
• Labeling of extended embedding orbits: if v is a node of K and there exits a node w in R〈o〉(v)

such that w is not in L〈o〉(v), then there exist v′ in K with v′ ≡L〈o〉 v and v′ ≡R〈o〉 v such that
πL(v′) 6= ⊥. J

I Proof. Let π : 〈o〉 → τ be an embedding operation, r : L ←↩ K ↪→ R be a graph transformation
rule that satisfies the conditions of topological consistency preservation, G a π-embedded G-map and
m : L→ G a match morphism. We consider the following direct transformation:
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L oo ? _

m (1)
��

K
� � //

b (2)
��

R

c

��
G oo ? _D �

� // H

In double-pushout transformation, each element of H (node, arc, or label) comes either from the
right-hand side of the rule R, or from the graph G (through D), or from both. Therefore, to check
whether two nodes of H linked with an arc labeled in 〈o〉 are labeled with the same embedding value,
the proof considers all cases for the arc source, target and labelling.

Since the rule r satisfies the conditions of topological consistency preservation of Theorem 1, the
direct transformation G⇒r,m H is well-defined (i.e. the dangling condition is satisfied) and the resulting
graph H is an n-G-map. Moreover, with the result of [14] stating that total labeling is preserved by rule
application, we know that H is totally labeled, in particular that π is defined on every node of H.

It remains to prove that thanks to the conditions listed in Theorem 2, H is a π-embedded G-map.

We then show by exhaustion10 that for any label i of the orbit type 〈o〉, and for any i-arc e of H,
the source node v of e and the target node w of e have the same defined π-label, i.e. πH(v) = πH(w).
As this will ease some symmetrical cases, let us note that thanks to the symmetry preservation (see
Theorem 1), e has always a symmetric i-arc with source w and target v in H and also in D (resp. G) if
e is also an arc of D (resp. G).

1. e has no antecedent in R. Then e necessarily comes from G. More precisely e, v and w are arc
and nodes of D and G respectively.

(a) Both v and w have no antecedent in R. Then v (resp. w) has the same π-label in G (πG(v) =
πH(v) and πG(w) = πH(w)), D and H. As G is a π-embedded G-map, πG(v) = πG(w).
Therefore πH(v) = πH(w).

(b) Both v and w have two antecedents v′ and w′ in R. Because of the adjacent arcs condition of
Theorem 1, R has no i-arc neither with source v′ nor w′. And thus R〈o〉(v′) and R〈o〉(w′) are
not full orbits. Because of the condition of full match of transformed embeddings, v′ and w′

are preserved nodes with preserved π-labels, i.e. πL(v′) = πR(v′) and πL(w′) = πR(w′). Thus
v and w have the same defined π-label in G and H, i.e. πG(v) = πH(v) and πG(w) = πH(w).
As G is a π-embedded G-map, πG(v) = πG(w) and therefore πH(v) = πH(w).

(c) v has an antecedent v′ in R, and w has no antecedent in R. According to case 1a, w has
the same defined π-labels in G and H (πG(w) = πH(w)). According to case1b, v has the
same defined π-labels in G and H (πG(v) = πH(v)). Finally, as G is a π-embedded G-map,
πG(v) = πG(w) and therefore πH(v) = πH(w).

(d) v has no antecedent in R and w has an antecedent in R. This case is similar to case 1c.

2. e has an antecedent e′ in R. Let v′ and w′ be the source and target nodes of e′ in R, respectively.

(a) Both v′ and w′ have defined π-labels in R, i.e. πR(v′) 6= ⊥ and πR(w′) 6= ⊥. Thanks to the
embedding consistency condition, v′ and w′ have the same defined π-label, πR(v′) = πR(w′)
and therefore πH(v) = πH(w).

(b) Both v′ and w′ have undefined π-labels in R, i.e. πR(v′) = ⊥ and πR(w′) = ⊥. Thanks to the
rule definition (see Definition 1), v′ and w′ are nodes of K and thus of L, with πL(v′) = ⊥ and
πL(w′) = ⊥. Then v and w also come from G, but not necessarily from the same 〈o〉-orbit.

i. v′ and w′ do not come from the same 〈o〉-orbit, i.e. v′ 6≡L〈o〉 w′. Thanks to the condition
of labeling of extended embedding orbits, there exists x′ ∈ K with x′ ≡L〈o〉 v′ and
x′ ≡R〈o〉 v′ such that πL(x′) 6= ⊥ and therefore πR(x′) 6= ⊥. Symmetrically, there
exists y′ ∈ K with y′ ≡L〈o〉 v′ and y′ ≡R〈o〉 v′ such that πL(y′) 6= ⊥ and therefore
πR(y′) 6= ⊥. Moreover, as x′ ≡R〈o〉 y′, the embedding consistency condition ensures that

10Cases are hierarchically numbered to ease proof commentary.
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πR(x′) = πR(y′). Thanks to the condition of full match of transformed embeddings,
x′ and y′ have their π-label preserved by the rule as their 〈o〉-orbit in R is not totally
labeled, and therefore πL(x′) = πL(y′) (both defined). As v′ ≡L〈o〉 x′ and w′ ≡L〈o〉 y′, we
have v ≡G〈o〉 x and v ≡G〈o〉 y with x and y the respective images of x′ and y′ in G. Then
because G is a π-embedded G-map, πG(v) = πG(x) and πG(w) = πG(y) and therefore
πH(v) = πH(w).

ii. v′ and w′ come from the same 〈o〉-orbits, i.e. v′ ≡L〈o〉 w′. Then v ≡G〈o〉 w and because
G is a π-embedded G-map, πG(v) = πG(w) and then πH(v) = πH(w).

(c) v′ has a defined π-label in R but not w′, i.e. πR(v′) 6= ⊥ and πR(w′) = ⊥. Thanks to the rule
definition, w′ is a node of K and thus of L with πL(v′) = ⊥. Because of the condition of full
match of transformed embeddings, v′ can not be an added node and is therefore also a node
of K and thus of L with πL(v′) 6= ⊥. The proof is then similar to case 2b, with two cases
depending on wether v′ and w′ come from the same 〈o〉-orbit, but using directly v′ instead of
x′ as it is labeled.

(d) w′ has a defined π-label in R but not v′, i.e. πR(w′) 6= ⊥ and πR(v′) = ⊥. This case is
similar to case 2c.

By transitivity of arcs labeled in 〈o〉, all nodes v and w of H in the same 〈o〉-orbit (v ≡H〈o〉 w) have the
same defined π-label, i.e. πH(v) = πH(w). Thus H is a π-embedded G-map. J
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Figure 22: Two non-consistent rules that break conditions of Theorem 2

Let us now make some comments on the constraints given in Theorem 2.

The first of these conditions is straightforward: it requires that all parts of the rule satisfy the
embedding consistency constraint. For example, the rule of Figure 22(a) breaks this condition as it adds
a new vertex (nodes o, p, q and r) embedded with two different positions F and G.

The second condition forbids the partial redefinition of the embedding shared by an 〈o〉-orbit as it
would break the embedding consistency. If a preserved node has a transformed embedding, then its
〈o〉-orbit in R is a totally labeled full orbit. The rule of Figure 20(a) falls in this case as node e has its
label changed from B to F without fully matching the topological vertex (1-arc and 2-arc are missing).
Hence, an embedding value can only be modified if it is modified for the whole support orbit.

The last condition forbids the extension of an 〈o〉-orbit (by adding new nodes or merging with
another 〈o〉-orbit) without matching the existing embedding value of the orbit. For exemple, the rule of
Figure 22(b) breaks this condition as an half-edge whose embedding is unmatched is added to another
half-edge whose vertices are embedded by the two positions F and G. Therefore, the application of this
rule to the object of Figure 17(a) along the identity morphism would break the embedding consistency:
e.g. node b would be labeled by A while its added 2-neighbor u would be labeled by F . As this third
condition entails that nodes b and d are labeled in L (and thus in R), the rule labeling should be
completed. In R, nodes b and d should be labeled by F and G respectively due to the embedding
consistency condition. In L, they should also be labeled by F and G as the condition of full match
of transformed embeddings prevents to change their labels while the two vertex orbits are not fully
matched by the rule (1-neighbors of b and d are not matched).
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Figure 23: Application of the edge folding

At last, let us illustrate some of the cases occurring in the proof of Theorem 2 with the example of
Figure 23 that details the application of the edge folding operation presented in Figure 19(b) on the
embedded G-map of Figure 17(a). The 1-arc that links nodes a and b in H falls into the trivial case 1a.
The arc and the two nodes belong to object G and are not matched by the rule. As G satisfies the
embedding consistency constraint of embedded G-maps, nodes a and b have the same pos-label in G and
therefore in H. The 1-arc that links nodes i and g in H falls into the case 1c, as the arc and node g are
not matched by the rule, conversely to node i. As the vertex orbit that contains both nodes i and g in
G is not fully matched, the condition of the full match of transformed embeddings prevents the rule to
modify the pos-labels of node i. This ensures that nodes i and g have the same pos-label in H as they
have the same pos-label in G. Finally, the 1-arc that links nodes u and v with define labels in H falls
into the case 2a and the embedding consistency condition ensures that their π-labels are equal in R.

6. Rule schemes

This section introduces the rule scheme syntax that allows us to define modeling operations indepen-
dently from the object embedding values. Following the approach of [15], this syntax includes the use of
dedicated variables.

6.1. Node variables

As mentioned in Section 3, attribute variables of [15] do not exactly fit our usage. Computing the
new embedding requires both to access the existing embedding (node labels in the transformed object)
and to traverse the topological structure (neighboring nodes in the transformed object). Therefore,
taking benefit from G-maps regular structures, this article introduces new variables called node variables
and provides dedicated operators. Instead of defining a new set of variable names, this approach consists
in directly using the identifiers of the nodes of L as variables, and therefore variable names freely exist
for all transformations.

The rule schemes of Figure 24 respectively define the translation of a vertex and the folding of an edge,
both previously illustrated in Figure 19. Scheme nodes are labelled with terms11 over node variables
of L, allowing both to match the existing embedding and to express the new embedding computation. In
Figure 24(a), the term e.pos in L gives access to the 2D position associated to the matched vertex, while
the term e.pos+~v defines in R the new position fo the translated position12. At scheme application, the

11Note that terms are detailed on top of the rules for readability purposes.
12In accordance with Definition 1, rule nodes must be labeled in L in order to relabel them.
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Figure 24: Rule schemes of the operations of Figure 19

node variable e of L will be substituted by the node matched by e in the transformed object. The operator
.pos (resp. .π) will then simply grant access to its pos-label (resp. π-label). Similarly in Figure 24(b),
i.pos and k.pos are the two positions associated to the matched edge and center(i.pos, k.pos) defines
the corresponding center.

(a) (b)

Figure 25: Face triangulations on the color embedding

As described in Section 4, n-G-maps are highly regular graphs. Every node has n + 1 neighbors
respectively connected by 0, 1, . . . , n. Therefore, for all i in [0, n], we can define an .αi operator on
node variables that gives access to their unique i-neighbor. Let us consider the face triangulation of
Figure 25 in the case of the color embedding col : 〈0 1〉 → color. To smooth face colors, each created
triangle is colored by the mix between the original color of the triangulated face and the color of its
adjacent face. Using the .α2 operator to access adjacent faces, this operation is defined by the rule
scheme of Figure 26(b). In the term v = mix(e.col, e.α2.col) that defines the color of the bottom face,
e.α2 allows the access to the 2-neighbor of e in the transformed object. At application to the object
of 26(a) along the identity morphism (as in Figure 25(a)), this neighbor is g and the face color is therefore
defined as mix(e.col, g.col) = mix( , ) =  . Similarly, if the scheme is applied as in Figure 25(b)
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Figure 26: Face triangulations of Figure 25 on a col-embedded G-map
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with a match morphism that associates node e in the rule with node l in the transformed object, the
face color is defined as mix(l.col, l.α2.col) = mix( , ) =  . Finally, note that the case of nodes
without adjacent face is covered thanks to the 2-loops - e.g in the first case of Figure 25(a), the term
u = mix(b.col, b.α2.col) is evaluated as mix(b.col, b.col) = mix( , ) =  .

6.2. Collect operators

In addition to basic operators (.π and .αi), we introduce operators that collect all the embedding
values carried by a given orbit. Let us illustrate these operators with the face triangulation, but in the
case of the position embedding pos : 〈1 2〉 → point 2D. It is usually expected that the created vertex is
positioned at the center of the triangulated face. For example, to triangulate the top triangle of the
object of Figure 27(a), the added vertex should be positioned at the barycenter of A, B and C.
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Figure 27: Face triangulation on a pos-embedded G-map

To compute this barycenter, the rule scheme of Figure 27 uses the operator pos〈0 1〉 to collect the
positions carried by the adjacent face (adjacent 〈0 1〉-orbit). At scheme application to the object of
Figure 27(a) along the identity match morphism, pos〈0 1〉(a) will collect the multiset JA,B,CK. Similarly,
its application to the second triangle will result in JB,C,DK. Intuitively, this operator is based on the
quotient representation introduced in Definition 6 that associates each embedding orbit to a single node,
and therefore to a single label.

Consequently, each position value appears only once in the resulting multisets regardless of how many
times they appears in the object (e.g A appears 4 times while B appears 6 times in Figure 27(a)). If a
same position was collected multiple times, this would entail that multiple vertices would be embedded
with this same position. In the case of geometrical points, we usually do not want two vertices to coincide.
However, for most applicative data such as colors, quantities or densities, it is common that the same
value appears multiple time in the modeled object. Let us consider the example of the operator col〈0 1 2〉
that collects the face colors of the adjacent connected component. The evaluation of col〈0 1 2〉(a) on the
colored object of Figure 26(a) results in the multiset J ,  ,  ,  K in which  has two occurrences as it
labels two faces.

More generally, for all embedding π : 〈o〉 → τ and all orbit type 〈o′〉, we can define an operator π〈o′〉
on nodes v. π〈o′〉(v) collects the embedding values of the 〈o〉-orbit adjacent to v and stores the collecting
values with their multiplicity in a multiset, regardless of embedding orbit sizes. Until now, the family
of collect operators has be introduced only from an intuitive point of view, we will formally define it
in the next sections, syntactically in Section 6.3 and semantically in Section 6.4 using graph quotients
introduced in Definition 6.

6.3. Terms and schemes

To sum up, node variables are available straightaway as they are the node identifiers of the left-hand
side of the rule scheme L, and they will be substituted by nodes of the transformed G-map at rule
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scheme application. New embedding values are defined by terms upon these nodes with the introduced
G-map operators: the embedding access .π, the neighbor access .αi, and the collect of orbit embeddings
π〈o〉. Note that in addition to these operators, terms may include various operators and types provided
by the user. For example, the translation scheme of Figure 24(a) uses the classical addition between a
point and a vector, while the triangulation scheme of Figure 27(b) uses the operator bary that defines
the barycenter of a point multiset. These operators and types provided by the user are referred in the
following as the user signature.

As in Subsection 3.4, we define embedding terms on the user signature extended by the node variables.
A dedicated type (called Node) provided with some predefined operations is introduced to manipulate
these variables in relation the underlying graph structure.

Definition 7 (Terms signature and rule schemes). Let π : 〈o〉 → τ be an embedding operation of
dimension n.

Terms signature. Let Ωπ = (Sπ, Fπ) be a user signature with Sπ a set of type names including the
π-type τ and Fπ a set of functions defined on Sπ ∪ S•π.

ΩMap = (SMap, FMap) is the embedding term signature extended on G-maps defined as SMap =
Sπ ∪ {Node} and FMap = Fπ ∪ FNode with FNode the set of function names that contains :

• .π : Node→ τ ;

• .αi : Node→ Node for all i ∈ [0, n];

• π〈o′〉 : Node→ τ• for all orbit type 〈o′〉 of dimension n.

Graph schemes. Let X be a set of node variables. A graph scheme G = (V,E, s, t, π, α) on (Ωπ, X)
is a graph embedded on π : 〈o〉 → TΩMap

(X)τ .

Rule schemes. A rule scheme r : L←↩ K ↪→ R on Ωπ is a rule on graph schemes on (Ωπ, VL) with
VL the node set of L. J

For example, the triangulation rule scheme of Figure 26(b) on Ωcol = (Scol, Fcol) such that Scol

includes the type color and Fcol includes the operation mix : color × color → color. Similarly, the
rule scheme of Figure 27(b) on Ωpos = (Spos, Fpos) such that Spos includes the type point 2D and Fpos

includes the operation bary : point 2D• → point 2D.

6.4. Evaluation of embedding terms

At rule scheme application, embedding terms have to be evaluated on the embedded G-map under
transformation. For example, when the triangulation scheme of Figure 27(b) is applied to the top
triangle Figure 27(a), the term pos〈0 1〉(a) has to be evaluated by the point multiset JA,B,CK in order
to compute the barycenter. The evaluation of terms on G-maps operators is given in the following
definition as an extension of the algebra provided by the user on the signature Ωπ of his/her sorts
and functions. More precisely, given a π-embedded G-map and an Ωπ-algebra, we define the extended
ΩMap-algebra on embedding terms (see Section 3.4).

Definition 8 (Algebra extension by a G-map). Let G = (V,E, s, t, π, α) be an n-G-map embedded
on π : 〈o〉 → τ , Ωπ = (Sπ, Fπ) be a user signature and an Ωπ-algebra A.

The extended algebra AG from A by G is the ΩMap-algebra defined as:

• (AMap)s = As for s ∈ Sπ ∪ S•π;

• (AMap)Node = V ;

• for each f of Fπ, fAMap = fA;

• .πAMap is the labeling function π;
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• for all i ∈ [0, n], for each node v ∈ V , there exists a unique i-arc e ∈ E such that s(e) = v and the
.αi
AMap function associates v to t(e);

• for all orbit type 〈o′〉, for each node v ∈ V , let G〈o′〉(v)/π = (V ′, E′, s′, t′, π′, α′) be the embedding
quotient of the orbit graph, the π〈o′〉

AMap function associates v to the label multiset of the orbit
quotient 13 Jπ′(v′) | v′ ∈ V ′K. J
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Figure 28: Evaluation of the multiset of the face positions

In particular, the evaluation of collect operators is defined with the graph quotient introduced in
Definition 6. For example, to evaluate the term pos〈0 1〉(a) for the object of Figure 28, we construct the
quotient 〈0 1〉(a)/pos of the orbit 〈0 1〉(a). The term evaluation is then defined as the multiset of node
labels of that quotient, i.e. JA,B,CK.

Note that an algebra extension from a G-map is well defined. Especially, thanks to G-maps constraints,
one node is the source of one and only one i-arc and so .αAGi is a well defined function. As a consequence,
collect operators are also well defined functions.
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Figure 29: Two evaluations of the rule scheme Figure 26

To be evaluated, a scheme only requires a kernel match as described in Subsection 3.3. In our case,
we will use a match morphism of the topological structure of the left-hand-side m : Lα → G in order
to remove variable occurrences with node labels, while still properly matching the structure thanks
to arc labels. Practically, the node matching part mV of this morphism will be directly used for the
substitution σ : X → VG. For example, an identity match morphism between the rule scheme and the
object of Figure 26 assigns the variables a, b and e to the nodes a, b and e of the object, resulting in the
rule Figure 29(a). Similarly, the rule of rule Figure 29(b) result from a match morphism assigning those
nodes to the nodes i, g and l of the object.

13We write Jπ′(v′) | v′ ∈ V ′K the multiset of type τ• such that for all x : τ , the multiplicity of x is equal to the number
of node of V ′ labeled by x.
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Definition 9 (Rule scheme evaluation). Let G be a π-embedded G-map, Ωπ a user signature and
A an Ωπ-algebra.

Graph scheme evaluation. Let S = (V,E, s, t, π, α) be a graph scheme on (Ωπ, X) and σ : X → VG
an assignment of X. The evaluated graph Sσ = (V,E, s, t, πσ, α) of S along σ is the π-embedded graph
such as πσ(v) = σ(π(v)) for each node v ∈ V .

Rule scheme evaluation. Let r :L←↩ K ↪→R be a rule scheme on Ωπ and m :Lα→G a kernel
match morphism. The evaluated rule of r along m is the π-embedded rule rmV :LmV←↩KmV ↪→RmV . J

7. Rule scheme instantiation

In this section, we define how rule schemes are instantiated without considering the consistency
preservation which is postponed to Section 8.

7.1. Need for simplicity

(L)
a

t = a. pos + vs = a. pos 

s

(K)
a

(R)
a
t

Figure 30: Expected rule scheme of the translation

So far, every considered operation has been defined in relation to the specific topological structure
of the transformed object. This problem was illustrated in Section 5.2 by the rule of Figure 21 which
specifically defines the translation for a vertex adjacent to three edges. This is very restrictive and
counter-intuitive from a user-end perspective. On a semantic level, the translation of a vertex has a
single meaning, independent from the number of adjacent edges. A user friendly rule scheme should be
as simple as in Figure 30 in which a single node relabeling encodes a single embedding transformation.

(a) (b)

Figure 31: Edge removal on the color embedding

Let us take a more significant example with the edge removal of Figure 31. This operation that
will be the red thread of this section involves both topological and embedding modifications: on the
topological aspect, the edge is removed and the two adjacent faces are merged; on the embedding aspect,
the color of the resulting face is obtained by mixing the colors of the two original faces.

Semantically, this operation does not depend on the configurations of the two faces and should be
defined by the simple rule scheme of Figure 32(a). But similarly to the translation, the application of
the evaluated rule of Figure 32(b) to the object of Figure 26(a) results in the inconsistent object of
Figure 32(c). Indeed, the embedding modifications must be propagated to all nodes of the two faces in
order to preserve the G-map consistency.

Therefore, it is the task of the instantiation process to extend the evaluated rule to propagate the
embedding modification. In our example, the evaluated rule of Figure 32(b) has to be extended into
the correct rule of Figure 32(d). This process is divided into two steps: the topological extension that
matches all required nodes and the embedding propagation that ensures their consistent relabeling.
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Figure 32: Rule scheme of the edge removal and its evaluation

7.2. Topological extension

Intuitively, the topological extension uses the match morphism to complete the partial embedding
orbits defined by the the evaluated rule with the actual full orbits of the transformed G-map. First, the
extension L⊕m of the left-hand side is computed in Figure 33(a) by pushout between the topological
structure of the 〈o〉-orbit adjacent to the matched pattern Gα〈o〉(m(Lα)α), and the left-hand side of the
evaluated rule L. The full extended rule L⊕m ←↩ K⊕m ↪→ R⊕m is then computed in Figure 33(b) by
application of the evaluated rule on the extended left-hand side.
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Figure 33: Construction of the topological extension

Definition 10 (Topological extension). Let π : 〈o〉 → τ be an embedding operation and m : Lα → G
be a kernel morphism on a π-embedded G-map G for a rule r : L←↩ K ↪→ R.

Let L⊕m be the result of the pushout between m〈o〉 : Lα → Gα〈o〉(m(Lα)α), the restriction of m to
the topological structure of the 〈o〉-orbit adjacent to the matched pattern, and the inclusion Lα ↪→ L:
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Lα
� � //

m〈o〉

��

L

m′

��
Gα〈o〉(m(Lα)α) �

� // L⊕m

The topological extension of r along the match morphism m is the rule r⊕m : L⊕m ←↩ K⊕m ↪→ R⊕m

defined by the following direct transformation:

L oo ? _

m′

��

K �
� //

��

R

��
L⊕m oo ? _K⊕m �

� // R⊕m J

Note that the pushout construction of L⊕m is well founded since the morphisms Lα ↪→ L and
m : Lα → G meet the conditions given in [14] ensuring the existence of natural pushouts. Also, note that
the resulting rule of Figure 33 would still produce the inconsistent result of Figure 32(c) as extended
parts’ nodes are not relabeled.

7.3. Embedding propagation

The final step of rule scheme instantiation consists in propagating node labels of the extended rule.
For example, for the extended rule of Figure 33(b), node labels have to be propagated in order to obtain
the final of rule Figure 32(d). This step is a direct application of the quotient representation. For all
graphs of the extended rule, each node is relabeled with the label of its images in the quotient graph. For
example, in Figure 34 the three quotient graphs allow the embedding propagation of the extended rule
of Figure 33(b) - e.g. node a unlabelled in L⊕m can be labelled with the label of its image u in L⊕m/π .

(L    )

u

v

/π
⊕m

(a)

u

(K    )/π
⊕m

v

(b)

w

(R    )/π
⊕m

(c)

Figure 34: Quotients for the embedding propagation

Definition 11 (Embedding propagation). Let G=(V,E, s, t, π, α) be a graph embedded on π :〈o〉→τ
such that G satisfies the embedding consistency constraint and q : G→ G/π the quotient morphism with
G/π = (V/π, E/π, s/π, t/π, π/π, α/π).

The π-embedding propagation of G is the π-embedded graph G�π = (V,E, s, t, π′, α) such for each
node v ∈ V, π′(v) = π/π(qV (v)).

For r :L←↩K↪→R an n-topological π-embedded rule, we denote r�π the rule L�π←↩K�π↪→R�π. J

Note that as the quotient existence depends on the satisfaction of the embedding consistency
constraint, the embedding propagation only applies to rules for which all parts satisfy the constraint.
The extended patterns must contain only one label value per embedding orbit in order for their quotient
representation to preserve these unique labels. Let us consider the counterexample of Figure 35. The
rule scheme defines the edge removal without consistently relabeling the face colors and therefore the
face can be labeled by two different colors in the right-hand side of the extended evaluated rule. As this
prevents the quotient existence, the embedding propagation cannot be applied.

Moreover, the satisfaction of the embedding consistency constraint by all parts of a rule scheme
does not entail the same property on its extended rule, because of the overlap phenomenon that will be
detailed in Section .
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Figure 35: Inconsistent edge removal

7.4. Rule scheme application

Regardless of consistency preservation, the application of a rule scheme r to an object defined as
an embedded G-map G along a kernel match morphism m consists in the three instantiation steps of
Figure 36(a):

1. the evaluation rmV of the rule scheme r along mV to substitute node variables by nodes of G;
2. the topological extension (rmV )⊕m along m of the evaluated rule rmV ;
3. the embedding propagation ((rmV )⊕m)�π) along the extended rule (rmV )⊕m;

followed by the the application of the final rule ((rmV )⊕m)�π) on the targeted object G by the DPO
transformation of Figure 36(a).
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(a) Rule instanciation

(G) (H)

(b) DPO transformation

Figure 36: Rule scheme application

Note that as the embedding propagation existence depends on the satisfaction of the embedding
consistency constraint by all parts of the extended rule. This will be ensured by conditions on rule
schemes provided in Section 8 to preserve G-map consistency. Therefore, rule schemes satisfying those
conditions can always be instantiated for any kernel match morphism.

Definition 12 (Instantiation and application of rule scheme). Let r : L ←↩ K ↪→ R be a rule
scheme on a user signature Ωπ, and m : Lα → G a kernel match morphism on a π-embedded G-map G.

Let rmV = LmV ←↩ KmV ↪→ RmV be the evaluation of r along m (Definition 9).

Let (rmV )⊕m be the topological extension of rmV along14 m (Definition 10).

14Thanks to Definition 9 of graph scheme evaluations, L
mV
α = Lα. Thus the rule can be directly extended along m.
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If all parts of (rmV )⊕m satisfy the embedding consistency constraint, let ((rmV )⊕m)�π be the π-
embedding propagation of (rmV )⊕m (Definition 11).

The instantiation of r along m is ((rmV )⊕m)�π denoted rm : Lm ←↩ Km ↪→ Rm.

If there exists a morphism m∗ : Lm → G extending m, the application of r to G along m denoted by
G⇒r,m H is defined by the direct transformation G⇒rm,m∗ H. J

Finally, note that similarly to the approach of [15] recalled in Subsection 3.3, the substitution given
by the kernel match morphism can not always result in an extended full match of the instantiated rule.
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Figure 37: Edge removal between two faces of same color

Let us take an example with the operation of edge removal of Figure 37. This time, the rule scheme
of Figure 37(a) removes an edge between two faces of the same color e.col. The instantiation of the rule
scheme along the identity morphism on the object G of Figure 36 results in the rule of Figure 37(b)
where the term e.col has been evaluated to yellow. As the extension process rests on the kernel match,
the rule can always be extended regardless of the label of the matched object. However, the resulting
rule can obviously not be applied to the object as an application match morphism can not be induced
because nodes g, h, i and j of the object are blue.

8. Consistency preservation

This section establishes and proves the conditions on rule schemes that ensure the preservation of
G-map constraints. Subsection 8.1 adresses the topological consistency while Subsections 8.2 and 8.3
focus on the embedding consistency. More precisely, we show that rule schemes that satisfy some given
conditions can always be instantiated and that the instantiated rules satisfy the original conditions of
embedding consistency preservation of Definition 2.

8.1. Topological consistency preservation

As the topological extension is the only part of the instantiation that transforms the rule topological
structure, let us show that it preserves the conditions of topological consistency preservation of Theorem 1.

Lemma 1 (Topological consistency preservation of topological extension). Let r :L←↩K↪→R
be a rule embedded on π :〈o〉→τ and m :Lα→G a kernel match morphism on a π-embedded G-map G.

If r satisfies the conditions of topological consistency preservation of Theorem 1, then the topological
extended rule r⊕m also satisfies these conditions.

I Proof. Let us show the three conditions of topological consistency preservation.

Symmetry
Because an n-G-map and its 〈o〉-orbits are symmetric graphs, the part added by the topological

extension is also symmetric. And because L, K and R are symmetric graphs, then L⊕m, K⊕m and
R⊕m are also symmetric graphs. Consequently, r⊕m satisfies the symmetry condition.
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Adjacent arcs
As K⊕m and R⊕m are computed by application of r on L⊕m, all new nodes added by the topological

extension step are preserved nodes of K⊕m. Consequently, those nodes are the sources of the same arcs
with the same labels on both sides L⊕m and R⊕m. Thus all nodes added by the topological extension
satisfy the adjacent arc condition. And because r satisfies the adjacent arc condition, r⊕m also does.

Cycle condition
As already mentioned, all nodes added by the topological extension are preserved nodes of K⊕m and

are the source of the same arcs with the same labels in L⊕m and R⊕m. Thus, we have multiple cases
to consider depending on what portion of a cycle belong to the extended part. Let us prove the three
points of the cycle condition of Theorem 1 for all couple (i, j) such 0 ≤ i ≤ i+ 2 ≤ j ≤ n:

• By definition of the topological extension, any added node v of R⊕m\K⊕m comes from R\K. And as
the rule r satisfies the cycle condition, v is the source of an ijij-cycle in R and also in R⊕m\K⊕m.
• If v is a preserved node of K⊕m and is the source of an ijij-cycle in L⊕m, then either:

- If v is source of a ijij-cycle in L, because the rule r satisfies the cycle condition, v is the source of
an ijij-cycle in R, and so in R⊕m.

- If some of the four arcs come from L and some others have been added by the topological extension
step. Then, due to the cycle condition on r, the old arcs of L are preserved in R, and thus also in
L⊕m and R⊕m. And, due to topological extension, new arcs are also preserved in L⊕m, K⊕m and
R⊕m. Thus, in this case, the preserved node v of K⊕m is the source of an ijij-cycle in L⊕m, and is
also the source of an ijij-cycle in R⊕m.

- If the four arcs are added by the topological extension step. Then, as previously, these new arcs
are preserved in L⊕m, K⊕m and R⊕m. And thus the preserved node v of K⊕m is the source of an
ijij-cycle in L⊕m, and is also the source of an ijij-cycle in R⊕m.

• Finally, if v is a preserved node of K⊕m and is not the source of an ijij-cycle in L⊕m, then, as
previously, the i-arc and the j-arc of source v can be either old arcs from r, or new arcs added during
topological extension step. In both cases, these arcs are preserved in R⊕m, respectively due to cycle
condition of r and topological extension. Consequently, the i-arc and the j-arc of source v are preserved
in R⊕m.

Thus, r⊕m satisfies the cycle condition.

Consequently, r⊕m satisfies the conditions of topological consistency preservation of Theorem 1. J

This result can directly be extended to the whole rule instantiation.

Theorem 3 (Topological consistency preservation of instantiation). Let r : L←↩ K ↪→ R be a
rule scheme on a user signature Ωπ, and m : Lα → G a kernel match morphism on a π-embedded
G-map G.

If r satisfies the conditions of topological consistency preservation of theorem 1, then the instantiated
rule rm = ((rmV )⊕m)�π, if it exists, also satisfies these conditions.

I Proof. As rmV has the same topological structure as r, rmV satisfies the conditions of topological
consistency preservation. Then, according to Lemma 1, (rmV )⊕m also does. Finally, as the embedding
propagation preserves the topological structure, ((rmV )⊕m)�π satisfies these conditions. J

8.2. Case of overlap

Before we study the embedding consistency preservation, we mention a risk occurring with topological
extension : the overlap of embedding orbits. By allowing a minimal match of the transformed embeddings
that relies on the automatic completion of transformed embedding orbits, we are exposed to unexpected
merges of different embedding orbits. Let us consider the face stretching defined by the rule scheme of
Figure 38.
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Figure 38: Face stretching rule scheme

The operation consists in matching two edges to translate their vertices in the two opposed directions
~v and −~v. When the rule scheme is correctly applied to the square face, the extended rule of Figure 39
contains four vertices in R respectively embedded by B′ = B−~v, D′ = D−~v, C ′ = C+~v and E′ = E+~v.
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Figure 39: Consistent face streching

However, when the rule is applied to the triangle face, the extended rule of Figure 40 is inconsistent
as the top vertex ends up embedded in R with two different values A′ = A−~v and A′′ = A+~v. This is a
clear case of misapplication as we wanted to match and translate four vertices but only match three. We
call an overlap such a situation where different embedding orbits manipulated in the rule end up merged
in the extended rule and we define a condition on the kernel morphism that prevent it. This condition
can be seen as an extension of the injective condition on the match morphism to the embedding orbits.
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Figure 40: Inconsistent face streching
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Lemma 2 (Non-overlap). Let r :L←↩ K ↪→R be a rule embedded on π : 〈o〉→ τ and m :Lα→G a
kernel match morphism on a π-embedded G-map G.

We say that the topological extension of r along m produces an overlap if for v and w two nodes of L
(resp. K, R) such that v 6≡L〈o〉 w (resp. v 6≡K〈o〉 w , v 6≡R〈o〉 w ) then v ≡L⊕m〈o〉 w (resp. v ≡K⊕m〈o〉 w,
v ≡R⊕m〈o〉 w).

The topological extension of r along m does not produce overlap if m satisfies the following condition
of non-overlap: for two nodes v and w of L such as v 6≡L〈o〉 w, m(v) 6≡G〈o〉 m(w).

I Proof. Let us show that L⊕m does not contain overlap. Let us suppose that there exist v and w
two nodes of L such that v 6≡L〈o〉 w and v ≡L⊕m〈o〉 w. Then, the overlap comes from the topological
extension, i.e the node images m(v) and m(w) belong to the same orbit in G, m(v) ≡G〈o〉 m(w). This is
contrary to the condition of non-overlap. The proof is similar for K⊕m and R⊕m. J

8.3. Embedding consistency preservation

We now study how the non-overlap condition combined with the conditions of embedding consistency
preservations on evaluated rule schemes ensure that the instantiated rules satisfy the conditions of
embedding consistency preservation on rules given in Theorem 2. In particular, we will release the
condition of full match of transformed embeddings as it was the goal of the automatic orbit completion
of transformed embeddings.

We start with the topological extension step. Note that as the nodes added by the topological
extension are not labeled, the extended rule is only expected to satisfy a weak version of the full match
of transformed embeddings of Theorem 2 that does not require a total labelling of the orbit.

Lemma 3 (Embedding consistency preservation of topological extension). Let r :L←↩K↪→R
be a rule embedded on π :〈o〉→τ and m :Lα→G a kernel match morphism on a π-embedded G-map G.

If r satisfies the conditions of topological consistency preservation of Theorem 1, the conditions of
embedding consistency and of labeling of extended embedding orbits of Theorem 2, and if m satisfies
the condition of non-overlap of Lemma 2, then the topological extended rule r⊕m :L⊕m←↩K⊕m↪→R⊕m
satisfies the following conditions:

• Embedding consistency of Theorem 2: L, K and R satisfy the embedding consistency constraint
of Definition 5.

• Weak full match of transformed embeddings: if a preserved node v has a transformed embedding,
then R⊕m〈o〉(v) is a full orbit; i.e. if v is a node of K⊕m such that πL⊕m(v) 6= πR⊕m(v), then
every node of R⊕m〈o〉(v) is the source of exactly one i-arc for each i of 〈o〉.
• Labeling of extended embedding orbits of Theorem 2: if v is a node of K and there exits a node w

in R〈o〉(v) such that w is not in L〈o〉(v), then there exist v′ in K with v′ ≡L〈o〉 v and v′ ≡R〈o〉 v
such that πL(v′) 6= ⊥. J

I Proof. Let us show that the three conditions of the Lemma 3 hold.

Embedding consistency Let v and w be two nodes of L⊕m such that v ≡L⊕m〈o〉 w, πL⊕m(v) 6= ⊥ and
πL⊕m(w) 6= ⊥. Because of the condition of non-overlap, v and w are two nodes of L such v ≡L〈o〉 w.
As L satisfies the embedding consistency constraint, πL(v) = πL(w) and therefore πL⊕m(v) = πL⊕m(w).
The proof is the same for K and R. r⊕m satisfies the embedding consistency condition.

Weak full match of transformed embedding.
Let v be a node of R⊕m. If v is a preserved node of K⊕m or an added node of R⊕m, thanks to

topological extension step, R⊕m〈o〉(v) is a complete orbit. Thus v is the source of exactly one i-arc for
each i of 〈o〉. Then r⊕m satisfies the weak full match of transformed embedding.
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Labeling of extended embedding orbits. Let v be a node of K⊕m and w a node R⊕m〈o〉(v) such
that w is not in L⊕m〈o〉(v). Because the topological extension definition, w is a node of r. As r satisfies
the labeling of extended embedding orbits, there exist v′ in K with v′ ≡L〈o〉 v and v′ ≡R〈o〉 v such that
πL(v′) 6= ⊥. Moreover, because of the topological extension definition, v′ ≡L⊕m〈o〉 v, v′ ≡R⊕m〈o〉 v, and
πL⊕m(v′) 6= ⊥. Therefore, r⊕m satisfies the labeling of extended embedding orbits. J

Let us now show that the embedding propagation step restores the original strong embedding
consistency conditions.

Lemma 4 (Embedding consistency preservation of the embedding propagation). Let r : L←↩
K ↪→R be a rule embedded on π : 〈o〉→τ and m : Lα→G a kernel match morphism on a π-embedded
G-map G.

If r satisfies the conditions of topological consistency preservation of Theorem 1 and the conditions
of Lemma 3, then the embedding propagated rule r�π satisfies the conditions of topological consistency
preservation of Theorem 1 and the conditions of embedding consistency preservation of Theorem 2.

I Proof. As previously said, the embedding propagation step does not modify the topological structure,
thus this last step preserves the topological consistency conditions of Theorem 1.

In the same way, the conditions of embedding consistency preservation and of labeling of extended
embedding orbits are preserved.

Moreover, the π-embedding propagation step propagates each embedding label along the full 〈o〉-orbit,
the weak condition of full match of transformed embed becomes total as all nodes are become labeled. J

Finally, we can extend this result to the whole rule instantiation and show that it always exists if the
following conditions of embedding consistency preservation are satisfied..

Theorem 4 (Embedding consistency preservation of instantiation). Let r : L←↩ K ↪→ R be a
rule scheme on a user signature Ωπ and m : Lα→G be a kernel match morphism on a π-embedded
G-map G.

The instantiated rule ((rmV )⊕m)�π exists and satisfies the conditions of embedding consistency
preservation of Theorem 2 if the following conditions are satisfied:

• r satisfies the condition of embedding consistency of Theorem 2;

• r satisfies the condition of labeling of extended embedding orbits of Theorem 2;

• m satisfies the condition of non-overlap of Lemma 2.

I Proof. As equal terms are evaluated by equal values, if r satisfies the previous conditions, so does
the evaluated rule rmV . Then, the extended rule (rmV )⊕m satisfies the condition of Lemma 3, including
embedding consistency. Therefore, the propagation ((rmV )⊕m)�π exists. Finally, according to Lemma 4,
the instanciated rule ((rmV )⊕m)�π satisfies the conditions of embedding consistency preservation. J

Let us note that the properties of Theorem 4 are sufficient but not necessary to ensure the embedding
consistency preservation. In practice, it may be useful to relax the embedding consistency condition if
several terms can have the same evaluation. For example, algebraic properties of user-defined functions
on embeddings could be taken into account.

9. Applications

As presented in the introduction, the manipulation of geometric information is at the heart of
geometric modelers. Rule schemes with embedding terms allow a major part of geometric operations to
be defined, as this section will illustrate. After some basic rule scheme examples, a physical simulation
application will be presented with its implementation in a dedicated software tool set.
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Figure 41: To modify one embedding

9.1. Basic examples

Many usual geometric operations can be specified by rule schemes, using embedding expressions and
node variables. The most basic ones are simple modifications of one embedding (see Figure 41). Thanks
to the topological extension (see section 7.2), matching one node is enough as the instantiation ensures
that all nodes of the embedded orbit are relabeled. For example, Figure 41(a) defines the translation
of a vertex position by a given vector; Figure 41(b) defines the coloring of a face in red; Figure 41(c)
defines the coloring of a face by the color of its neighboring face due to the .α2 operator (see section 6.1).
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Figure 42: Edge sewing

But these embedding modifications can also be combined with topological transformations of a fixed
pattern. For example, the rule scheme of Figure 42 allows one to sew two faces along free edges and
to position the merged edge in the middle of the two previous edge positions. More generally, the
introduced rule schemes can therefore address any modeling operation as long as this operation concerns
the transformations of a fixed topological pattern.
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Figure 43: Triangle enlargement

For example, we can easily define usual operations on regular mesh processing. The enlargement
of a triangle in mesh can be defined by the rule scheme of Figure 43. This enlargement is carried out
by translating every vertex position of the triangle by the vector computed with the vec user-operator
between the two following positions: the triangle barycenter (bary(pos〈0 1〉(a)), see Subsection 6.2) and
the vertex position itself (e.g. a.pos). Therefore, all vertex positions are translated in a way that put
them farther from the triangle center.

We shall now take another example of triangular mesh processing, with the triangular flip-flap
operation [48] in Figure 44. This operation is useful to transform two flat triangles into more equilateral
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Figure 44: Triangular flip-flap

ones, in order to increase the mesh shape regularity and therefore the quality of simulations. It should be
noted that the rule scheme does not modify the vertex positions. However, as the vertex orbits incident
to nodes a and k are extended with nodes m, n, o and p, the corresponding positions must be redefined
at least once per extended vertex orbit (see the condition of labeling of extended embedding orbits of
Theorem 4).
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Figure 45: Loop subdivison

A more elaborate example of mesh processing is the loop subdivision of Figure 45 [49]. As this
subdivision consists in splitting the three edges of the triangle, the rule scheme has to match both the
triangle and its three adjacent edges in order to preserve the topological coherence. On the embedding
aspect, the positions of the new vertices are defined as the center of the split edges, while none of the
three positions of the original face are modified. While this rule scheme allows the first triangle to be
subdivided, it cannot be used to subdivide the neighbor face, as this face would then have four vertices
as a result of the first subdivision. Consequently, a new rule scheme is necessary to subdivide this second
face. However, to be correctly applied, this second rule scheme would require additional information (i.e.
an additional embedding) to distinguish the three original vertices from the added one.

9.2. An application to physical simulation

In [50], we proposed a physical simulator based on the mass/spring systems of [51] in which all
operations are defined with the introduced rule language. Figure 46(a) presents a first intuitive
representation of this model: vertices represent particles and stretching springs are associated to edges.
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Figure 46: Stretch springs
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As any realistic modeling application, this simulator requires multiples embeddings. Each node must
therefore carry the particle properties (its position pos, its mass m, and its cumulated force F ) and
the stretching spring properties (its stiffness k and its rest-length l0). In [13], we addressed the case of
multiple embeddings by introducing a category of partially I-labeled graphs that handle multiple node
labels as an extension of the category defined in [14]. In this category, each type of embedding (node
label) is defined by its own node labeling function, which is defined on its own orbit type. We extended
graph transformations in this category so rules could simultaneously transform multiple embeddings.
For example, the rule scheme of Figure 46(b) computes the forces corresponding to a given stretching
spring (edge), by using a user-defined operator sprF on the two corresponding particle data (pos and
m) and the spring properties (k and l0). The final cumulated forces of particles are obtained when this
rule scheme has been applied to all springs (all edges).
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Figure 47: Shear springs

To preserve the shape of faces, shear springs, as represented in Figure 47, are generally added. In
the case of initially rectangular faces (when diagonals have equal length) with an isotropic material, the
two shear springs are equal and we can save only one set of parameters for the two springs associated to
the face. Therefore, in the rule scheme of Figure 47(b), the computation of the forces corresponding
to a pair of shear springs directly matches a whole face. In the other case (when the initial face is not
regular), or when the material is anisotropic, two set of parameters are required and are associated with
the two face corners (orbit 〈1〉). Consequently, in the rule scheme of Figure 47(c), the computing of a
shear spring only matches half a face (i.e. two opposite corners at a time).
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Figure 48: Bending springs

Finally, linear bending springs can also be added to control bending. As represented in Figure 48(a),
they connect second-neighbor vertices in order to control the angle between two edges, and therefore the
corresponding rule scheme of Figure 48(b) matches three vertices. In this case, the chosen orbit to carry
the string data are the orbits 〈2〉 as their number matches with the number of linear bending springs.
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9.3. Jerboa and related applications

The presented language and the associated syntactic conditions are at the heart of Jerboa [33, 34, 52],
a tool set for designing and generating a safe geometric modeler kernel. As Jerboa aims at allowing the
generation of any modeler, it addresses a large class of modeling operations.

Creating a modeler with Jerboa can basically be achieved in two steps:

• The first one consists in specifying the manipulated object by providing its topological dimension
and embedding (which data type will be attached to which orbits). Note that the modeler
designer has to provide any external library required to handle the embedding data types (e.g. 3D
coordinate, RGB color) and their associated computational functions (e.g. barycenter of a set of
points, mix of two colors).

• The second step is the design of rule schemes defining the modeling operations. The syntactic
analyzer included in the graphic rule editor automatically checks the conditions given in this article
and guides the user through modeling operations design by indicating which parts of the rule are
inconsistent.

Once designed, a modeler can be generated and used right away thanks to a default generic viewer
provided by Jerboa. But this modeler kernel can also be integrated into larger tools. Most importantly,
end-users are not required to understand the rule language: indeed, they will only use modeling operations
by interactively applying them on the object under construction.

(a) Rectangular (b) Triangular (c) Mixed

Figure 49: Mass/spring simulation in 2D.

Jerboa has been used to develop several geometric modelers, such as one geology modeling tool
[53], and the simulation using mass/spring model presented in section 9.2. The previously described
rule schemes have been implemented in 2D (see Figure 49) and adapted in 3D (see Figure 50). They
have been applied on several objects: with rectangular cells in Figure 49(a), with triangular cells in
Figure 49(b), with mixed ones in Figure 49(c), on cuboids with 64 elements in Figure 50(a), and on a
liver model with 597 elements in Figure 50(b). Simulation of more complex objects is possible and the
degree of accuracy of the results is equivalent to other approaches.

(a) Hexahedral (b) Tetrahedral

Figure 50: Mass/spring simulation in 3D.
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10. Conclusion

In this article, we introduced a new kind of graph transformation variables, called node variables and
inspired from the attribute variables of [15], and dedicated to embedding computations in the context of
topology-based geometric modeling. Benefiting from the regularity of G-map topological structures, these
node variables are provided with operators that allow both to access the existing embedding (node labels
in the transformed object), therefore avoiding any additional identifier naming for variable. Operators
are also allow provided to traverse the topological structure (neighboring nodes in the transformed
object) without having to match the precise configuration below the matched pattern (e.g. in the face
triangulation case, a mix with the neighboring face colors can be defined wether these faces exist or
not). A rule instantiation mechanism is also provided to propagate the embedding modifications to
the concern orbits of the object. This mechanism allows to modify the labels of nodes located beyond
the rule pattern without having to explicitly match all of them (e.g. in the edge removal case, the
merged face color can be defined without having to match the whole structure, therefore allowing a
generic definition of the operation limited to the edge). The resulting language is generic enough to
define any usual embedding transformation, and it is fitted with syntactic conditions that allow an
operation implemented as a rule to be statically checked. A single rule application engine may thus be
programmed to handle any operation.

Our further work will consist in enhancing the language with new possibilities, while still providing
a safe theoretical ground. In particular, we still have to show under which syntactic conditions node
variables can be simultaneously used with the orbit variables dedicated to topological transformations in
order to define operations independently from both embedding value and topological shape (e.g. the
triangulation of any sized face of any color). Furthermore, we wish to provide rule scripts in order to
compute complex modeling operations, as the boolean operators allowing to combine objects together
by intersection, difference or union. Such operations require to search the object and selectively apply
rules, following a given strategy. A script language would allow to define these strategies by providing
operators such as iterators, loops or conditionals.
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and Computing by Graph Transformation, World Scientific, 1997, Ch. Algebraic Approaches to
Graph Transformation. Part I: Basic Concepts and Double Pushout Approach, pp. 163–245.

[37] B. Hoffmann, E. Jakumeit, R. Geiß, Graph rewrite rules with structural recursion, in: M. Mosbah,
A. Habel (Eds.), 2nd Intl. Workshop on Graph Computational Models (GCM 2008), 2008, pp. 5–16.

43



[38] F. Orejas, L. Lambers, Symbolic attributed graphs for attributed graph transformation, Electronic
Communications of the EASST 30, Graph Computation Models 2010.

[39] F. Orejas, L. Lambers, Lazy graph transformation, Fundamenta Informaticae 118 (1-2) (2012)
65–96.

[40] F. Drewes, B. Hoffmann, D. Plump, Hierarchical graph transformation, Journal of Computer and
System Sciences 64 (2) (2002) 249–283.

[41] B. Hoffmann, More on graph rewriting with contextual refinement, in: R. Echahed, A. Habel,
M. Mosbah (Eds.), Graph Computation Models Selected Revised Papers from GCM 2014, Vol. 71
of Electronic Communications of the EASST, 2015.

[42] A. Habel, Hyperedge replacement: grammars and languages, Vol. 643 of Lecture Notes in Computer
Science, Springer, 1992.

[43] A. Habel, H. Radke, Expressiveness of graph conditions with variables, Electronic Communications
of the EASST 30, Graph and Model Transformation 2010.

[44] V. Lang, P. Lienhardt, Simplicial Sets and Triangular Patches, in: Proceedings of the 1996
Conference on Computer Graphics International, CGI ’96, IEEE, 1996, p. 154.

[45] M. Mantyla, Introduction to Solid Modeling, W. H. Freeman & Co., New York, NY, USA, 1988.

[46] K. Weiler, The radial edge structure: A topological representation for non-manifold geometric
boundary modeling, in: Geometric Modeling for CAD Applications: Selected Papers from IFIP
WG 5.2, Elsevier Science, 1988, pp. 3–36.

[47] F. Ledoux, A. Arnould, P. L. Gall, Y. Bertrand, Geometric Modelling with CASL, in: Selected Papers
from the 15th International Workshop on Recent Trends in Algebraic Development Techniques, Vol.
2267 of Lecture Notes in Computer Science, Springer-Verlag, London, UK, UK, 2001, pp. 176–200.

[48] C. Paulus, L. Untereiner, H. Courtecuisse, S. Cotin, D. Cazier, Virtual Cutting of Deformable
Objects based on Efficient Topological Operations, Visual Computer 31 (6-8) (2015) 831–841.

[49] C. T. Loop, Smooth subdivision surfaces based on triangles, Master’s thesis, Department of
Mathematics, The University of Utah, master of Science (aug 1987).

[50] F. Ben Salah, H. Belhaouari, A. Arnould, P. Meseure, A general physical-topological framework
using rule-based language for physical simulation, in: 12th International Conference on Computer
Graphics Theory and Applications, Porto, Portugal, 2017, to appear.

[51] X. Provot, Deformation constraints in a mass-spring model to describe rigid cloth behaviour,
in: Proceedings of Graphics Interface ’95, Canadian Human-Computer Communications Society,
Toronto, Ontario, Canada, 1995, pp. 147–154.

[52] Jerboa, a rule-based topological modeler generator, http://xlim-sic.labo.univ-poitiers.fr/jerboa/,
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