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We study the mean value of generalized divisor functions τκ(n) over integers without large prime factors (here κ > 0). We relate this problem to the computation of the ratio Ψ(x 1/κ , y) κ /Ψ(x, y), involving the y-smooth numbers counting function. We establish an inverse theorem, giving limitations on the range in (x, y) in which this ratio can be asymptotically estimated uniformly in κ.

Introduction

Un entier n est dit y-friable si son plus grand facteur premier P (n) est inférieur ou égal à y, avec la convention P (1) = 1. On note S(x, y) := {n ≤ x : P (n) ≤ y}, Ψ(x, y) := |S(x, y)|.

Nous nous intéressons ici aux valeurs moyennes (1.1)

M f (x, y) := 1 Ψ(x, y) n∈S(x,y) f (n) d'une fonction multiplicative f sur les entiers friables. Ces moyennes ont été étudiées dans la série de travaux [TW03, HTW08, TW08a, TW08b] ainsi que dans [START_REF]Propriétés statistiques des entiers friables[END_REF], et jouent un rôle important dans la compréhension du cas y = x, par le biais de la factorisation de chaque entier n = ab avec P (a) ≤ y et p|b ⇒ p > y (voir par exemple [START_REF] Granville | The spectrum of multiplicative functions[END_REF]). Notons τ (n) le nombre de diviseurs de n. Dans l'article [START_REF] Drappeau | Théorèmes de type Fouvry-Iwaniec pour les entiers friables[END_REF], faisant suite aux travaux de Fouvry-Tenenbaum [START_REF] Fouvry | Diviseurs de Titchmarsh des entiers sans grand facteur premier[END_REF], il est établi que (1.2) 1 Ψ(x, y) n∈S(x,y) n>1 τ (n -1) ∼ log x

(2 ≤ y ≤ x, log log x log y → ∞).

Bien sûr, la fonction n → τ (n -1) n'est pas multiplicative ; ce problème est donc de nature très différente, et a priori plus délicate, que l'étude de M τ (x, y) = 1 Ψ(x, y) n∈S(x,y) τ (n).

On pourrait donc naïvement s'étonner que le comportement asymptotique de M τ (x, y) n'est en revanche connu que dans un domaine du type 

(H ε ) exp{(log 2 x) 5/3+ε
τ κ (n) = A κ (x, y)Ψ(x 1/κ , y) κ 1 + O κ 1 u + log y y avec A κ (x, y) = κ -1 2 (β 2πφ 2 (β, y)) κ-1 (β = α(x 1/κ , y)).
Lorsque min{y, u} → ∞, on a l'approximation explicite

(1.6) A κ (x, y) ∼ κ κ/2-1 2πu 1 + log x κy (1-κ)/2 log 1 + κy log x 1-κ .
Dans le cas κ = 2, le problème s'interprète comme le comptage des points (n, m) ∈ N 2 , à coordonnées y-friables, situés sous l'hyperbole mn = x. Le résultat précédent met en valeur la pertinence de comparer le nombre total au nombre de points dans le carré max{m, n} ≤ x 1 2 , plutôt qu'au nombre de points sur la droite n = 1.

L'estimation (1.5), dont la preuve est très simple, permet d'ouvrir la voie à des estimations semi-asymptotiques [BT05b, Théorème 2.4], c'est-à-dire des estimations uniformes du rapport M τ k (x/d, y)/M τ k (x, y) pour 1 ≤ d ≤ x. Nous nous contentons d'illustrer cela par l'exemple

M τ k (x/2, y) ∼ 2 -β M τ k (x, y) (β = α(x 1/κ , y), x → ∞),
qui découle immédiatement des formules (1.5), (1.6) et du Théorème III.5.22 de [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF]. Il est utile de noter que

β = o(1) ⇔ y ≤ (log x) 1+o(1) , β = 1 + o(1) ⇔ log y/ log 2 x → ∞.
Dans le cas d'une fonction multiplicative f plus générale, il est connu [BT05a, p.542] que les valeurs f (p 2 ) (resp. f (p ν )) influent de façon essentielle sur l'ordre de grandeur de la valeur moyenne (1.1) dès lors que y ≤ (log x) 2+o(1) (resp. y ≤ (log x) ν/(ν-1)+o(1) ). De plus, dans les cas les plus favorables, une méthode de convolution permet facilement de se ramener à f = τ κ . Ce sont les raisons pour lesquelles nous ne tentons pas ici d'énoncer un résultat pour une fonction multiplicative générique f . Notre second résultat concerne l'évaluation du rapport

(1.7) Ψ(x 1/κ , y) κ Ψ(x, y) .
Nous posons φ 0 (s, y)

:= log ζ(s, y) = - p≤y log(1 -p -s ) (Re(s) > 0).
Notons que φ 0 (α(x, y), y) ∼ u + log log y lorsque min{ y log x , u} → ∞.

Theorème 2. Soit κ > 0. Alors on a

Ψ(x 1/κ , y) κ Ψ(x, y) = B κ (x, y) exp ˆκ 1 φ 0 (α(x 1/λ , y), y) dλ 1 + O κ 1 u + log y y , avec B κ (x, y) = α 2πφ 2 (α, y) (β 2πφ 2 (β, y)) κ (β = α(x 1/κ , y)).
En particulier, on a

(1.8) B κ (x, y) ∼ (2πu) (1-κ)/2 κ κ/2 , (y/ log x → ∞), (2πy/ log y) (1-κ)/2 , (y/ log x → 0). Lorsque (log x) 1+ε ≤ y ≤ x, une forme forte de la formule de Mertens (cf. [HT86, p.289]) permet d'écrire (1.9) ˆκ 1 φ 0 (α(x 1 λ , y), y) dλ = (κ -1) log(e γ log y) + ˆκ 1 Ξ u λ dλ + O κ,ε log(u + 1) log y + u e (log y) 3/5-ε .
Ici, ξ(t) dénote l'unique solution non nulle de e ξ = 1 + tξ lorsque t = 1, avec ξ(1) = 0, tandis que

Ξ(u) := ˆu 1 tξ (t) dt.
Le second terme d'erreur dans (1.9) provient de la région sans zéros (y ≥ (log x) 2+ε ), est équivalente à l'hypothèse de Riemann. Ici, ρ(u) est la fonction de Dickman (cf. [Ten15, Section III.5.3]). Sa méthode repose de façon essentielle sur une certaine équation fonctionnelle vérifiée par Ψ(x, y) (voir également [START_REF]On the number of positive integers ≤ x and free of prime factors >[END_REF]). Compte tenu du Théorème 2, il est naturel de s'attendre à ce qu'un phénomène analogue se produise dans le cas du rapport (1.7).

Conjecture 1. Soit κ = 1 fixé. Supposons que pour tout ε > 0, l'on ait

(1.10) Ψ(x 1/κ , y) κ Ψ(x, y) = ρ(u/κ) κ ρ(u) exp{O ε (y ε )} ((log x) 2+ε ≤ y ≤ x).
Alors l'hypothèse de Riemann est vraie.

La quantité au membre de gauche de (1.10) ne semble pas être facilement abordable par la méthode de Hildebrand [START_REF] Hildebrand | Integers free of large prime factors and the Riemann hypothesis[END_REF]. Si l'on autorise κ à varier sur un intervalle non vide sans que cela n'altère la constante implicite dans (1.10), nous obtenons par une autre méthode le résultat suivant.

Theorème 3. Soit I ⊂ R ×

+ un ouvert non vide. Si l'estimation (1.10) est vraie uniformément pour κ ∈ I, alors ζ(s) = 0 lorsque Re(s) > 3 4 . Nous précisons que notre approche est différente de celle de [START_REF] Hildebrand | Integers free of large prime factors and the Riemann hypothesis[END_REF], et consiste à raisonner directement à partir de l'estimation du Théorème 2. En particulier, nous n'utilisons pas l'identité de Hildebrand [START_REF]On the number of positive integers ≤ x and free of prime factors >[END_REF].

Nous concluons en remarquant que le Théorème 3 fournit une autre démonstration de la version affaiblie suivante de [Hil84, Theorem 1] :

(∀ε > 0, Ψ(x, y) = xρ(u)e Oε(y ε ) pour (log x) 2+ε ≤ y) =⇒ ζ(s) = 0 (Re(s) > 3 4 ).
Remerciements. L'auteur remercie R. de la Bretèche pour des remarques sur une version préliminaire.

Notations et rappels. Nous rappelons quelques définitions de [START_REF] Hildebrand | On integers free of large prime factors[END_REF]. La série de Dirichlet associée aux entiers y-friables est notée

ζ(s, y) := P (n)≤y n -s = p≤y (1 -p -s ) -1 (Re(s) > 0).
Nous rappelons la définition (1.3) du point-selle α(x, y). Nous définissons également

φ 1 (s, y) = d ds φ 0 (s, y) = - p≤y log p p s -1 (Re(s) > 0).
Nous rappelons que φ 2 (s, y), la dérivée seconde de φ 0 (s, y), est définie en (1.4). Avec l'abbréviation α = α(x, y), le résultat principal de [START_REF] Hildebrand | On integers free of large prime factors[END_REF] est l'estimation

(1.11) Ψ(x, y) = x α ζ(α, y) α 2πφ 2 (α, y) 1 + O 1 u + log y y (2 ≤ y ≤ x).

Nous rappelons enfin l'estimation [HT86, Lemma 4]

(-1) j φ j (α, y) u(log y) j , (log x y ≤ x, j ∈ {1, 2}).

Démonstration des résultats

2.1. Démonstration du Théorème 1. Le Théorème 1 découle aisément des calculs de [START_REF] Hildebrand | On integers free of large prime factors[END_REF], une fois la remarque faite que

x s ζ(s, y) κ = (x s/κ ζ(s, y)) κ (x, y ≥ 2, Re(s) > 0).
Ainsi, le rôle du point-selle est joué par la quantité β(x, y) = α(x 1/κ , y). Des calculs semblables à ceux de [START_REF] Hildebrand | On integers free of large prime factors[END_REF] fournissent alors n∈S(x,y) 

τ κ (n) = 1 + O κ 1 u + log y y x β ζ(β, y) κ β 2κπφ 2 (β,
ˆκ 1 φ 0 (α y (u/λ), y), y) dλ = ˆκ 1 Ξ(u/λ) dλ + O(y ε ) (1 ≤ u ≤ y 1 2 -ε , κ ∈ I).
Nous voyons ceci comme une majoration de la différence φ 0 (α y (u/λ), y) -Ξ(u/λ) en moyenne sur λ. La première étape est d'en déduire une majoration valable pour λ fixé, autrement dit, retirer la moyenne sur λ. Cela utilise l'hypothèse supplémentaire sur I, et c'est la raison pour laquelle nous obtenons in fine la valeur 3 4 (plutôt que 1 2 ). Nous montrons dans un premier temps que le Théorème 3 découle de la proposition suivante.

Proposition 1. Soit δ ∈ [0, 1 2 [. Supposons que pour tout ε > 0, l'on ait (2.3) φ 0 (α y (u), y) = Ξ(u) + O(y δ+ε ) ((log x) 2+ε ≤ y ≤ x).
Alors on a ζ(s) = 0 pour Re(s) > 1 2 + δ. Démonstration que la Proposition 1 implique le Théorème 3. Soit κ ∈ I, et (η, η 0 ) ∈ R 2 des paramètres vérifiant 0 < |η| < η 0 . Lorsque η 0 est suffisamment petit, on peut appliquer l'hypothèse (2.2) avec x remplacé par x 1/(1+η) et κ remplacé par κ/(1 + η), ce qui fournit par soustraction ˆ1+η

1 φ 0 (α y (u/λ), y) dλ = ˆ1+η 1 Ξ(u/λ) dλ + O(y ε ).
Soit F (η) l'intégrale du membre de gauche. C'est une fonction C 2 de η, qui vérifie de plus

F (0) = φ 0 (α y (u), y), F (η) = - u (1 + η) 2 α y u 1 + η φ 1 α y u 1 + η , y u.
Les propriétés analogues sont vraies pour l'intégrale du membre de droite. En prenant les taux d'accroissement entre η = 0 et η = η 0 u -1 2 , nous obtenons, pour chaque ε > 0 fixé,

φ 0 (α y (u), y) = Ξ(u) + O(u 1 2 y ε ) (1 ≤ u ≤ y 1 2 -ε ).
Nous sommes donc en mesure d'appliquer la Proposition 1 avec δ = 1 4 , ce qui fournit la conclusion annoncée.

La seconde étape consiste à extraire de l'hypothèse implicite (2.3) une estimation asymptotique de φ 0 (β, y) pour chaque β ∈] 1 2 , 1[. Nous montrons dans un deuxième temps que la Proposition 1 est une conséquence du lemme suivant, qui fait intervenir la fonction 

L(w) := li(w) - w log w (w > 1) avec li(w) := ´w 2 dt/(log t). Lemme 1. Soit (ϑ, δ) ∈ R 2 avec 0 < δ < ϑ < 1, et F : [2, +∞[ → ]1,
β = y 1-β 1 -β + O β,ε (y δ+ε ) (y ≥ 2).
Le choix β = 1 2 + ε implique alors p≤y log p = y + O(y 1 2 +δ+ε ), ce qui est classiquement équivalent à l'assertion que ζ(s) = 0 pour Re(s) > 1 2 + δ. Démonstration du Lemme 1. Soient (y 1 , y 2 ) ∈ R avec 10 ≤ y 1 ≤ y 2 ≤ 2y 1 . On note que y 1 y 2 . Pour w ≥ F (y 1 ), on pose

A y 1 (w) := ˆw F (y 1 ) dt (log t) 2 = L(w) -L(F (y 1 )).
On calcule de deux façons la quantité (2.8)

(2.7) B(y 1 , y 2 ) := A y 1 (F (y 2 )) log F (y 2 ) F (y 2 ) + ˆF (y 2 ) F (y 1 ) log w -1 w 2 A y 1 (w) dw.
A y 1 (F (y )) = ˆy y 1 F (z) log F (z) dz z log z + O(y δ 2 ).
Pour w ∈ [F (y 1 ), F (y 2 )], on définit y w := inf{y ≥ 2 : F (y) ≥ w}. Notre hypothèse (i) implique ainsi F (y w ) ≥ w, et F (y w -1) < w. On en déduit que |F (y w ) -w| (log y 2 ) 2 y δ 2 , ce qui implique 

A y 1 (w) = ˆyw y 1 F (z) log F (z) dz z log z + O(y δ 2 ) d'

  de ζ due à Korobov et Vinogradov [IK04, Corollary 8.30]. Il n'est uniformément borné que dans un domaine essentiellement du type (H ε ). Cela suggère une limitation à l'estimation du rapport (1.7) en dehors du domaine (H ε ) et constitue la motivation à ce qui suit. Notre troisième résultat concerne un théorème inverse. Hildebrand [Hil84] a démontré que la validité, pour tout ε > 0 fixé, de l'estimation Ψ(x, y) = xρ(u)e Oε(y ε )

D

  'une part, une intégration par parties fournit immédiatement B(y 1 , y 2 ) = log log F (y 2 ) -log log F (y 1 ). D'autre part, notre hypothèse (2.4) implique, pour tout y ∈ [y 1 , y 2 ],

FF (y 1 ) ˆyw y 1 1F 1 FF (y 1 )F 1 F 1 F

 11111 (z) > w =⇒ z ≥ y w + O(y δ+1-ϑ 2 (log y 2 ) 2 ), F (z) ≤ w =⇒ z ≤ y w + O(y δ+1-ϑ 2 (log y 2 ) 2 ). On a donc ˆF (y 2 ) (z)>w dz + ˆy1 yw (z)≤w dz dw y 1+δ 2 (log y 2 ) 2 . Cela permet d'écrire ˆF (y 2 ) (z) log F (z) ˆF (y 2 ) F (z) log w -1 w 2 dw dz z log z + O(y δ-ϑ 2 log y 2 ).Enfin, on remarque quelog F (y 2 ) F (y 2 ) ˆy2 y (z) log F (z) dz z log z + ˆy2 y (z) log F (z) ˆF (y 2 ) F (z) log w -1 w 2 dw dz z log z = log log y 2 -log log y 1 .On a donc montré queB(y 1 , y 2 ) = log log F (y 2 ) -log log F (y 1 ) = log log y 2 -log log y 1 + O(y δ-ϑ 2 log y 2 ) (10 ≤ y 1 ≤ y 2 ≤ 2y 1 ).En sommant cela convenablement et par l'hypothèse (i), nous obtenons l'estimation log log F (y) = log log y + log ϑ + O(y δ-ϑ log y) (y ≥ 10) dont la relation annoncée (2.5) est une conséquence.

  Notre première observation est que dans le cas f = τ k , la valeur moyenne (1.1) peut être comparée de façon simple à Ψ(x 1/κ , y) κ .

	(1.3)				log x =	p≤y	log p p α -1	.
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	Theorème 1. Pour κ > 0 et 2 ≤ y ≤ x, on a
	(1.5)				

} ≤ y ≤ x, voir par exemple

[START_REF] Smida | Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier[END_REF] 

1 . Ce domaine est plus restreint que (1.2) ; l'objectif de la présente note est d'éclaircir les raisons de cette discrépance.

Étant donné κ > 0, nous considérons la fonction de Piltz τ κ , définie par la série génératrice

n≥1 τ κ (n) n s = ζ(s) κ (Re s > 1).

C'est une fonction multiplicative, avec τ κ (p) = κ pour p premier. Pour κ = 2, nous retrouvons τ 2 = τ . Nous avons également besoin de la notation suivante : lorsque 2 ≤ y ≤ x, l'on note α(x, y) l'unique solution réelle positive à l'équation p≤y (log p) 2 p s (p s -1) 2

(2 ≤ y ≤ x, Re(s) > 0).

n∈S(x,y)

  y) .

	C'est une fonction dérivable de u ; on note que pour y	log x,
	α y (u) = -	log y φ 2 (α y (u), y)	1 u log y	.
	En utilisant le Théorème 2, l'hypothèse (1.10) est réécrite sous la forme
	(2.2)			
	La comparaison de cette estimation avec (1.11) fournit le résultat annoncé (1.5). L'approximation (1.6)
	est déduite en utilisant [HT86, Corollary 1].		
	2.2. Démonstration du Théorème 2. Notons temporairement β(κ) = β x,y (κ) = α(x 1/κ , y).
	C'est une fonction dérivable de κ > 0. Nous avons de plus	

(2.1) κφ 0 (β(κ), y) + β(κ) log x -φ 0 (β(1), y) -β(1) log x = ˆκ 1 φ 0 (β(λ), y) dλ (κ > 0). Cette identité est aisément vérifiable en dérivant par rapport à κ, puis en utilisant la définition du point-selle (1.3). Le résultat annoncé est alors une conséquence simple de (2.1) et de [HT86, Theorem 1]. L'estimation (1.8) est une conséquence de [HT86, Corollary 1]. 2.3. Démonstration du Théorème 3. Dans cette section, il sera utile d'abréger α y (u) := α(y u , y).

  après (2.8). Nous reportons cette estimation dans l'intégrale du membre de droite de (2.7). La contribution du terme d'erreur est encore une fois O(y δ-ϑ 2 log y 2 ). Par ailleurs, notre hypothèse (2.8) implique, pour tout z ∈ [y 1 , y 2 ],