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On the volume inside old black holes

Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on the evolution of the interior geometry was recently shown to be provided by a generally covariant definition of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a 1+1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for the information paradox and the remnant scenarios are discussed.

Introduction

Since the mid-1970s, the information-loss paradox [START_REF] Hawking | Breakdown of Predictability in Gravitational Collapse[END_REF] has been at the center of a heated debate. The fate of the large amount of information fallen inside the hole is the main topic of several resolution proposals in the literature (for a -non-exhaustivereview see [START_REF] Hossenfelder | Conservative solutions to the black hole information problem[END_REF] and references therein).

In the setting in which the semi-classical approximation behind Hawking's computation remains valid up to the very late stages of the evaporation, and quantum gravitational effects play an important role only in the strong curvature regime by "smoothing-out" the singularity [START_REF] Ashtekar | Black hole evaporation: A Paradigm[END_REF], a natural possible outcome is the formation of a remnant: a final minuscule object that stores all the information needed to purify the external mixed state [START_REF] Aharonov | The Unitarity Puzzle and Planck Mass Stable Particles[END_REF][START_REF] Giddings | Comments on information loss and remnants[END_REF] (see [START_REF] Chen | Black Hole Remnants and the Information Loss Paradox[END_REF] for a recent review).

The tiny mass and external size of such objects are central to objections against both the existence of remnants (infinite pair production-see [START_REF] Giddings | Constraints on black hole remnants[END_REF] and references therein-) and their impossibility of storing inside the large amount of information. The naive intuition of "smallness", however, can be very misleading since a remnant contains spatial hypersurfaces of very large volume, see for instance [START_REF] Ashtekar | The Issue of Information Loss: Current Status[END_REF][START_REF] Perez | No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox[END_REF]. Once a horizon forms, surfaces of increasingly large volume start to develop. This characteristic is naturally captured by the manifestly coordinate independent definition of volume employing maximal surfaces recently proposed by Carlo Rovelli together with one of the authors in [START_REF] Christodoulou | How big is a black hole?[END_REF], where it was applied to the interior of static black holes 1 .

For asymptotically flat geometries, this volume can be parametrized with the advanced Eddington-Finkelstein time v and is denoted as V (v). In the interior of a static spherically symmetric black hole of mass m 0 formed by collapsing matter, the volume grows monotonically with v and is given at late times v m 0 by

V (v) ≈ C m 2 0 v (1) 
where C = 3 √ 3 π for the uncharged case2 . In this article, we expand upon the results in [START_REF] Christodoulou | How big is a black hole?[END_REF] and show that the conclusions in that work extend to the case of an evaporating black hole. The volume of maximal surfaces bounded by the shrinking apparent horizon monotonically increases up to when its area has reached Planckian dimensions. Specifically, we show that, at any time, there exists a spacelike maximal surface with proper vol-ume approximately given by (1) (where m 0 is now the initial mass), that connects the sphere of the apparent horizon at that time to the center of the collapsing object before the formation of the singularity 3 . The final remnant hides inside its external Planckian area a volume of order (m 0 /m P ) 5 l P 3 .

We first review and clarify some aspects of the discussion given in [START_REF] Christodoulou | How big is a black hole?[END_REF] and generalize the results presented there so that they may be used in an arbitrary spherically symmetric spacetime. In Section I and the Appendix, we prove the technical result that finding the spherically symmetric maximal surfaces is equivalent to solving a two dimensional geodesic problem. In Section II we review the definition of volume and discuss the analogy between the Minkowski and the Schwarzschild case in order to illustrate its geometric meaning. In Section III we examine the evaporating case and calculate the volume enclosed in the horizon as a function of time at infinity. We close with a discussion on the physical relevance of our result with respect to the debate on the fate of information in evaporating black holes.

I. Maximal surfaces as a 1 + 1 geodesic problem

A general spherically symmetric spacetime can be described by a line element

ds 2 = g αβ dx α dx β = g AB dx A dx B + r 2 dΩ 2 (2) 
with dΩ 2 = sin 2 θ dφ 2 + dθ 2 . We use the notation x α = {x 0 , r, θ, φ} and x A = {x 0 , r}. Spherically symmetric hypersurfaces Σ can be parametrically defined via a coordinate λ:

ds 2 Σ = (g AB ẋA ẋB ) dλ 2 + r 2 dΩ 2 (3) 
where x A = x A (λ) and ẋA ≡ d dλ x A (λ). We have Σ ∼ γ × S 2 , with γ : λ → x A (λ) being a curve in the x 0 -r plane. We denote as y a = {λ, φ, θ} and h ab = e α a e β b g αβ the coordinates and the induced metric on Σ respectively, where e α a = ∂x α ∂y a provides a basis of tangent vectors on Σ.

We look for the stationary points of the volume 3 An argument for the persistence of the large volume in the evaporating case was discussed in [START_REF] Ong | The Persistence of the Large Volumes in Black Holes[END_REF]. functional:

V [Σ] = Σ dy 3 det h ab = 4π γ dλ r 4 g AB ẋA ẋB 1/2 = 4π γ dλ gAB ẋA ẋB 1/2 , (4) 
where Σ are spherically symmetric surfaces bounded by a given sphere ∂Σ.

Thus, the extremization of V [Σ] is equivalent to the 2D geodesic problem for the auxiliary metric gAB = r 4 g AB . That is, γ is a solution of

ẋA ∇A ẋB = e A λ ∇A e B λ = 0 ( 5 
)
where ∇ is the covariant derivative in gAB and λ has been chosen to be an affine parameter on γ with respect to gAB .

The stationary points of V [Σ] solve the "Plateau's problem" or "isoperimetric problem" for ∂Σ. In a Euclidean context these are local minima, while in the Lorentzian context they are local maxima. It is simple to show that if the trace K = K αβ g αβ of the extrinsic curvature of a hypersurface vanishes, the variation of the volume functional is automatically zero (see for instance [START_REF] Baumgart | Numerical relativity: Solving Einstein's Equations on the Computer[END_REF]). For this reason, in the Lorentzian context, surfaces with K = 0 are called maximal surfaces.

It is the authors understanding that a general proof of the opposite statement, namely that for arbitrary spacetimes extremizing V [Σ] for a given ∂Σ yields K = 0 surfaces, is missing. Several precise proofs exist in the mathematical relativity literature (see for instance the seminal papers [START_REF] Choquet-Bruhat | Maximal hypersurfaces and positivity of mass[END_REF][START_REF] Marsden | Maximal hypersurfaces and foliations of constant mean curvature in general relativity[END_REF]), that typically rely on energy conditions or other restrictions on the metric or on the surfaces. "Physicist" demonstrations can be found in the 3 + 1 literature [START_REF] Baumgart | Numerical relativity: Solving Einstein's Equations on the Computer[END_REF][START_REF] Gourgoulhon | 3+1 formalism and bases of numerical relativity[END_REF].

For completeness, we prove in the Appendix that, for an arbitrary metric g AB , any surface Σ ∼ γ ×S 2 , with γ being a solution of (5), has K = 0. From well known theorems about the geodesic equation, this also guarantees the local existence of maximal surfaces, see also [START_REF] Cordero-Carrion | Maximal slicings in spherical symmetry: local existence and construction[END_REF].

The physical relevance of maximal surfaces has long been recognised in diverse disciplines ranging from problems in mathematical physics [START_REF] Rassias | The Problem of Plateau : A Tribute to Jesse Douglas and Tibor Radó[END_REF] to architecture and the beautiful tensile structures of Frei Otto [START_REF] Otto | Tensile structures; design, structure, and calculation of buildings of cables, nets, and membranes[END_REF]. In general relativity, their usefulness for numerically solving Einstein's equations is reflected in the popular "maximal slicing"4 (see for instance [START_REF] Gourgoulhon | 3+1 formalism and bases of numerical relativity[END_REF] and references therein), which in a sense generalizes the slicing of a Newtonian spacetime by constant (absolute) time surfaces.

Common notions of volume implicitly use maximal surfaces. These include the everyday meaning of volume, the special relativistic proper volume and the volume of the Universe, where the latter habitually refers to the proper volume of the t = const. surfaces of the Friedmann-Robertson-Walker metric: spherically symmetric maximal surfaces.

II. Review of the volume definition

The volume definition given in [START_REF] Christodoulou | How big is a black hole?[END_REF] can be stated as follows: the volume inside a sphere S is defined as the proper volume of the maximal spherically symmetric surface Σ bounded by S, which has the largest volume amongst all such Σ. Note that this is a geometric statement and as such it is manifestly generally covariant.

In order to illustrate its geometric meaning, we examine in the rest of this section the analogy between the maximal surfaces of Minkowski spacetime and those of the Schwarzschild solution. The discussion is summarized in Figures 1 and2.

Using the advanced time v = t + dr f (r) , the geometry of the two spacetimes is described by

ds 2 = -f (r)dv 2 + 2dvdr + r 2 dΩ 2 , (6) 
with f (r) = 1 and f (r) = 1 -2m/r respectively. Consider the sphere S v defined as the intersection of r = 2m and the ingoing radial null ray of constant v. It bounds a family of maximal surfaces, the solutions of (5) for different initial speeds. In Minkowski, these are the simultaneity surfaces of inertial observers, which are straight lines in the t-r plane. The one with the biggest volume, Σ v , is that which defines the inertial frame of S v . Its proper volume is what we call the proper volume in special relativity; that is, V Σv = 4 3 π(2m) 3 . In Schwarzschild geometry, the maximal surfaces starting from S v approach the surface r = 3/2m (because of this behavior, r = 3/2m will be called "limiting surface"), and become null either when they reach the singularity or when they asymptotically approach the horizon, except one that asymptotically becomes r = 3m/2 5 . The proper volume of this surface is infinite. This is a characteristic difference between the two geometries which underlines the common understanding that "space and time exchange roles inside the hole". Inside the sphere containing flat space, there are radial timelike curves of infinite length, while all radial spacelike curves have proper length at most equal to the radius of the sphere. Inside a black hole this is reversed: there are radial spacelike curves of infinite length, while radial timelike curves have proper time at most equal to πm.

In the physical case of non-eternal black holes formed by collapse, the surface Σ v does not have infinite volume since it does not extend infinitely along r = 3/2m. In fact, it connects the sphere at the horizon S v with the center of the collapsing object before the formation of the singularity, see Fig. 2. The surface in its interior will be given by solving [START_REF] Giddings | Comments on information loss and remnants[END_REF] for the interior metric. For a collapse modeled by a null massive shell or à la Oppenheimer-Snyder [START_REF] Oppenheimer | On continued gravitational contraction[END_REF], the contribution to V (v) will be of the order of that of the flat sphere ∼ m 3 . At late times v >> m, this contribution is negligible with respect to the one given by the main part lying on r = 3/2m, and the volume is given by (1).

This characteristic monotonic behaviour is perhaps best understood by extending the definition to the case of an eternal black hole. In this case we consider the volume difference ∆V (v, v ) between two spheres S v and S v labeled by different times at infinity, in analogy to considering the proper time between any two points on a timelike curve that otherwise extends to arbitrary values of its affine parameter.

In Minkowski, this difference is zero: the proper volume of the sphere of fixed radius remains constant. In Schwarzschild, by the translation invariance inside the horizon, ∆V (v, v ) is given by the volume of the part of Σ v that lies on the limiting surface r = 3m/2 and does not overlap with Σ v . Thus, this difference is finite, monotonically increasing and given by

S v ′ S v Σ v Σ v ′ r  2 m r t ΔV(v,v') r  3 m 2 S v S v ′ r  2 m Σ v Σ v ′
∆V (v, v ) = 3 √ 3 π m 2 (v -v) . (7) 
Notice that the result for a black hole formed by collapse, eq. ( 1), is nothing but the approximate version of the above equation with v = 0. The analysis presented in this section can be nicely extended to the case of an evaporating black hole to which we now turn our attention.

III. The volume of an evaporating black hole

The spacetime of an evaporating spherically symmetric black hole can be described by the Vaidya metric [START_REF] Vaidya | The Gravitational Field of a Radiating Star[END_REF], given by replacing f (r) in ( 6) with f (r, v) = 1 -2m(v)/r. For our purposes it is sufficient to model the formation of the hole by the collapse of an ingoing null shell at the retarded time v = 0, and the loss of mass due to evaporation by integrating the thermal power emission law [START_REF] Hawking | Black hole explosions?[END_REF]. The resulting mass function is

m(v) = Θ(v) m 3 0 -3B v 1/3 , (8) 
where Θ(v) is the step function, B ∼ 10 -3 a parameter that corrects for back reaction [START_REF] Massar | Semiclassical back reaction to black hole evaporation[END_REF] and m 0 the mass of the shell. The spacetime has a shrinking timelike apparent horizon given by r H (v) = 2m(v). By numerically solving (5), we can draw the family of maximal surfaces for the spheres at the apparent horizon for different v. The situation, depicted in Figure 3, is in direct analogy with the nonevaporating case. There is again a limiting surface, persisting up to very late stages of the evaporation. Thus, as in the static case, the volume of the biggest maximal surface Σ v inside S v is the one connecting the latter to the center of the collapsing shell.

We may get an estimate for the volume as a func- tion of time and the initial mass as follows: we compute the volume of a surface r = α m(v) and find the α for which this is maximized:

i - i 0 i + event horizon r = 3/2 m collapsing object r = 0 I + I -
α = 3 2 - 45 B 8 m 2 0 + O 1 m 4 0 . (9) 
Indeed, the limiting surface is very well approximated by r = α m(v) even for low masses, see Fig. 4.

Expanding the volume of r = α m(v) to leading order in 1/m 0 we get:

V (v) ≈ 3 √ 3 π m 2 0 v 1 - 9 B 2 m 2 0 . ( 10 
)
Thus, for large masses, we have again recovered [START_REF] Hawking | Breakdown of Predictability in Gravitational Collapse[END_REF].

A direct calculation shows that the surface r(v) = α m(v) ceases to be spacelike when the mass function takes the value

m ≈ 3 √ B - 225 B 3/2 8 m 2 0 m P < m P /10 . ( 11 
)
This provides an estimate for the regime of validity of eq. [START_REF] Christodoulou | How big is a black hole?[END_REF]. Interestingly, the non-existence of large spacelike maximal surfaces appears to coincide with the regime in which the mass has become Planckian. These estimates agree with the numerical investigation of the actual surfaces, see Fig. 4. We conclude that the volume increases monotonically, following the approximate behavior given in [START_REF] Christodoulou | How big is a black hole?[END_REF], up to when its external area becomes Planckian. At this very late time, the internal volume is of order m 5 0 in Planck units.

S v r = 2 m(v)
Intuitively, the picture is the following: from the perspective of the maximal surfaces, collapse and horizon at any subsequent exterior time are simultaneous, see Fig. 4. The exterior elapsed time corresponds inside the hole to the stretching of space, as given by (1).

A few numbers

Before closing this section, let us put the above in perspective: when a solar mass (10 30 kg) black hole becomes Planckian (it needs 10 55 times the actual age of the Universe), it will contain volumes equivalent to 10 5 times our observable Universe, hidden behind a Planckian area (10 -70 m 2 ).

Perhaps more pertinent is to consider small pri-

r = α m(v) r = 2 m(v) r t Figure 4.
The surfaces defining the volume enclosed in spheres at the apparent horizon of an evaporating black hole at different times (blue lines). The limiting surface lies close to r = α m(v), with α given by (9) (dashed line).

Here m = 10 in Planck units.

mordial black holes with mass less than 10 12 kg. Their initial horizon radius and volume are of the order of the proton charge radius (10 -15 m) and volume (10 -45 m 3 ) respectively. They would be in the final stages of evaporation now, hiding volumes of about one liter (10 -3 m 3 ).

IV. Remnants and the information paradox

As was briefly discussed in the introduction, the results presented above can be relevant in the discussion about the loss-of-information paradox, particularly in the context of scenarios that assume the semiclassical analysis of quantum field theory on curved spacetimes to be valid in regions of low curvature and until near-complete radiation of the initial mass 6 . Such scenarios disregard the possibility of having information being carried out of the hole by the late Hawking photons [START_REF] Page | Information in black hole radiation[END_REF][START_REF] Braunstein | Better Late than Never: Information Retrieval from Black Holes[END_REF], avoiding the recent firewall and complementarity debate [START_REF] Almheiri | Black holes: complementarity or firewalls?[END_REF].

Another alternative that has recently aroused interest and is not considered here, is that a black 6 Another potential application of this result is in black hole thermodynamics in view of recent results on the Von Neumann entropy associated to volumes [36].

hole may end its lifetime much earlier than nearcomplete evaporation by tunneling to a white-hole geometry. This is possible thanks to quantum gravitational effects that, due to the long times involved, can become important in low curvature regions outside the horizon [START_REF] Haggard | Quantum-gravity effects outside the horizon spark black to white hole tunneling[END_REF][START_REF] Lorenzo | Improved Black Hole Fireworks: Asymmetric Black-Hole-to-White-Hole Tunneling Scenario[END_REF][START_REF] Christodoulou | Planck star tunneling time: An astrophysically relevant observable from background-free quantum gravity[END_REF] 7 .

Consider then the setting in which the semiclassical approximation behind Hawking's computation remains valid up to the very end of the evaporation. The hole will completely evaporate and the information will unavoidably be lost, as originally suggested by Hawking [START_REF] Hawking | Breakdown of Predictability in Gravitational Collapse[END_REF]. While it seems intuitively reasonable for what appears to be a tiny object to decay away and disappear, it is compelling to ask what became of the macroscopic region inside.

Conversely, consider the additional hypothesis that quantum gravitational effects play an important role in the strong curvature regime by "smoothing-out" the singularity [START_REF] Ashtekar | Black hole evaporation: A Paradigm[END_REF]. When the mass becomes Planckian, the semi-classical approximation underlying Hawking's computation fails and the evaporation stops (see for instance [START_REF] Adler | The Generalized uncertainty principle and black hole remnants[END_REF]). The hole does not completely disappear and one can consider the possibility of having a minuscule object that stores all the information needed to purify the external mixed state: a remnant [START_REF] Aharonov | The Unitarity Puzzle and Planck Mass Stable Particles[END_REF][START_REF] Giddings | Comments on information loss and remnants[END_REF][START_REF] Chen | Black Hole Remnants and the Information Loss Paradox[END_REF].

Standard objections against the remnant scenario such as the infinite pair production [START_REF] Giddings | Constraints on black hole remnants[END_REF] and their impossibility in storing inside a large amount of information, rely on considering the remnant as a small object. Our result shows that the remnant is instead better understood as the small throat of an immense internal region, with a volume of the order of m 5 0 . General Relativity naturally gives a "bag of gold" type description of the interior of a remnant, without the need of ad-hoc spacetimes that involve some "gluing" of geometries [START_REF] Wheeler | Relativity, groups and topology, Gordon and Breach[END_REF][START_REF] Hsu | Black hole entropy, curved space and monsters[END_REF]. Notice that the result of the previous section is insensitive to the details of the would-be-singularity region since the limiting surface is in a relatively low-curvature region.

In [START_REF] Hossenfelder | Conservative solutions to the black hole information problem[END_REF][START_REF] Ashtekar | The Issue of Information Loss: Current Status[END_REF][START_REF] Perez | No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox[END_REF] the authors suggest that a large available internal space could store a sufficient amount of very long wavelength modes that carry all the information needed to purify the external mixed state, albeit the available energy being of the order of a few Planck masses. The surfaces studied here are good candidates on which this idea could be tested 8 . The details of the mechanism by which information would be stored have not, to our knowledge, been made precise; demonstrating this possibility is beyond the aim of this work and, in what follows, we assume this to be possible.

We can identify two characteristically distinct possibilities for the evolution of the large interior region. The bulk of these large surfaces is causally disconnected from their bounding sphere on the horizon [START_REF] Bengtsson | Black holes: Their large interiors[END_REF]. They can remain causally disconnected from the rest of the spacetime, which may lead to a baby universe scenario [START_REF] Frolov | Black Holes as Possible Sources of Closed and Semiclosed Worlds[END_REF][START_REF] Frolov | Through a Black Hole into a new Universe?[END_REF].

On the contrary, quantum gravitational effects can modify the (effective) metric and bring these regions back to causal contact with the exterior, while deflating their volume, allowing for the emission of the purifying information to infinity (the information could also be coded in correlations with the fundamental pre-geometric structures of quantum gravity, as proposed in [START_REF] Perez | No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox[END_REF]). This scenario, where the inflating phase is followed by a slow deflating phase of the remnant, is sketched in Fig. 5.

We expect this deflating process to be slow, in accordance with bounds on the purification time [START_REF] Carlitz | The Lifetime of a Black Hole[END_REF][START_REF] Bianchi | Entanglement entropy production in gravitational collapse: covariant regularization and solvable models[END_REF] and the lifetime of long-lived emitting remnants, estimated to be of order m 4 0 . The latter scenario can be made precise by constructing an effective metric describing this process through the evolution of maximal surfaces in the sense of Fig. 5. It then suffices to numerically solve equation ( 5) in order to study the evolution. h λλ = (g AB e A λ e B λ ) -1 , n α e α a = 0. Also, notice that n α and e α λ can be replaced by n A and e A λ when contracted since they have vanishing angular components.

We then have where we used Γ B φφ = -1 2 g Br g φφ,r , Γ B θθ = -1 2 g Br g θθ,r and that the surfaces are defined as Σ ∼ γ × S 2 with γ a solution of eq. ( 5).

-K = -h
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 1 Figure1. Left: Maximal surfaces (blue lines) inside a two-sphere in flat Minkowski spacetime. The largest is the t = const. (bold black lines) defining its inertial frame. Right: Maximal surfaces (blue lines) inside a two-sphere on the horizon of a static black hole. Apart from the transient part connecting it to the horizon, the largest surface (bold black lines) lies on the limiting surface r = 3/2m. The volume difference between the spheres Sv and S v is finite and given by[START_REF] Giddings | Constraints on black hole remnants[END_REF].

Figure 2 .

 2 Figure 2. Penrose diagram illustrating the surface defining the volume (black curve) in the case of a black hole formed by collapse. The details of the surface in the interior of the collapsing object (dotted curve) will depend on the specific metric use to describe the latter. For Oppenheimer-Snyder and null massive shell collapses, this contribution to the volume is of the order m 3 .

Figure 3 .

 3 Figure 3. Eddington-Finkelstein diagram of the two families of extremal volume surfaces (blue lines) inside an evaporating black hole formed by a collapsing object. The surface defining the volume is in bold black. Note the close analogy with the static case, compare with Fig. 1.

Figure 5 .

 5 Figure 5. Speculative evolution of maximal surfaces in the case of a long-lived remnant scenario. The volume acquired during the evaporation process (continuous surfaces) deflates back to flat space (dotted surfaces). This is expected to happen in a time of order m 4 0 , during which all the information stored can be released.
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Other definitions for the volume have been proposed elsewhere[START_REF] Parikh | Volume of black holes[END_REF][START_REF] Grumiller | The volume of 2d black holes[END_REF][START_REF] Dinunno | The Volume Inside a Black Hole[END_REF][START_REF] Ballik | The volume of stationary black holes and the meaning of the surface gravity[END_REF][START_REF] Cvetic | Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume[END_REF][START_REF] Gibbons | What is the Shape of a Black Hole?[END_REF][START_REF] Ballik | Vector volume and black holes[END_REF].

[START_REF] Hossenfelder | Conservative solutions to the black hole information problem[END_REF] The Reissner-Nordström spacetime, in which case C depends on the charge Q, was studied in the Appendix of[START_REF] Christodoulou | How big is a black hole?[END_REF] and similar results hold also for AdS black holes[START_REF] Ong | Never Judge a Black Hole by Its Area[END_REF]. The Kerr case is considered in[START_REF] Bengtsson | Black holes: Their large interiors[END_REF].

The family of surfaces discussed in the next section includes the surfaces used for maximal slicing, but keep in mind that we do not restrict ourselves to surfaces satisfying the "singularity avoidance" or the "nowhere-null" condition. In fact, half of each family of K = 0 surfaces we will study end at the singularity and become null there.

The existence of the limiting surface r = 3/2m was first pointed out in[START_REF] Estabrook | Maximally slicing a black hole[END_REF]. It is crucial for the singularity avoidance property of the maximal slicing, which is in fact comprised by the Σv extended to infinity. Similar elongated surfaces are studied in numerical relativity[START_REF] Hannam | Where do moving punctures go?[END_REF][START_REF] Baumgarte | Analytical representation of a black hole puncture solution[END_REF] and have been dubbed "trumpet geometries"[START_REF] Dennison | Trumpet Slices in Kerr Spacetimes[END_REF].

An alternative scenario in which this process happens must faster by assuming faster-than-light propagation of a shock-wave from the bounce region is considered in[START_REF] Barceló | Mutiny at the white-hole district[END_REF][START_REF] Barceló | Where does the physics of extreme gravitational collapse reside[END_REF].

In[START_REF] Zhang | Entropy in the interior of a black hole and thermodynamics[END_REF] it is argued that these surfaces do not store enough information for purification. However, in that work the Hawking temperature is assumed constant. The computed information is therefore the one stored in a static black hole, and it is not pertinent to this discussion.

Acknowledgments

The authors thank Carlo Rovelli, Alejandro Perez and Thibaut Josset for the many discussions on this subject, Abhay Ashtekar for private communications that clarified aspects of the ideas in [8] and Thomas Baumgart for exchanges on maximal surfaces and their use in numerical relativity.

We would like to thank Marina Konstantatou for pointing us towards applications of maximal sur-

Appendix

In the notation of Section I, the mean extrinsic curvature is defined by

where ∇ is the covariant derivative in g αβ and n α is the normal to Σ. The Levi-Civita connections of g AB and gAB are related by:

For the calculation that follows, keep in mind the following: e α φ = δ α φ , e α θ = δ α θ , h φφ = g φφ , h θθ = g θθ ,