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Abstract. Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume

operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states –with

finite-volume individual nodes– describing a region with total volume smaller than V , has finite dimension,

bounded by V log V . This allows us to introduce the notion of “volume entropy”: the von Neumann entropy

associated to the measurement of volume.

I. Introduction

Thermodynamical aspects of the dynamics of spacetime
have first been pointed out by Bekenstein’s introduction
of an entropy associated to the horizon of a black hole
[1]. This led to the formulation of the “laws of black holes
thermodynamics” by Bardeen, Carter, and Hawking [2]
and to Hawking’s discovery of black role radiance, which
has reinforced the geometry/thermodynamics analogy
[3]. The connection between Area and Entropy suggests
that it may be useful to treat aspects of space-time sta-
tistically at scales large compared to the Planck length
[4], whether or not we expect the relevant microscopic el-
ementary degrees of freedom to be simply the quanta of
the gravitational field [5], or else. Black hole entropy, in
particular, can be interpreted as cross-horizon entangle-
ment entropy (see [6] for recent results reinforcing this
interpretation, and references therein), or –most likely
equivalently– as the von Neumann entropy of the statis-
tical state representing a macrostate with given horizon
Area. In the context of Loop Quantum Gravity (LQG),
this was considered in [7] and later extensively analyzed;
for a recent review and full references see [8, 9].

All such developments are based on the assignment of
thermodynamic properties to spacetime surfaces. This
association has motivated the holographic hypothesis:
the conjecture that the degrees of freedom of a region
of space are somehow encoded in its boundary.

In this paper, instead, we study statistical properties
associated to spacetime regions. We show that it is pos-
sible to define a Von Neumann entropy for the quantum
gravitational field, associated to the Volume of a region,
and that this entropy is (under suitable conditions) fi-
nite. The existence of an entropy associated to bulk
degrees of freedom of a spin network was already con-
sidered in [10].

To this aim, we prove a finiteness result on the num-
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ber of quantum states of gravity describing a region of
finite volume. More precisely, we work in the context
of LQG, and we prove that the dimension of the space
of diffeomorphism invariant quadrivalent states without
zero-volume nodes, describing a region of total volume
smaller than V is finite. We give explicitly the upper
bound of the dimension as a function of V . The proof
is based on a result on the spectrum of the LQG Vol-
ume operator proven by Brunnemann and Rideout [11,
12]. Using this, we define the Von Neumann entropy of
a quantum state of the gravitational field associated to
Volume measurements.

II. Counting spin networks

Consider the measurement of the volume of a 3d space-
like region Σ. The physical system measured is the grav-
itational field. In the classical theory, this is given by
the metric q on Σ: the volume is V =

∫

Σ

√
det q d3x.

In the quantum context, using the LQG formalism, the
geometry of Σ is described by a state in the kinematical
Hilbert space Hdiff. The volume measurement of Σ are

described by a volume operator V̂ on this state space.
We refer to [13, 14] for details on basic LQG results and
notation.
We restrict Hdiff to four-valent graphs Γ where the

nodes n have non-vanishing (unoriented) volume vn. The
spin network states |Γ, jl, vn〉 ∈ Hdiff, where jl is the link
quantum number or spin, form a countable, orthonormal
basis of Hdiff. (We disregard here eventual additional
quantum numbers such as the orientation, that have no
bearing on our result.) The intertwiner basis at each
node is chosen so that the local volume operator V̂n, act-
ing on a single node, is diagonal and is labelled by the
eigenvalues vn, of the node volume operator V̂n associ-
ated to the node n.

V̂n |Γ, jl, vn〉 = vn|Γ, jl, vn〉 (1)

The states |Γ, jl, vn〉 are also eigenstates of the total vol-

ume operator V̂ =
∑N

n=1 V̂n, where N is the number of
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nodes in Γ, with eigenvalue

v =
N
∑

n=1

vn, (2)

the sum of the node volume eigenvalues vn.
We seek a bound on the dimension of the subspace HV

spanned by the states |Γ, jl, vn〉 such that v ≤ V . That
is, we want to count the spin-networks with volume less
than V . We do this by bounding the number NΓ of four
valent graphs in HV , the number N{jl} of possible spin
assignments, and the number of the volume quantum
numbers assignments N{vn} on each such graph. Clearly

dimHV ≤ NΓ N{jl}N{vn}. (3)

Crucial to this bound is the analytical result on the
existence of a volume gap in four-valent spin networks
found in [11, 12]. The result is the following. In a node
bounded by four links with maximum spin jmax all non-
vanishing volume eigenvalues are larger than

vgap ≥ 1

4
√
2
ℓ3Pγ

3

2

√

jmax (4)

Where ℓP is the Planck constant and γ the Immirzi pa-
rameter. Numerical evidence for equation (4) was first
given in [15] and a compatible result was estimated in
[16]. Since the minimum non-vanishing spin is j = 1

2 ,
this implies that

vgap ≥ 1

8
ℓ3Pγ

3

2 ≡ vo (5)

From the existence of the volume gap, it follows that
there is a maximum value of NΓ, because there is a max-
imum number of nodes for graphs in HV , as every node
carries a minimum volume vo. Therefore a region of vol-
ume equal or smaller than V contains at most

n =
V

vo
(6)

nodes. Equation (4) bounds also the number of allowed
area quantum numbers, because too large a jmax would
force too large a node volume. Therefore N{jl} is also
finite. Finally, since the dimension of the space of the
intertwiners at each node is finite and bounded by the
value of spins, it follows that also the number N{vn} of
individual volume quantum numbers is bounded. Then
(3) shows immediately that the dimension ofHV is finite.
Let us bound it explicitely.
We start by the number of graphs. The number of

nodes must be smaller than n, given in (6). The number
NΓ of 4-valent graphs with n nodes is bounded by

NΓ ≤ n4n (7)

because each node can be connected to each other nn

four times (nn)4.

Equation (4) bounds the spins. Since we must have
V ≥ vgap, we must also have

j ≤ jmax ≤ 32
V 2

ℓ6Pγ
3
=

1

2
n2 (8)

In a graph with n nodes there are at most 4n links (the
worst case being all boundary links), and therefore there

are at most (2jmax + 1)
4n

spin assignments, or, in the

large j limit, (2jmax)
4n
. That is

N{jl} ≤ (2jmax)
4n ≤ n8n (9)

Finally, the dimension of the intertwiner space at each
node is bounded by the areas associated to that node:

dimKj1,j2,j3,j4 =

= dim InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4)

= min (j1 + j2, j3 + j4)− max ((j1 − j2), (j3 − j4)) + 1

≤ 2 max(jl∈n) + 1 ≤ 4 max(jl∈n)

with the last step following from max(jl∈n) ≥ 1/2. Thus
on a graph with n nodes, the maximum number of com-
bination of eigenvalues is limited by:

N{vn} ≤ (4jmax)
n = 2nn2n (10)

Combining equations (3), (7), (9) and (10), we have
an explicit bound on the dimension of the space of states
with volume less than V = nvo:

dimHV ≤ (cn)14n (11)

where c is a number. For large n we can write

SV ≡ log dimHV ≤ 14n logn (12)

which is the entropy associated to Hilbert space. Explic-
itly

SV ≤ 14
V

vo
log

V

vo
∼ V logV. (13)

In the large volume limit, when the eigenvalues become
increasingly dense, this corresponds to a density of states
ν(V ) ≡ d(dimHV )/dV similarly bounded

ν(V ) < 14 [log(n) + C] (cn)14n. (14)

III. Von Neumann proper volume

entropy

In the previous section, we have observed that the di-
mension of the space of (with four-valent, finite-volume
nodes) quantum states with total volume less than V
is finite. This results implies that there is a finite von
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Neumann volume entropy associated to statistical states
describing to volume measurements.

The simplest possibility is to consider the micro-
canonical ensemble describing the volume measurement
of a region of space. That is, we take Volume to be
a macroscopic (or thermodynamic, or“coarse grained”)
variable, and we write the corresponding statistical mi-
crostate that maximizes entropy. If the measured volume
is in the interval IV = [V − δV, V ], with small δV , then
the corresponding micro-canonical state is simply

ρ =
PV,δV

dimHV

. (15)

where PV,δV is the projector on

HV,δV ≡ Span{|Γ, jl, vn > : v ∈ IV }. (16)

namely the span of the eigenspaces of eigenvalues of the
volume that are in IV . Explicitly, the projector can be
written in the form

PV,δV ≡
∑

v∈IV

|Γ, jl, vn >< Γ, jl, vn| (17)

The von Neumann entropy of (15) is

S = −Tr[ρ log ρ] = log dimHV < SV ∼ V logV. (18)

It is interesting to consider also a more generic state
where ρ ∼ p(V ), for an arbitrary distribution p(V ) of
probabilities of measuring a given volume eigenstate with
volume V . For this state, the probability distribution of
finding the value V in a volume measurement is

P (V ) = ν(V )p(V ) (19)

and the entropy can be written as the sum of two terms

S =

∫

dV ν(V )p(V ) log(p(V )) = S1 + S2 (20)

where the first

SP = −
∫

dV P (V ) log(P (V )) (21)

is just the entropy due to the spread in the outcomes of
volume measurements, while the second

SVolume ≡ S − SP =

∫

dV P (V ) log(ν(V )) (22)

can be seen as as a proper volume entropy. The bound
found in the previous Section on ν(V ), which indicates
that ν(S) grows less that V 2, shows that this proper
volume entropy is finite for any distribution P (V ) whose
variance is finite. SVolume can be viewed as the irre-
ducible entropy associated to any volume measurement.

IV. Lower bound

Let us now bound the dimension of HV from below. The
crucial step for this is to notice the existence of a max-
imum δV in the spacing between the eigenvalues of the
operator V̂n. For instance, if we take a node between
two large spins j and two 1

2 spins, the volume eigen-
values have decreasing spacing, with maximum spacing
for the lowest eigenvalues, of the order vo. Disregarding
irrelevant small numerical factors, let’s take vo as the
maximal spacing.
Given a volume V , let, as before, n = V/v0 and con-

sider spin networks with total volume in the interval
In = [(n − 1)vo, nvo]. Let Nm be the number of spin
networks with m nodes that have the total volume v
in the interval In. For m = 1, there is at least one
such spin network, because of the minimal spacing. For
m = 2, the volume v must be split between the two
nodes: v = v1 + v2. This can be done in at least n − 1
manners, with v1 ∈ Ip and v1 ∈ In−p and p running
from 1 to n− 1. This possibility is guaranteed again by
the existence of the maximal spacing. In general, for m
nodes, there are

Nn,m =

(

n− 1

m− 1

)

(23)

different ways of splitting the total volume among nodes.
This is the number of compositions of n in m subsets.
Finally, the number m of nodes can vary between 1 and
the maximum n, giving a total number of possible states
larger than

Nn =

n
∑

m=1

Nn,m =

n
∑

m=1

(

n− 1

m− 1

)

= 2n−1. (24)

From which it follows that

dimHV ≥ 2n−1. (25)

Can all these states be realised by inequivalent spin
networks, with suitable choices of the graph and the
spins? To show that this is the case, it is sufficient to
display at least one (however peculiar) example of spin
network for each sequence of vn. But given an arbitrary
sequence of vn we can always construct a graph formed
by a single one dimensional chain of nodes, each (except
the two ends) with two links connecting to the adjacent
nodes in the chain and two links in the boundary. All
these spin networks exist and are non-equivalent to one
another. Therefore we have shown that there are at least
2n−1 states with volume between V − vo and V . In the
large volume limit we can write

dimHV ≥ 2n = 2
V

vo . (26)

so that the entropy satisfies

cV ≤ S ≤ c′V logV. (27)

with c and c′ constants.
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V. Discussion

Geometrical entropy associated to surfaces of given Area
plays a large role in the current discussions of the quan-
tum nature of spacetime. Here we have shown that, un-
der suitable conditions, it is also possible to compute
a Von Neumann entropy associated to measurements of
the Volume of a region of space. We have not discussed
possible physical roles played by this entropy. A number
of comments are in order:

(i) Since in the classical low energy limit Volume and

area are related by V ∼ A
3

2 , the Volume entropy
we have considered SV ∼ V logV ∼ A

3

2 logA may
exceed the Bekenstein bound S < SA ∼ A. Volume
entropy is accessible only by being in the bulk, and
not necessarily from the outside, therefore it does
not violate the versions of the Bekenstein bound
that only refer to external observables.

(ii) The result presented above depends on the restric-
tion of Hdiff to four-valent states. We recall that
the discussion is currently open in the literature on
which of the two theories, with or without this re-
striction, is physically more interesting, with good
arguments on both sides. However, it might be
possible to extend the results presented here to the
case of higher-valent graphs. Indeed, there is some
evidence that there is a volume gap in higher-valent
cases too, see for instance [17]. The effect of zero-
volume nodes on the Volume entropy will be dis-
cussed elsewhere.

(iii) Volume entropy appears to fail to be an extensive
quantity. The significance of this conclusion de-
serves to be explored. This feature is usual for sys-
tems with long range interactions, and in particu-
lar for systems of particles governed by the grav-
itational interaction. It is suggestive that grav-
ity could retain this feature even when there are
no interacting particle, and the role of long range
interactions is taken by “long range” connections
between graph nodes1. A final word on this be-
haviour, however, has to wait for a more precise
computation of the entropy growth with volume.

(iv) It has been recent pointed out that the interior of
an old black old contains surfaces with large volume
[18, 19] and that the large volume inside black holes
can play an important role in the information para-
dox [9, 20]. The results presented here may serve to
quantify the corresponding interior entropy.

(v) A notion of entropy associated to the volume of
space might perhaps provide an alternative to Pen-
rose’s Weyl curvature hypothesis [21]. For the sec-

1Of course they are not really long range, in the sense that

graph connections actually define locality.

ond principle of thermodynamics to hold, the initial
state of the universe must have had low entropy.
On the other hand, from cosmic background radi-
ation observations, the initial state of matter must
have been close to having maximal entropy. Pen-
rose addresses this discrepancy by taking into con-
sideration the entropy associated to gravitational
degrees of freedom. His hypothesis is that the de-
grees of freedom which have been activated to bring
the increase in entropy from the initial state are the
ones associated to the Weyl curvature tensor, which
in his hypothesis was null in the initial state of the
universe. A definition of the bulk entropy of space,
which, as would be expected, grows with the vol-
ume, could perhaps perform the same role as the
Weyl curvature degrees of freedom do in Penrose’s
hypothesis: the universe had a much smaller vol-
ume close to its initial state, so the total available
entropy was low - regardless of the matter entropy
content - and has increased since, just because for
a space of larger volume we have a greater number
of states describing its geometry.

(vi) We close with a very speculative remark. Does the
fact that entropy is large for larger volumes im-
ply the existence of an entropic force driving to
larger volumes? That is, could there be a statistical
bias for transitions to geometries of greater volume?
Generically, the growth of the phase space volume
is a driving force in the evolution of a system: in
a transition process, we sum over out states, more
available states for a given outcome imply greater
probability of that outcome. A full discussion of
this point requires the dynamics of the theory to
be explicitly taken into account, and we postpone
it for future work.
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