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Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using
analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable
MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting
of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of
practical interest are considered in the optimizations. Compared to conventional approaches, substantial
gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model
system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were
experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes
were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum
coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective
pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants,
triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.

PACS numbers: 02.30.Yy, 03.65.Aa, 43.60.Hj, 76.60.-k, 82.56.-b, 82.56.Jn
Keywords: Multiple quantum excitation; Optimal control; Maximum quantum coherence; Unitary bound;
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I. INTRODUCTION

The simplification and editing of complicated and over-
lapping spectra is highly desirable in many applications,
such as the analysis of complex mixtures or of large
biomolecules. To a certain extent, this can be achieved
by using two-dimensional multi-quantum NMR spec-
troscopy. The largest spectral simplification for homonu-
clear experiments is obtained by exciting and evolving
the maximum quantum (MaxQ) order (also denoted ”to-
tal spin coherence”1,2) that can be created in a given
spin system3–10. A variety of pulse sequence elements
have been developed for the excitation of multiple quan-
tum coherence3–7. The standard pulse sequence element
based on non-selective pulses and delays has the basic
form 90◦-∆-90◦4. In practice, an additional 180◦ pulse is
applied in the center of the delay ∆ to refocus chemical
shift evolution5. The delay ∆ between the 90◦ pulses can
be optimized based on theoretical transfer functions if all
coupling constants are known or it can be determined ex-
perimentally to achieve the best signal-to-noise ratio for
a given application11.
However, in general the excitation of high quantum or-
ders by simple 90◦-∆-90◦ sequence elements is quite in-
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efficient. In order to generate MaxQ coherence, this se-
quence requires that there is at least one spin in the sys-
tem that is directly coupled to all other spins. Especially
for large spin systems, the smallest coupling constant
(long-range coupling) forms a bottleneck for the speed
of multiple quantum generation, resulting in long inter-
pulse delays ∆ and concomitant signal loss due to relax-
ation. Significantly improved MaxQ excitation efficiency
can be achieved by using more sophisticated sequences
adapted to specific coupling topologies1,12.

The efficient excitation of multiple quantum coherence
is also of interest for multiple quantum filters3,13 and for
multiple quantum EPR spectroscopy.14–17

Ultimately we are interested in the best possible pulse
sequence for a given application and a defined set of po-
tential spin systems. More specifically, here we focus on
the following questions:

(a) What is the physical limit of the efficiency with
which multiple quantum coherence of a desired order can
be created in a given spin system with defined coupling
constants and resonance frequencies?

(b) What is the shortest possible pulse sequence dura-
tion T ∗ that is required to reach this physical limit for a
given spin system?

(c) What is the maximum possible efficiency of multi-
ple quantum generation for shorter times, i.e. if the du-
ration T of the pulse sequence is limited to T < T ∗?
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The answers to questions (a)-(c) would provide bench-
marks that allow us to judge the relative performance of
any known or future pulse sequence. Further questions
of immediate practical relevance are:

(d) What is the best possible pulse sequence for a given
coupling network with defined coupling constants?

(e) What is the best performance of relatively simple
pulse sequences (consisting of a small number of hard
pulses and delays) and how large is the achievable gain
relative to the simple 90◦-∆-90◦ pulse sequence element?

Question (a) can be answered based on the gen-
eral concept of unitary bounds of spin dynamics18–24.
Questions (b)-(e) can be explored using optimal-control-
based analytical methods25–28 and numerical optimiza-
tion algorithms, such as GRAPE (gradient ascent pulse
engineering)29–33 to optimize multiple quantum excita-
tion sequences. Previously, this algorithm has been suc-
cessfully used for a large range of NMR applications of
uncoupled34–37 as well as coupled spin systems29,38–42,
including multiple quantum excitation in solid state
NMR43 and the efficient implementation of quantum
algorithms44. Although it has been demonstrated that
relaxation effects can be fully taken into account in
GRAPE optimizations29,39,40,45–47, for simplicity here we
focus on the excitation of MaxQ coherence in liquid state
NMR of small molecules, where relaxation effects can be
neglected. In this paper we demonstrate general meth-
ods of pulse design for excitation of maximum-quantum
coherence, focusing on specific exemplary families of spin
systems, which are in part motivated by experimen-
tal work on mixtures of mono- and polycyclic aromatic
hydrocarbons8. We discuss the theory and apply it to
weakly coupled homonuclear spin systems consisting of
up to five spins 1/2. A time-frequency analysis48 of the
numerically optimized pulse shapes was used to help re-
veal the principles of their mode of action. The signif-
icantly improved performance of numerically optimized
pulse sequences is also demonstrated experimentally.

II. THEORY

A. Quality factors for excitation of multiple quantum
coherence

The state of a spin system is characterized by the den-
sity operator ρ(t) and its equation of motion is given by
the Liouville-von-Neumann equation3:

ρ̇(t) = −i[H, ρ(t)], (1)

where H is the total Hamiltonian H = H0 +Hrf which
consist of the free evolution Hamiltonian H0 and the
radio-frequency (rf) Hamiltonian Hrf .

The free evolution Hamiltonian

H0 = Hoff +Hc (2)

consists of the offset term

Hoff =
M∑
k=1

2πνkIkz, (3)

where M is the number of spins in the coupling network.
In the case of homonuclear spin systems without residual
dipolar couplings49, the coupling term is isotropic3:

Hiso
c =

∑
k<l

2πJkl(IkxIlx + IkyIly + IkzIlz). (4)

In the weak coupling limit (|νk−νl| ≫ |Jkl|), the coupling
term can be simplified to

Hlong
c =

∑
k<l

2πJklIkzIlz (5)

during delays or periods of weak rf irradiation. How-
ever, note that even in the weak coupling limit the full
isotropic coupling termHiso

c can be recovered by irradiat-
ing isotropic mixing sequences50–52. The coupling term
in Eq. (5) is often called ”weak coupling term”. How-
ever, here we prefer the term ”longitudinal coupling”53

in order to avoid any confusion that may be created by
the fact that in weakly coupled spin systems an isotropic
coupling HamiltonianHiso

c or a longitudinal effective cou-
pling Hamiltonian Hlong

c can be created, depending on
the irradiated sequence. For a rigorous definition and a
more detailed discussion of the limiting cases considered
here, see Appendix A.

The non-selective rf Hamiltonian is given by

Hnon-sel
rf = 2π(ux(t)Fx + uy(t)Fy), (6)

where ux(t) and uy(t) are the amplitudes of the x- and

y-components of the rf field and Fα =
∑M

k=1 Ikα (for
α ∈ {x, y, z}). In the limit of hard spin-selective pulses38

which address each spin individually, the rf Hamiltonian
can be expressed as

Hsel
rf = 2π

M∑
k=1

(ukx(t)Ikx + uky(t)Iky) , (7)

see Appendix A for more details.
In the optimizations the goal is to find pulse sequences

that steer a given initial density operator ρ(0) in a spec-
ified time T to a density operator ρ(T ) which has maxi-
mum overlap with a desired target operator. Starting at
thermal equilibrium, the initial density operator is pro-
portional to

ρ(0) = Fz =
∑
k

Ikz (8)

and the target state of the density operator is the multi-
ple quantum operator

P+ =
M∏
k=1

I+k =
M∏
k=1

(Ikx + iIky) (9)
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of MaxQ order M .
The efficiency of MaxQ generation by a given pulse

sequence can be quantified by the quality factor19,20,22,24

Q =
|⟨ρ(T )|P+⟩|

||ρ(0)|| · ||P+||
, (10)

i.e. by the absolute value of the scalar product be-
tween the (normalized) final density operator ρ(T ) and
the (normalized) target operator P+, where ||ρ(T )|| =
||ρ(0)|| if relaxation can be neglected. A given initial
pulse can be efficiently optimized in an iterative fashion
using the GRAPE algorithm in combination with a finite
difference gradient29,31,32.

B. Approaches of pulse sequence optimization

Here we consider three different approaches of pulse
sequence optimization, corresponding to three major
classes of pulse sequences (c.f. Fig. 1, for more details
see Appendix A and section I of the Supplementary
Material55):
Approach I: In the most general approach, arbitrary

pulse shapes ux(t) and uy(t) are considered that are irra-
diated during a given duration T (c.f. Fig. 1 A). We con-
sider weakly coupled homonuclear spin systems, where
the spins are assumed to have large offset differences
compared to Jmax, where Jmax is the largest coupling
constant in the spin system as discussed in section IIA
and in Appendix A.
A detailed analysis showed that it is helpful to con-
sider four limiting cases: isotropic (iso) and longitudi-
nal (long) coupling both with non-selective (non-sel) or
spin-selective (sel) pulses (c.f. Table II, Fig. 6 and Ap-
pendix A). This distinction is important to qualitatively
and quantitatively understand the theoretically achiev-
able limits and to put the numerically obtained opti-
mization results in perspective. Even in the presence
of large offset differences it is possible to recover the full
isotropic coupling term Hiso

c , e.g. in isotropic mixing
experiments50,52. However, numerical tests showed that
the optimization algorithm is likely to be trapped in lo-
cal maxima for relatively weak initial pulse amplitudes
and hence is often not able to reach the case of isotropic
mixing (data not shown). In addition, as discussed be-
low, some transfer schemes are based on spin-selective
rotations. Although such selective rotations can always
be realized using a non-selective rf Hamiltonian Hnon-sel

rf

(c.f. Eq. (6)) and delays (assuming the spins have dif-
ferent offset frequencies due to different chemical shifts),
the resulting pulse sequence durations strongly depend
on the offset differences in the spin system. In these
cases, a much simpler, offset-independent picture results
if one considers the limiting case of hard selective pulses
with negligible duration using the rf Hamiltonian Hsel

rf

(c.f. Eq. (7))38.
Approach II: In the second approach (c.f. Fig. 1 B), we

considered sequences of NB basic building blocks54 where

FIG. 1. Schematic representation of the families of pulse se-
quences considered here for excitation of multiple quantum
coherence: (A) arbitrary pulse shapes ux(t) and uy(t) of du-
ration T that are optimized in approach I, (B) sequence of
NB basic building blocks (represented by dotted boxes) that
is used in approach II, where in the given example the num-
ber of blocks NB is four. Each block consists of a hard pulse
of arbitrary flip angle αk and phase φk, a period ∆long

k of
longitudinal coupling evolution and an optional period ∆iso

k

of isotropic mixing (represented by a grey box; approach II
(iso/long)), (C) sequences consisting of NP 90◦ pulses sep-

arated by periods ∆long
k of longitudinal coupling evolution,

where in the given example NP = 4. The (NP − 1) delays

∆long
k are optimized in approach III. The phases φk of the

pulses are fixed to either x or y and combinations of these
phases were considered, (D) basic 90◦-∆-90◦ sequence with
phase difference φ2 −φ1 = π/2 or 0 for excitation of multiple
quantum coherence of odd or even order, respectively4,5.

each block consists of (a) a hard pulse of arbitrary flip

angle αk and phase φk, (b) a period ∆long
k of longitudinal

coupling evolution and (c) an optional period ∆iso
k of

isotropic mixing (approach II (iso/long)). In practice, we
focused on sequences consisting of NB = 4 and NB = 16

blocks and the sequence parameters αk, φk, ∆
long
k and

∆iso
k were optimized for 1 ≤ k ≤ NB (c.f. section II B of

the Supplementary Material55).

Approach III: In the third approach we focused on sim-
ple sequences consisting only of NP pulses with fixed flip

angles of 90◦ separated by periods ∆long
k of longitudinal

http://dx.doi.org/10.1063/1.4945781
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FIG. 2. Schematic representation of the considered ideal-
ized coupling topologies: (A-D) show spin chains consist-
ing of up to five spins 1/2. The corresponding offsets are
given in Table I. In addition to the the case of only nearest-
neighbor couplings Jk,k+1 = Jmax (solid lines), we also con-
sider the case of additional second-nearest neighbor couplings
Jk,k+2 = Jmax/7 (dottet lines). (E) shows the case of a three-
spin chain with unequal coupling constants (J12 = Jmax,
J23 = Jmax/2) and (F) shows the case of a triangular cou-
pling topology with couplings J12 = Jmax, J13 = Jmax/2 and
J23 = −Jmax.

TABLE I. Summary of the assumed relative offsets νk/Jmax

and coupling constants Jk,l/Jmax for spin systems A-F
(c.f. Fig. 2), where the asterisk (∗) denotes second-nearest
neighbor coupling constants that by default are assumed to be
zero, except in Figs. 4 and 5 where also second-nearest neigh-
bor coupling constants Jk,k+2 = Jmax/7 (c.f. dotted lines in
Fig. 2) are considered for approach III.

spin system spin number k
1 2 3 4 5 Jk,k+1 Jk,k+2

A 0 100 - - - 1 -
B 100 0 -100 - - 1 0
C 200 100 0 -100 - 1 0∗

D 200 100 0 -100 -200 1 0∗

E 100 0 -100 - - {1, 1/2} 0
F 100 0 -100 - - {1, 1/2} -1

coupling evolution (c.f. Fig. 1 C). For systems consist-
ing of up to four spins, the phases φk of the pulses were
fixed to either x or y and all possible combinations of
these phases were investigated. For five spins, only the
case of identical pulse phases was considered.
The pulse sequences resulting from approaches II and

III can be made broadband by inserting 180◦ refocusing
pulses in the delays (approaches II and III) and by using
broadband isotropic mixing sequences (approach II).

III. RESULTS AND DISCUSSION

A. Idealized spin systems describing molecular coupling
topologies

We investigated the efficiency of MaxQ excitation for
the idealized spin systems shown in Fig. 2. Motivated by

FIG. 3. Examples of 1H spin systems that are approxi-
mately represented by some of the idealized coupling topolo-
gies shown in Fig. 2: (A) In fluoranthene, the protons labeled
H1-H3 (red) and H′

1-H
′
3 (green) form two (approximately iso-

lated) three-spin chains (Fig. 2 B) and the protons labeled
H′′

1 -H
′′
4 (blue) form a four-spin chain (Fig. 2 C). (B) The

proton spin system of phenol can be approximated by a five-
spin chain (Fig. 2 D). (C) The proton spin system of 2,3-
dibromopropionic acid with J12 = 11.4 Hz, J23 = 4.4 Hz, and
J13 = −10.15 Hz is approximated by the idealized triangular
coupling topology of Fig. 2 F.

previous MaxQ experiments on mixtures of mono- and
polycyclic aromatic hydrocarbons8, we studied idealized
linear chains of coupled spins with only nearest-neighbor
couplings Jk,k+1 = Jmax (solid lines in Fig. 2). In addi-
tion, we also considered the more realistic case of addi-
tional second-nearest neighbor couplings Jk,k+2 (dotted
lines in Fig. 2). Fig. 3 shows examples of molecules with
coupling topologies that are approximated by some of
the idealized coupling topologies show in Fig. 2. For ex-
ample, for the 1H spin systems of mono- and polycyclic
aromatic hydrocarbons such as fluoranthene and phenol
(c.f. Fig. 3 A and B), typical Jk,k+2/Jmax ratios are in
the order of 1/7. Long range Jk,k+3 couplings, which
are typically at least one order of magnitude smaller, are
neglected here. The relative size of the coupling con-
stants of the idealized spin system shown in Fig. 2 F
closely approximate the situation in the 1H spin system
of 2,3-dibromopropionic acid (c.f. Fig. 3 C) with the ex-
perimentally determined coupling constants J12 = 11.4
Hz, J23 = 4.4 Hz, and J13 = −10.15 Hz56. The coupling
network shown in Fig. 2 E forms an intermediate case
between Fig. 2 B and 2 F.

Based on numerical optimizations for each coupling
topology, we systematically optimized the efficiency of
MaxQ excitation as a function of the pulse sequence du-
ration T using approaches I-III. The results are summa-
rized in Figs. 4, 5 and 6. The unitary bound Qmax

18–24

http://dx.doi.org/10.1063/1.4945781


5

for the achievable efficiency of MaxQ excitation (c.f. Ta-
ble II) is indicated in each panel of Figs. 4 and 5 by a
horizontal dotted line.

B. Approach I: TOP curves and unitary bounds

The maximum possible MaxQ excitation efficiency as
a function of pulse sequence duration can be explored
numerically using approach I and its graphical represen-
tations (marked by solid circles in Figs. 4 and 5 for ap-
proach I (iso; sel)) are called TOP (time optimal pulse)
curves25,38. The numerical TOP curves provide a bench-
mark to judge the relative performance of conventional
pulse sequences and of simple sequences based on ap-
proach II or III. The shaded areas in Figs. 4 and 5 repre-
sent the ”forbidden” regions of the graphs, i.e. all possible
experimental MaxQ excitation schemes are bounded by
the TOP curve. For increasing pulse durations, the TOP
curves closely approach the theoretical unitary bounds.

In order to determine the best numerical estimate of
the minimum times T ∗(num) and T ∗

long(num) for the
case of isotropic and longitudinal coupling, respectively,
the logarithm of the difference between the unitary bound
Qmax and the numerically obtained optimal quality fac-
tors Q(T ) for approach I (iso; non-sel) (black open dia-
monds), approach I (iso; sel) (red circles) and approach
I (long; sel) (blue squares) is plotted in Fig. 6. Note
that the limiting cases of approach I (iso; non-sel) with
|νk−νl| ≫ Jmax and approach I (iso; sel) with hard spin-
selective pulses should result in identical TOP curves.
However as discussed in section II B, for the case of fi-
nite offset differences |νk − νl|, it is expected, that the
optimizations with approach I (iso; non-sel) yield longer
pulse durations in comparison to approach I (iso; sel).
For cases B to F, the deviations are only on the order of
10% (c.f. Fig. 6). For case A, the numerical optimization
of non-selective pulses starting from random sequences
surprisingly yielded durations about twice as long as the
pulse durations found for hard spin-selective optimiza-
tions. This is due to trapping in local maxima because
T ∗ is closely approached when starting with the analyt-
ical solution discussed in section III F. The minimum
times T ∗(num) and T ∗

long(num) found to approach the

unitary bound with an error of less than 10−5 in the
isotropic and longitudinal coupling limit are defined in
Fig. 6 as the intersections of the horizontal dashed line
(log(Qmax −Q) = −5) with the red solid curve and the
blue solid curve, respectively. The numerically deter-
mined values T ∗(num) and T ∗

long(num) are summarized
in Table II. As expected for the case of linear spin chains
T ∗(num) increases monotonically with increasing chain
length from 0.26/Jmax forM = 2 to 0.90/Jmax forM = 5
due to the necessity of additional relay steps.

C. Conventional approach 90◦-∆-90◦ (approach III with
Np = 2 pulses)

In addition to the unitary bound and the TOP curves,
in each panel of Fig. 4 the MaxQ excitation efficiency of
the basic 90◦y-∆-90◦φ pulse sequence element (with φ = x

if M is odd and φ = y if M is even5) is shown by red
solid curves for comparison (assuming Jk,k+2 = 0 for the
spin chains in Fig. 2 B-E).
The basic two-pulse sequence reaches the unitary bound
only for the two-spin system (Fig. 4 A), but a pulse dura-
tion of T = 0.5/Jmax is necessary, which is about twice as
long as the minimum time T ∗(num) of approach I (iso;
sel). For the considered three-spin systems, the basic
two-pulse sequence reaches only about 33% of the uni-
tary bound (Figs. 4 B, E, F). No MaxQ coherence can be
created by the simple two-pulse sequence for spin chains
consisting of four and five spins (Fig. 4 C and D) if only
nearest-neighbor couplings are non-zero (Jk,k+2 = 0).
This is expected as in this case there exists no spin that
is coupled to all remaining spins in the coupling network
(see Fig. 2 C, D as well as section III B of the Supple-
mentary Material55). Only for the case of non-vanishing
second-nearest neighbor coupling (Jk,k+2 ̸= 0), MaxQ
coherence is created by the simple two-pulse sequence,
see dashed red curves (−−) in Fig. 4 C and D. Even
in this case, the transfer efficiency of the two-pulse se-
quence is small compared to the unitary bound (50 % at
T = 3.5 J−1

max for 4 spins; 20 % at T = 3.5 J−1
max for 5

spins) and the buildup of MaxQ coherence is slow. The
low transfer efficiency is explained by the fact that only
a fraction of the spins are coupled to all other spins of
the chain. For example, in the five-spin chain (Fig. 4 D),
only the center spin (I3) is coupled to all remaining spins
of the chain. Hence, only the polarization I3z can serve
as a source of MaxQ coherence, whereas the polariza-
tions I1z, I2z, I4z and I5z cannot be used by this sim-
ple pulse scheme. The slow buildup of MaxQ coher-
ence is a result of the bottleneck formed by the relatively
small second-nearest neighbor couplings, chosen here as
J13 = J35 ≈ Jmax/7 as for the basic two-pulse experi-
ment the transfer function is proportional to the product
sin(πJ13T ) sin(πJ23T ) sin(πJ34T ) sin(πJ35T ) in the five-
spin chain.

D. More than two 90◦ pulses (approach III with Np > 2
pulses)

Significantly larger and faster excitation of MaxQ co-
herence can be achieved using more than two 90◦ pulses
(approach III). In Fig. 5, the green solid curves represent
the achievable transfer efficiency based on approach III
for the case of Np = M , where M is the number of spins,
assuming Jk,k+2 = 0 for the spin chains in Fig. 2 A-D.

All possible combinations of pulse phases x or y were
simulated for systems consisting of up to four spins and
only the curves for the best combinations are presented

http://dx.doi.org/10.1063/1.4945781
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FIG. 4. Panels A-F show the maximum quantum (MaxQ) excitation efficiency Q (c.f. Eq. (10)) for several excitation schemes as
a function of pulse sequence duration T for the corresponding idealized coupling topologies of Fig. 2 A-F. The unitary bound for
the maximum efficiency of MaxQ generation (c.f. Table II) is indicated in each panel by a horizontal dotted line, the maximum
achievable efficiency Q for any given pulse sequence duration T is given by the time-optimal pulse (TOP) curve (marked by
solid circles), which is found using approach I (iso; sel) for the case of isotropic coupling with Jk,k+2 = 0. The shaded area
limited by the TOP curve and the unitary bound represents the ”forbidden” regions of the graphs. The achievable transfer
efficiency of the conventional building block consisting of two 90◦ pulses (corresponding to approach III with Np = 2 pulses)
is represented by red curves. For the case Jk,k+2 = Jmax/7 (c.f. panels C, D, asterisk in Table I), the corresponding transfer
functions are represented by dashed curves (−−) of the same color. Since the three-spin ring system F is already defined by
a non-zero second-nearest neighbor coupling J13 = −Jmax, the transfer function of the conventional sequence is depicted by a
solid curve. The pulse sequence duration T is given relative to the inverse of the largest coupling constant Jmax in each spin
system.

TABLE II. For the spin systems represented in Fig. 2 A-F, the table summarizes the unitary bound for the maximum quantum
excitation efficiency Qmax. M is the number of spins in the coupling network. T ∗ denotes the minimum pulse duration
necessary to approach the unitary bound in the isotropic mixing regime (c.f. Eq. (4)), whereas T ∗

long denotes the results in
the longitudinal coupling limit (c.f. Eq. (5)). The fourth and sixth columns give the numerically found estimates T ∗(num)
and T ∗

long(num). T ∗(num) and T ∗
long(num) are calculated based on the optimizations with approach I (iso; sel) and approach

I (long; sel), respectively (c.f. Fig. 6). The analytical minimal pulse duration T ∗(ana) for the two-spin system A as well as
T ∗
long(ana) for the two-spin system A and the three-spin system B are derived in sections IV and V of the Supplementary

Material55 and summarized in the fifth and seventh column.

M spin system Qmax T ∗(num) T ∗(ana) T ∗
long(num) T ∗

long(ana)

2 A 1/
√
2 ≈ 0.707 0.26 J−1

max 1/4 J−1
max 0.50 J−1

max 1/2 J−1
max

3 B
√

3/8 ≈ 0.612 0.57 J−1
max - 0.88 J−1

max

√
3/2 J−1

max ≈ 0.866 J−1
max

E
√

3/8 0.71 J−1
max - 1.52 J−1

max -

F
√

3/8 0.44 J−1
max - 0.84 J−1

max -

4 C 1/2 0.68 J−1
max - 1.26 J−1

max -

5 D
√

5/32 ≈ 0.395 0.90 J−1
max - 1.61 J−1

max -

http://dx.doi.org/10.1063/1.4945781
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FIG. 5. In addition to the TOP curves (solid black curve with solid circles) for the coupling topologies A-F, the transfer
efficiencies achievable by pulses optimized using approach III with Np = M pulses and M + 1 pulses (where M is the number
of spins) are represented by green and orange curves, respectively, assuming Jk,k+2 = 0. Note that for system A with M = 2,
the red curve from Fig. 4 A corresponds to Np =M . For the case Jk,k+2 = Jmax/7 (c.f. asterisk in Table I), the corresponding
transfer functions are represented by dashed curves (−−) of the same color (c.f. panel D). Since the three-spin ring system F
is already defined by a non-zero second-nearest neighbor coupling J13 = −Jmax, the transfer efficiency achievable by approach
III is depicted by a solid curve (green and orange for Np =M pulses and M + 1 pulses, respectively). Open and solid squares
represent results of block optimizations (approach II) without and with periods ∆iso

k of isotropic mixing (approach II (long),
approach II (iso/long)), respectively. Squares connected by light blue lines correspond to the optimization of NB = 4 blocks,
whereas squares connected by dark blue lines correspond to the optimization of NB = 16 blocks.

in Fig. 5 (see section II C and Table S2 in the Supple-
mentary Material55). The studies of the five spin system
(Fig. 5 D) were limited to the case where all pulse phases
are identical. For the spin chains (Fig. 2 A-D), approach
III yields simple and quite efficient pulse sequences for
Np = M pulses. The necessary time to reach the uni-
tary bound is 1.92 T ∗ for M = 2 spins, 1.75 T ∗(num) for
M = 3 spins, 2.21 T ∗(num) forM = 4 and 2.22 T ∗(num)
for M = 5 spins. The resulting pulse sequences can be
analyzed in a straightforward way using the product op-
erator formalism (see sections III.A and III B of the Sup-
plementary Material55 for two illustrative examples). For
the case of a linear three-spin chain with equal coupling
constants J (spin system B), the optimal sequence con-
sists of three 90◦ pulses with identical phases separated
by delays of 1/(2J), which is identical to the sequence
proposed in references 1 and 12 for an AX2 system cor-
responding to a linear three-spin topology.

While for the case of linear chains (or symmetric cou-
pling topologies) with equal coupling constants it is pos-
sible to derive sequences with reasonable transfer efficien-
cies by hand using the well-known rules of the product

operator formalism1,12, finding optimal pulse sequences
in the case of unequal couplings or complex coupling net-
works is a highly non-trivial task. The effect of including
second-nearest neighbor couplings is shown in Fig. 5 D
for Np = M = 5. In contrast to the case of the two-pulse
sequence (Fig. 4 D), the dashed green line (for the case
Jk,k+2 = Jmax/7) and the solid green line (for the case
Jk,k+2 = 0) are quite similar because the sequences ex-
ploit the large nearest-neighbor couplings. Only for short
pulse durations T < 1.6/Jmax, the achieved MaxQ coher-
ence of the five-pulse sequence can be slightly improved
by taking the Jk,k+2 couplings into account. Similar re-
sults are found for the three and four spin chains (data
not shown).

For the three-spin system of Fig. 2 E with unequal
couplings, the largest transfer amplitude of the sequence
consisting of Np = M = 3 pulses (90◦) is only about
71% of the unitary bound (c.f. Fig. 5 E). For the three-
spin systems of Fig. 2 F, the unitary bound is reached,
but only for a relatively long pulse duration of 4J−1

max ≈
9.09 T ∗(num) (c.f. Fig. 5 F). Increasing the number of
90◦ pulses from Np = M = 3 to Np = M + 1 = 4 (or-
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FIG. 6. The logarithm of the difference between the unitary bound Qmax and the numerically obtained optimal quality factors
Q(T ) for the pulse sequences optimized with approach I as a function of the pulse sequence duration T is shown. The red circles
(connected by red lines to guide the eye) correspond to the idealized limiting case of hard spin-selective pulses in the presence
of isotropic couplings, approach I (iso; sel). Similarly, the blue squares (connected by blue lines) depict the idealized limiting
case of hard spin-selective pulses in the presence of longitudinal couplings, approach I (long; sel). The numerical estimates of
the minimum pulse durations T ∗(num) and T ∗

long(num) (c.f. Table II) required to approach the unitary bound with an error

of less than 10−5 are determined by the intersections of the horizontal dashed line (corresponding to log(Qmax − Q) = −5)
with the red (approach I (iso; sel)) and blue (approach I (long; sel)) curves. In addition to the idealized cases of hard selective
pulses, optimization results for the more realistic case of non-selective pulses in the presence of isotropic couplings and different
offset frequencies (c.f. Table IV in Appendix A) are represented by black diamonds, approach I (iso; non-sel). In panels B-E,
only the case of vanishing couplings between next-nearest neighbors (Jk,k+2 = 0) is considered for simplicity (c.f. Fig. 4).

ange solid curves) only slightly improves the achievable
transfer efficiency in Fig. 5 E. However, in Fig. 5 F the ad-
ditional degrees of freedom reduce the pulse sequence du-
ration to achieve the unitary bound by 50% to only about
4.55 T ∗(num). In the three-spin system of Fig. 5 B, the
use of four 90◦ (Np = M + 1) pulses only improves the
transfer efficiency compared to sequences consisting of
three 90◦ pulses (Np = M) for pulse sequence durations
that are longer than the time T = 1/Jmax to reach the
unitary bound.

E. Approach II: NB blocks

Finally, Fig. 5 also shows the results of block optimiza-
tions using approach II. Open and solid blue squares rep-
resent results of block optimizations without and with
periods ∆iso

k of isotropic mixing, respectively (approach
II (long) and approach II (iso/long)). Light blue squares
connected by light blue lines correspond to the optimiza-
tion of NB = 4 blocks, whereas dark blue squares con-
nected by dark blue lines correspond to the optimization
of NB = 16 blocks. In the considered symmetric spin
chains, no (Fig. 5 A, B) or relatively small (Fig. 5 C,
D) gains are found compared to approach III (Np = M).
However, in Fig. 5 E and F, significantly improved perfor-
mance is found using approach II compared to approach
III. In comparison to the performance of 4 blocks, 16
blocks yield slightly larger quality factors Q. The linear

coupling topology with unequal couplings (Fig. 2 E) is the
only spin system of the spin topologies considered here,
where the use of isotropic mixing periods in approach
II was found to be beneficial (see Fig. 5 E). Here, even
with only four blocks, approach II (iso/long) yields pulse
sequences that closely approach the unitary bound near
T = 2 J−1

max(which is about 2.8 T ∗(num)) whereas for
the same time the four-block sequences without isotropic
mixing reaches only about 80% of the unitary bound.
The optimized pulse sequences (with and without
isotropic mixing periods) for topology E based on ap-
proach II with four blocks and for a pulse duration of
T = 2.2 J−1

max (close to the minimum time of approach
II to reach the unitary bound) are summarized in sec-
tion II B of the Supplementary Material55.

F. Analysis of pulses by time-frequency representations

Approach I does not assume a restricted family of pulse
sequences and provides maximum flexibility for pulse se-
quence optimization. This allows us to explore the phys-
ical limits of pulse performance and to establish bench-
marks for the maximum achievable MaxQ efficiency as
a function of pulse duration, as discussed above. How-
ever, the large number of available degrees of freedom
generally results in quite complicated and rapidly oscil-
lating pulse shapes (c.f. Fig. S1 in the Supplementary
Material55) that are difficult to interpret. As shown
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FIG. 7. Resonance-frequency-adapted phase-sensitive spectrograms48 of pulse sequences optimized using approach I (iso; non-
sel) with Jk,k+2 = 0 for the pulses shown in Fig. S1 in the Supplementary Material55. The normalized amplitude A(t, ν) is
depicted as brightness and the phase φ(t, ν) is visualized as color (c.f. color bar Fig. 8 A). Panel B of the figure is reproduced
with permission from J. Magn. Reson. 249, 64 (2014). Copyright 2014 Elsevier Inc.

TABLE III. Approximate flip angles α for each peak in the
spectrogram. The flip angles are determined by integration
over the ux amplitude along time for the crosssection pulse
shapes shifted to x phase. The integration limits are given as
factors for the pulse duration T .

offset A B
νk/Jmax (T = 0.53 J−1

max) (T = 0.88 J−1
max)

α limits /T α limits /T

100 99◦ 0 - 0.19 90◦ 0 - 0.4
98◦ 0.81 - 1 90◦ 0.6 - 1

0 96◦ 0 - 0.19 33◦ 0 - 0.15
96◦ 0.81 - 1 162◦ 0.15 - 0.83
- 76◦ 0.83 - 1

-100 - 90◦ 0 - 0.4
- 90◦ 0.6 - 1

previously48, a joint time-frequency analysis of pulses
can provide a more intuitive and intelligible spectrogram
representation of shaped pulses. Fig. S2 in the Supple-

mentary Material55 shows representative absolute value
spectrograms of pulses that were optimized for the spin
systems summarized in Fig. 2 using approach I (iso; non-
sel). Since the non-selective optimizations with approach
I (iso; non-sel) do not achieve T ∗(num) determined with
approach I (iso; sel) (c.f. section II B), non-selective se-
quences which closely approach Qmax with T & T ∗ are
chosen for the spectrogram representations of spin sys-
tems C-F (c.f. Fig. 2). For coupling topologies A and B,
pulses with duration T ≈ T ∗

long were chosen, although

these pulses were optimized using approach I (iso; non-
sel) in the limit of isotropic coupling and non-selective
pulses. For T ≈ T ∗

long interesting pulse shapes could be
identified and analyzed. The spectrogram representation
provides detailed information about the time-frequency
structure of the pulses, which is not obvious in the tem-
poral representation. In addition, Fig. 7 depicts cor-
responding resonance-frequency-adapted phase-sensitive
spectrograms48. Although the pulse shapes were not re-
stricted, the optimized pulses contain almost exclusively
frequency components close to the offset frequencies νk
of these spin systems. (This property is also found for
shorter and longer pulse durations.) In Fig. 8 A and B,
cross sections of Fig. 7 A and B are shown at the offsets
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FIG. 8. The first and third columns show the cross sections of the phase-sensitive two-dimensional spectrogram representation
(Fig. 7, approach I (iso; non-sel)) at the resonance frequencies of each spin (different rows) in systems A and B. The horizontal
dashed lines visualize the threshold of 0.15 Amax for the determination of the effective flip angle by integration of the ampli-
tude over time. The areas of the individual peaks multiplied with the maximum amplitude Amax (Amax(A) = 135.9 Jmax,
Amax(B) = 36.7 Jmax) correspond to the effective flip angles with the assumption of constant phase. The phase φ(t, ν) is color
coded. The second and fourth columns (A′, B′) show the schematic representation of the analytically derived, globally optimal
pulse sequences based on the time-optimal (system A: T ∗

long(ana) = 1/(2J), system B: T ∗
long(ana) =

√
3/(2J)) sequences for

the generation of effective bilinear and trilinear coupling terms in system A and B in the longitudinal coupling limit (approach
I (long; sel)). θ, φ and ψ are arbitrary phase angles and describe the relationships of the pulse phases to each other. α is an
arbitrary flip angle. Column B of the figure is reproduced with permission from J. Magn. Reson. 249, 64 (2014). Copyright
2014 Elsevier Inc.

νk.

For system A (two-spin system) the optimized pulse
sequence corresponds to the well-known approach shown
in Fig. 8 A’ for longitudinal coupling. Two 90◦ pulses
that simultaneously act on both spins are separated by
a delay of about 1/(2J). For each spin, the phases of
the first and last pulses are identical (c.f. section III C
approach III and Fig. 8 A and A’)4,6.

Surprisingly, the shortest numerically optimized se-
quence using approach I (iso; non-sel) that closely ap-
proached the unitary bound had a duration of only
0.47/J when starting with random initial pulses, indi-
cating that it is possible to achieve MaxQ excitation in
a duration that is shorter than 0.50/J . This numerical
finding motivated a more detailed theoretical analysis of
the minimum transfer time.

This analysis showed that it is in fact possible to
achieve full double-quantum excitation in a duration of
only T ∗(ana) = 0.25/J (c.f. Eq. (B16) in Appendix B
and section III C of the Supplementary Material) in the
limit of hard spin-selective pulses with negligible duration
and using a period of isotropic mixing, which to the best
of our knowledge has not been realized before. A detailed
theoretical analysis of this novel transfer scheme is given

FIG. 9. Schematic representation of the analytically derived
pulse sequence for the generation of MaxQ coherence in a
two-spin system with isotropic mixing based on non-selective
pulses. The I1x − I2x state which is necessary for the gener-
ation of double-quantum coherence is achieved by a delay of
1/(2∆ν) subsequent to the initial 90◦y pulse.

in Appendix B. It is based on the generation of the initial
state I1x − I2x before the isotropic mixing period, which
can also be achieved by a non-selective pulse followed by
a delay of duration 1/(2∆ν) (c.f. Fig. 9), assuming the
first spin to be on resonance (c.f. Table I).

However, as discussed above, in this case the optimiza-
tion algorithm based on non-selective pulses is prone to
be trapped in local maxima, which appears to prevent the
ab-initio optimization of the optimal isotropic mixing se-
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quence with T ∗(ana) = 0.25/Jmax. However, numerical
optimizations based on the spin-selective rf Hamiltonian
(c.f. Eq. (7))38 were able to closely approach T ∗(ana),
see solid red curve in Fig. 6 A. The numerically derived
TOP curves for hard spin-selective pulses in the pres-
ence of longitudinal and isotropic couplings are shown in
Fig. 6.

Superficially, also the sequence optimized using ap-
proach I (iso; non-sel) for system B (three-spin chain)
with T ≈ T ∗

long appears to essentially consist of strong
pulses applied at the beginning and at the end of the se-
quence, separated by a delay (c.f. Fig. 8 B). However, a
closer inspection reveals that in fact an entirely different
mechanism of maximum quantum excitation is exploited
by this sequence. Note that in the conventional approach
it would be mandatory to excite the second spin of the
three-spin chain, because only this spin is coupled to both
of the remaining spins of the system. The optimum du-
ration of the conventional pulse sequence (approach III,
Np = 2) is 0.5 J−1

max and only achieves a maximum effi-
ciency of 0.2041 (c.f. red curve in Fig. 4). However, the
shaped pulse optimized for system B has a significantly
longer duration of 0.88 J−1

max and is able to closely ap-

proach the unitary bound of
√
3/8 = 0.6124 (c.f. Fig. 5

and Table II). Hence the optimized sequence is a factor
of three (c.f. Appendix C and Fig. 10) more efficient than
the conventional approach! In order to analyze this supe-
rior performance of the optimized pulse in more detail, it
is helpful to inspect frequency-selective cross sections of
the two-dimensional spectrogram representation48, which
represent the individual pulse sequences that are expe-
rienced by each of the three spins (c.f. Fig. 8 B). In
contrast to the first and third spin, the second spin is
irradiated with a small but significant rf amplitude of
constant phase essentially during the entire duration of
the pulse sequence. This is reminiscent of analytically
derived time-optimal pulse sequences for the creation of
trilinear effective Hamiltonians in three-spin chains cor-
responding to system B with J13 = 0 in the longitudinal
coupling limit, so-called geodesic sequences26,27. This ob-
servation motivated a more detailed analysis of the opti-
mal excitation of triple-quantum coherence in the three-
spin chain. As shown in Appendix C, it is possible to an-
alytically derive the globally optimal pulse sequence with
longitudinal coupling Hamiltonian based on the time-
optimal sequence27 for the generation of an effective tri-
linear coupling Hamiltonian. Fig. 8 B shows a schematic
representation of the optimal geodesic sequence of du-
ration T ∗

long(ana) =
√
3/(2Jmax) ≈ 0.87/Jmax with an

amplitude of Jmax/
√
3 of the weak pulse that is applied

to the second spin. As shown in Figs. 7, 8 B and in Tables
III and S4 of the Supplementary Material55, the flip an-
gles, relative phases and the duration T ∗

long(num) closely
match the analytically derived time-optimal geodesic so-
lution of Fig. 8 B’ (maximum deviation of flip angles
0.5%, c.f. section VI of the Supplementary Material55).
Fig. 10 shows the efficiency of MaxQ excitation for sys-
tem B by representing the operator I+1 I+2 I+3 using the

DROPS (discrete representation of operators for spin
systems)57 visualization. The Figure was created using
the SpinDrops app58. As version 1.2 of SpinDrops as-
sumes ideal pulses with negligible coupling evolution dur-
ing the pulses, the long, weak I2-selective pulse of Fig. 8 B
was approximated using a DANTE-type sequence26 con-
sisting of pulses with small flip angles (5.6◦) separated

by delays (
√
3/(32 · 2Jmax) ≈ 0.027/Jmax). The con-

ventional sequence (c.f. Fig. 10 A) reaches its maximum
performance of 33% Qmax for T = 0.5/Jmax and shows a
decrease in the transfer efficiency for T > 0.5/Jmax as de-
scribed in section III B of the Supplementary Material55.
In contrast, the geodesic sequence (c.f. Fig. 10 B) achieves
49% Qmax for a pulse sequence duration of T = 0.5/Jmax

which corresponds to 146% of the transfer efficiency
achieved by the conventional sequence. For the analyt-
ically derived minimal time T ∗

long(ana) =
√
3/(2Jmax),

the efficiency of the geodesic pulse sequence approaches
the unitary bound of

√
3/8 in the longitudinal cou-

pling limit. Note that in the isotropic mixing case the
unitary bound is already approached for T ∗(num) =
0.57 J−1

max. Therefore, we can provide a shaped pulse
in the isotropic mixing limit which is not only a factor of
three more efficient (c.f. section III B of the Supplemen-
tary Material55 and Table II) but also only marginally
longer (T ∗(num) = 0.57J−1

max) than the conventional ap-
proach based on two 90◦ pulses (T = 0.50 J−1

max)! For
the remaining spin systems C-F, the numerically found
pulses are very complex and have relatively high rf am-
plitudes. The spectrogram representations of these non-
selective pulses (c.f. Figs. 7 and S2 in the Supplemen-
tary Material55) show that the sequences cannot be inter-
preted in terms of pulses and delays. Instead, the pulses
consist of spin-selective ramped irradiation periods that
often have constant rf phases.
Superficially, these pulse schemes are reminiscent of
ramped adiabatic irradiation schemes59,60, but a more
detailed analysis is beyond the scope of the present
manuscript.

IV. EXPERIMENTS

For an experimental demonstration of optimized MaxQ
excitation sequences, we chose the 1H spin system of
2,3-dibromopropionic acid (c.f. Fig. 3 C) dissolved in
CDCl3

56. The experiments were performed at room tem-
perature using a Bruker Avance 600 MHz spectrometer.
The experimentally determined coupling constants are
J12 = 11.4 Hz, J23 = 4.4 Hz, and J13 = −10.15 Hz.
A Shigemi tube (magnetic susceptibility matched for
CDCl3) with a diameter of 5 mm was used to achieve
a rf field with high homogeneity.
In the experiments, spin 1 was set on resonance (ν1 = 0),
and the offsets for spins 2 and 3 were 347 Hz and −130
Hz, respectively. After the excitation of MaxQ coherence
of order three, other coherences were eliminated using a
six-step phase cycling procedure. In all experiments, the
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FIG. 10. Efficiency of MaxQ excitation for a system consisting of three weakly coupled spins with J12 = J23 = Jmax and
J13 = 0 as a function of sequence duration for (A) the standard 90◦ −∆ − 90◦ sequence (c.f. Fig. 1 D) and (B) the geodesic
pulse sequence (c.f. Fig. 8 B’). The operator I+1 I

+
2 I

+
3 is visualized as donut-shaped objects using the DROPS representation57

(a generalized Wigner representation for coupled spin systems). The relative sizes of the shapes correspond to the relative
amplitudes (MaxQ efficiencies) of I+1 I

+
2 I

+
3 created by the different sequences and pulse durations. The color reflects a complex

phase factor eiΦ as defined by the color bar in Fig. 8, where x, y, −x and −y correspond to Φ = 0 (red), π/2 (yellow), π (green)
and 3π/2 (blue), respectively. The figure was created using the SpinDrops app58.

FIG. 11. Experimental and theoretical MaxQ excitation effi-
ciencies Q of conventional and optimized pulse sequences for
the 1H spin system of 2,3-dibromopropionic acid (Fig. 3 C)
with J12 = 11.4 Hz, J23 = 4.4 Hz, and J13 = −10.15 Hz for
pulse sequence durations 0 ≤ T ≤ 200 ms = 2.28/Jmax. Red
triangles and curves represent experimental and simulated Q
values for the simple standard sequence consisting of two 90◦

pulses, respectively. Green pentagons and curves (− ··) show
the experimental and theoretical performance of optimized
pulse sequences using approach III consisting of three 90◦

pulses separated by optimal delays. Light blue stars and open
squares (which are connected by straight lines to guide the
eye) represent experimental and simulated results of NB = 4
blocks (approach II (long) without periods of isotropic mix-
ing).

same sequence of 90◦x−τ−180◦−x−τ was used to convert
MaxQ coherence to detectable single quantum coherence
(c.f. section II D of the Supplementary Material55).
Fig. 11 shows the experimental excitation efficiencies and
the corresponding theoretical curves. Although the ex-

perimental relative coupling constants are similar to the
ideal case shown in Figs. 2 F, 4 F and 5 F, we recalcu-
lated the TOP curve (using approach I (iso; non-sel))
and the maximum excitation efficiency for approaches II
(long) and III for the actual experimental coupling con-
stants. A reasonable match is found between simulations
and experiments. The pulse sequence consisting of two
90◦ pulses performs better than the sequence with three
90◦ pulses for the experimental range of pulse durations.
But in agreement with Figs. 4 F and 5 F simulations show
that the optimized three 90◦ pulse sequence exceeds the
quality factor achieved by two 90◦ pulses considerably for
longer pulse durations (T = 250 ms, data not shown).
The minimum time to reach the unitary bound of MaxQ
excitation for the block optimization (approach II (long))
is about 0.14 s. This is about 88% shorter than the time
needed using approach III (Tmin = 1.15 s, determined by
numerical simulations). A factor of about three larger
MaxQ amplitude is obtained compared to conventional
approaches based on 90◦ pulses.

V. CONCLUSION

In this paper, we explored the physical limits of the
efficiency of maximum-quantum (MaxQ) excitation in
model spin systems with defined coupling constants and
offset frequencies. The detailed study of this topic opened
a surprisingly rich and multifaceted field of research with
many interesting aspects. For six model spin systems, the
maximum amplitude of MaxQ coherence was determined
using the general unitary bound of spin dynamics18–24.
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The shortest possible duration T ∗ to reach this bound
was numerically explored using the optimal-control based
design of arbitrary pulse shapes (approach I). This ap-
proach also allowed us to find time-optimal pulse (TOP)
curves25,38, which provide the maximum MaxQ ampli-
tude for durations that are smaller than T ∗. The TOP
curves were obtained by optimizing the MaxQ transfer
efficiency for a number of pulse sequence durations T
using approach I. As long as the offset frequencies are
sufficiently separated (|∆νmin| ≫ |Jmax|, where |∆νmin|
is the minimum difference of offset frequencies), the TOP
curves are independent of the specific chemical shifts and
hence provide a general benchmark for the assessment of
pulse sequences. However, the optimized pulse shapes
differ for different offset frequencies and it is desirable
to find robust offset-independent sequences that are also
simple to implement. We therefore considered two dif-
ferent types of simple sequences. In approach II, we
studied sequences consisting only of well defined broad-
band building blocks (hard pulses of arbitrary flip an-
gle and phase, longitudinal coupling evolution and op-
tional periods of isotropic mixing). In approach III, we
explored simple pulse sequences consisting only of hard
90◦ pulses with phases x or y and delays. The pulse se-
quences resulting from approaches II as well as III can
be made broadband by inserting 180◦ refocusing pulses
in the delays. It was found that approaches II and III
provide practical broadband sequences which closely ap-
proach the unitary bound. However, the sequence du-
rations of approach III to reach the unitary bound are
up to a factor of 2.2 longer than the minimum time
T ∗(num) for the case of chains consisting of up to five
spins (Figs. 4 A-D and 5 A-D). Large gains in MaxQ
excitation are found compared to simple sequences con-
sisting of two 90◦ pulses and a delay.
Based on the numerical results, a novel analytical trans-
fer scheme for two-spin systems was found. The appli-
cation of isotropic mixing and hard spin-selective pulses
allows for double-quantum coherence generation in two-
spin systems that is twice as fast as conventional ap-
proaches based on non-selective pulses and a delay.
The complicated pulse shapes resulting from approach
I were studied using short-time Fourier transform
spectrograms48. In particular for the case of three-spin
chains, this joint time-frequency representation provided
valuable insight into the mode of action of the numer-
ically optimized pulses. This allowed us to identify
the general family of globally optimal geodesic pulse se-
quences for MaxQ excitation in the limit of longitudinal
couplings. These geodesic sequences rely on a well de-
fined slow rotation of the center spin in addition to hard
pulses at the beginning and at the end. In practice, this
can be implemented by a selective weak pulse applied to
the central spin. Geodesic sequences that are robust to
variations in chemical shifts can be constructed by imple-
menting the slow rotation by a DANTE-type sequence61

based on (band-selective) small flip angle pulses and de-
lays in combination with broadband refocusing pulses26.

For systems with nearest-neighbor couplings and spin
chains with more than three coupled spins, a novel class
of MaxQ excitation sequences based on ramped, selective
pulses was found.
The optimal excitation of maximum quantum coherence
based on approach II and III was experimentally demon-
strated for the case of 2,3-dibromopropionic acid. A rea-
sonable match was found between the simulated and ex-
perimental MaxQ excitation efficiencies as a function of
pulse duration. Compared to the best sequences consist-
ing only of two 90◦ pulses, a sensitivity gain of about a
factor of three was experimentally achieved.

The unitary bounds summarized in Table II (and
Figs. 4 and 5) correspond to the case of spin systems
without permutation symmetry. This applies to the
spin systems that were considered here for the opti-
mizations using approach I, where all spins were as-
sumed to be selectively addressable, either by selective
pulses (Hsel

rf ̸= 0) or based on different offset frequencies

(Hoff ̸= 0), c.f. Table IV in Appendix A. For spin sys-
tems with magnetically equivalent spins, such as in AX2,
AX3, A2X2 spin systems etc., the unitary bounds can
be further tightened due to the presence of permutation
symmetry19,20,22,24.

Here, we focused on the optimization of experiments
for specific spin systems with well defined coupling
topologies, coupling constants and offset frequencies. It
is also possible to optimize robust pulse sequences for a
desired range of coupling constants, chemical shifts and
coupling topologies that are of interest for a given ap-
plication, such as the analysis of biofluids or mixtures
of aromatic hydrocarbons8. Conversely, it is also possi-
ble to maximize MaxQ excitation selectively for a given
set of spin systems while suppressing multiple quantum
excitation for others in order to simplify spectra with
overlapping signals.

In this paper the transfer from thermal equilibrium
(Fz) to MaxQ coherence (P+, c.f. Eq. (9)) was inves-
tigated. The reversed transfer from P+ to detectable
single quantum coherence can be optimized using the
same approach. The optimized Fz → P+ sequences can
be converted to P+ → Fz sequences by time and phase
inversion.12 An additional 90◦y pulse converts Fz to Fx.

However, the maximum efficiency19,20,22,24 for the trans-
fer between the two non-Hermitian operators P+ and
the detection operator F− is larger than for the trans-
fer between P+ and Fx and hence it is expected that an
additional gain in sensitivity by specifically optimizing
sequences for the P+ → F− transfer is achievable.

In the examples considered here, relaxation effects were
neglected, which is justified for applications to small
molecules, where relaxation times are longer than the du-
ration of multiple quantum excitation. This is the case
for 2,3-dibromopropionic acid62,63 with Jmax = 11.4 Hz
shown in Fig. 11, where the optimized, experimentally
implemented MaxQ excitation sequences based on block
optimization (approach II) have a duration of about
150 ms. For applications (e.g. to proteins), where relax-
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ation is not negligible, it is possible to include relaxation
effects in the pulse sequence optimization29,45.
The presented approach for efficient excitation of

MaxQ coherence can also be applied to study the effi-
cient generation of multiple quantum coherence of lower
order.
It is expected that the presented methods and bench-

marks will help to develop significantly improved pulse
sequences for practical applications.
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APPENDIX

Appendix A: Definition of the studied limiting cases and of
the minimal times T ∗ and T ∗

long

In order to see general trends in the maximum pos-
sible performance of MaxQ experiments, it is useful to
consider characteristic limiting cases, c.f. Table IV. This
provides a level of abstraction that allows us to estab-
lish generic benchmarks that are applicable for a large
class of experimentally relevant spin systems and pulse
sequences.
Possible criteria for the classification of spin systems

and the corresponding pulse sequences are
(a) homonuclear versus heteronuclear systems,
(b) weak versus strong coupling,
(c) longitudinal versus isotropic coupling terms,
(d) non-selective versus spin-selective pulses.
(a) Here, for simplicity we focus on the case of homonu-

clear spin systems. In heteronuclear spin systems, the
thermal equilibrium density operator depends on the rel-
ative size of the the gyromagnetic ratios of the spins and
is not simply proportional to Fz as in the homonuclear
case, c.f. Eq. (8). Hence the MaxQ excitation efficiency
depends on the specific combination of hetero spins. Fur-

thermore, the scaling factor Jeff,iso
kl /Jkl

52 is limited by
1/3 for the effective coupling constants in heteronuclear

isotropic mixing sequences52, whereas Jeff,iso
kl /Jkl ≤ 1 in

homonuclear experiments considered here.
(b) For simplicity, we only consider weakly coupled

(homonuclear) spin systems, where for all spin pairs Ik
and Il the coupling constants Jkl are much smaller than
the offset differences of the spins, i.e. |Jkl| ≪ |νk − νl|.
(c) It is important to note that even for weakly coupled

homonuclear spins systems, in general the full isotropic
coupling terms Hiso

c of Eq. (4) needs to be considered to
correctly describe the time evolution under an arbitrary
pulse sequence3. In particular it is possible to suppress
the offset terms Hoff of Eq. (3) and to recover the full

isotropic coupling terms Hiso
c (Eq. 4) with the help of

broadband isotropic mixing sequences52,64. If the maxi-
mum available rf amplitude umax is larger than the off-

sets νk, scaling factors Jeff,iso
kl /Jkl of about 1 can be

approached, i.e. Jeff,iso
kl ≈ Jkl. However, during delays

or periods of weak rf irradiation, the correct spin dy-
namics is closely approximated by considering only the
longitudinal coupling terms Hlong

c (c.f. Eq. (5)) in the
weak coupling limit.

(d) The sequence families considered in approaches II
and III consist only of idealized broadband, non-selective
pulse sequence elements such as hard pulses, periods of
longitudinal coupling evolution (corresponding to delays
with refocusing pulses) and periods of isotropic mix-
ing (corresponding to broadband isotropic mixing se-
quences). In the theoretical analysis of these sequences,
it is useful to consider the limit of short non-selective
pulses, where the duration of non-selective pulses (on the
order of u−1

max) is negligible compared to the overall pulse
sequence duration T (on the order of J−1

max), which is
valid if umax ≫ Jmax.

In the most general case of approach I, pulse se-
quences are not restricted to combinations of hard, offset-
independent pulses. Using frequency-selective weak irra-
diation, it is possible to realize spin-selective rotations.
In this case, it is useful to consider also the limit of hard
spin-selective pulses with negligible duration (duration
on the order of |νk − νl|−1), which can be approached if
|νk − νl| ≫ Jmax. Relatively fast spin-selective rotations
can be implemented by shaped pulses or by simple com-
binations of non-selective pulses and delays (c.f. Fig. 9).
We call this the limit of hard selective pulses. In this
limit, the theoretical analysis of homonuclear pulse se-
quences can be further simplified by describing the spin
system in a multiple-rotating frame (similarly as in the
case of heteronuclear spin systems). Hence, the offset-
term Hoff (c.f. Eq. (3)) of the free evolution Hamilton
H0 can be neglected when optimizing idealized sequences
to explore numerically the minimum time for MaxQ ex-
citation (see Table IV).

Note that the universal bound Qmax for the maximum
possible transfer amplitude for a given initial and final
state is independent of the experimental setting. How-
ever, the minimum time to achieve Qmax depends on the
parameters of the spin system and on the considered lim-
iting case. For simplicity, here we distinguish the mini-
mum times for the following two cases:

T ∗ denotes the minimal time to achieve the unitary
bound for a homonuclear spin system in the weak coupling
limit, but assuming the ability to exploit the full isotropic
coupling term Hiso

c and the limit of hard selective pulses
as defined above. This corresponds to situations, where
umax ≫ |νk − νl| ≫ Jmax.

T ∗
long denotes the minimal time to achieve the unitary

bound for a homonuclear spin system in the weak cou-
pling limit, assuming the limit where only longitudinal
coupling terms Hlong

c can be exploited. Furthermore, it
is assumed that hard spin-selective pulses can be short
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enough to be negligible compared to the overall pulse
sequence duration (hard selective pulses). This corre-
sponds to situations, where |νk − νl| ≫ umax ≫ Jmax.
For the sequence families in approaches I, II, and III,

Table IV summarizes all combinations of coupling ten-
sors (isotropic versus longitudinal) and pulse selectivity
considered in the text. For each of these cases, the used
terms in the Hamiltonian are indicated by a bullet. The
last column summarizes for which cases the minimum
times to excite MaxQ coherence were numerically ex-
plored and defines the corresponding labels used in the
text. Note that the limiting cases of approach I (iso;
non-sel) with |νk − νl| ≫ Jmax and approach I (iso; sel)
with hard spin-selective pulses are expected to require the
same minimum time T ∗. If this was not the case in the
numerical optimizations (c.f. section II B) the smaller of
these two values is given in Table II as our best numerical
estimates T ∗(num) of T ∗. As shown in Fig. 6, the smaller
minimum times were always found for the case of hard
selective pulses (red circles), whereas longer times were
found for the case of non-selective pulses (black open dia-
monds). Similarly, the limiting cases of approach I (long;
non-sel) and approach I (long; sel) are expected to re-
quire the same minimum time T ∗

long. For completeness,
table IV also summarizes the considered Hamiltonian
terms in the cases of isotropic and longitudinal couplings
for which the theoretical limits T ∗(ana) and T ∗

long(ana)

presented in Table II were derived analytically (c.f. sec-
tions IV and V of the Supplementary Material55).

Appendix B: Time optimal generation of double-quantum
coherence in a system consisting of two coupled spins

In this section, we analytically derive the minimum
times T ∗(ana) and T ∗

long(ana) to achieve the unitary

bound Qmax = 1/
√
2 (c.f. Table II) for the excita-

tion of double-quantum coherence in a homonuclear sys-
tem consisting of two spin 1/2 particles. Assuming
the limit of hard selective pulses with negligible dura-
tion, T ∗(ana) and T ∗

long(ana) correspond to the idealized

cases of isotropic and longitudinal coupling terms (Hiso
c ,

Eq. (4) and H long
c , Eq. (5)), respectively.

In order to derive T ∗(ana) and T ∗
long(ana), we first

identify the general form of a propagator U that achieves
the unitary bound for the desired transfer and we specify
the family of effective Hamiltonians creating propagators
of the desired form. Finally, the minimum time to create
the propagator U can be derived based on the results of
Khaneja et al.28,65,66

The transfer efficiency Q from an initial state A to a
target state C by the propagator U is defined as19,20,22,24

Q =
|⟨UAU†|C⟩|
||A|| · ||C||

(B1)

=
|Tr(UA†U†C)|√

Tr(A†A)
√
Tr(C†C)

, (B2)

which reduces to Eq. (10) for the initial density operator
ρ(0) = A, the final density operator ρ(T ) = UAU† and
the target operator C = P+.

The initial state A = I1z+I2z corresponds to the ther-
mal equilibrium operator for the case of a homonuclear
spin system and the target state C = I+1 I+2 to double-
quantum coherence with coherence order p = +2.

Explicit matrices for the operators A and C are given
in section IV A of the Supplementary Material55. For
these initial and final states and a general propagator
represented by the unitary matrix

U =

 u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 (B3)

(with in general complex matrix elements ukl), a straight-
forward calculation yields

Q =
1√
2
|u∗

11u41 − u∗
14u44|. (B4)

Based on Eq. (B4) and the properties of unitary matrices,
it can be shown (c.f. section IV B of the Supplementary
Material55) that the maximum transfer efficiency Q is
given by

Qmax =
1√
2
, (B5)

which corresponds to the unitary bound18–24 for this
transfer (c.f. Table II). The most general form of a prop-
agator achieving this bound is given by

Uopt =


1√
2
eir1 0 0 − 1√

2
eir2

0 u22 u23 0
0 u32 u33 0

1√
2
ei(r1+r3) 0 0 1√

2
ei(r2+r3)

 , (B6)

with arbitrary real numbers r1, r2, and r3 and where the
sub block consisting of the matrix elements u22, u23, u32,
and u33 can be an arbitrary unitary 2 × 2 matrix (see
section IV B of the Supplementary Material55). Hence,
the minimum times T ∗(ana) and T ∗

long(ana) to achieve
the unitary bound Qmax for the excitation of double-
quantum coherence correspond to the minimum times to
create a propagator of the form Uopt by a pulse sequence
in the isotropic and longitudinal coupling case, respec-
tively.

As shown in section IV C of the Supplementary
Material55, the creation of Uopt takes the same amount
of time as the creation of a propagator of the form

U bi = exp{−iπ(cxxI1xI2x+ cyyI1yI2y + czzI1zI2z} (B7)

with |cxx− cyy| = 1. U bi contains only the bilinear terms
I1xI2x, I1yI2y, and I1zI2z in the exponent and hence
has the appropriate form to derive the minimal times
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TABLE IV. Hamiltonian terms considered in different numerical and theoretical approaches. The Hamiltonian terms are
defined in the following equations of the main text: Hiso

c (Eq. (4)), Hlong
c (Eq. (5)), Hnon-sel

rf (Eq. (6)), Hsel
rf (Eq. (7)), and

Hoff (Eq. (3)). Numerical estimates T ∗(num) for the minimal duration T ∗ are provided both by approach I (iso; non-sel or
sel). Similarly, numerical estimates for T ∗

long are provided by approach I (long; non-sel or sel).

sequence family Hiso
c Hlong

c Hnon-sel
rf Hsel

rf Hoff min. time

approach I (iso; non-sel) • - • - • T ∗(num)
approach I (iso; sel) • - - • - T ∗(num)
theoretical limit (iso) • - - • - T ∗(ana)

approach I (long; non-sel) - • • - • T ∗
long(num)

approach I (long; sel) - • - • - T ∗
long(num)

theoretical limit (long) - • - • - T ∗
long(ana)

approach II (iso/long) • • • - - -
approach II (long) - • • - - -

approach III - • • - - -

T ∗(ana) and T ∗
long(ana) based on the approach of Yuan

and Khaneja.28.
In their paper, Eq. (19) of Theorem 2 defines the min-

imum time T required to generate a propagator U using
a constant Hamiltonian Hc by

β⃗n⃗ ≺s θ⃗
HcT (B8)

with β⃗n⃗ = θ⃗U + 2π n⃗ (B9)

for either n⃗ = (0, 0, 0) or n⃗ = (−1, 0, 0), where θ⃗Hc and

θ⃗U are the so-called canonical forms of the bilinear co-
efficients of the Hamiltonian H and the propagator U ,
respectively28. The symbol ’≺s’ represents the operator

of s-majorization and β⃗ is a real s-ordered vector of di-
mension three (see section IV D of the Supplementary
Material55).
For the longitudinal and isotropic coupling cases for

n⃗ = (0, 0, 0), Eq. (B8) results in

β⃗(0,0,0) = θ⃗U
bi

≺s θ⃗
HcT (B10)

corresponding to the conditions θU1
θU2
θU3

 ≺s 2πJ

 1
0
0

Tlong, (B11)

and  θU1
θU2
θU3

 ≺s 2πJ

 1
1
1

Tiso, (B12)

which are more restrictive than the conditions for
n⃗(−1,0,0). The inequalities (4) in the paper by Yuan and

Khaneja28, which describe the properties of s-majorized
vectors, translate to

θU1 + θU2 + |θU3 | ≤ 2πJTlong (B13)

and 2θU1 + 2θU2 ≤ 8πJTiso. (B14)

As derived in section IV D of the Supplementary
Material55, this implies that the minimum times
T ∗
long(ana) and T ∗(ana) = T ∗

iso are given by

T ∗
long(ana) =

1

2J
(B15)

and

T ∗(ana) =
1

4J
, (B16)

respectively.
The ideal pulse sequence for generating double-

quantum coherence in the isotropic coupling limit is
based on the conversion of the initial state I1x − I2x to
2I1yI2z − 2I1zI2y by an isotropic mixing period of dura-
tion 1/(4Jmax).

ρ(0) = I1z + I2z
90◦y−−→ I1x + I2x

180◦z(I2)−−−−−→ I1x − I2x
2πJ12(I1xI2x+I1yI2y+I1zI2z)1/(4J)−−−−−−−−−−−−−−−−−−−−−−−→2I1yI2z − 2I1zI2y

180◦z(I2)−−−−−→ 2I1yI2z + 2I1zI2y
90◦y−−→− 2I1yI2x − 2I1xI2y

The operator I1x − I2x is created from I1x + I2x by an
I2-selective 180

◦
z rotation, which can be realized by a de-

lay (c.f. Fig. 9). Similarly, the operator 2I1yI2z−2I1zI2y
(corresponding to zero-quantum coherence in the tilted
frame with the x axis as quantization axis), which is cre-
ated by the isotropic mixing period, can be transformed
by an I2-selective 180

◦
z rotation to 2I1yI2z+2I1zI2y (cor-

responding to double-quantum coherence in the tilted
frame with the x axis as quantization axis). A non-
selective 90◦y pulse finally results in −2I1yI2x − 2I1xI2y
(corresponding to the desired double-quantum coherence
in the rotation frame with quantization axis z). In
the context of heteronuclear cross-polarization experi-
ments, the creation of zero-quantum coherence by planar
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mixing52 and its conversion to double-quantum coher-
ence with the help of spin-selective 180◦ rotations has
been previously discussed67. However, for the heteronu-
clear case, a planar mixing period of duration 1/(2J)
would be required for the full conversion, whereas an
isotropic mixing period of duration 1/(4J) is sufficient
in the homonuclear case considered here (c.f. Fig. 9).

Appendix C: Time optimal generation of triple-quantum
coherence in a three-spin chain based on geodesic pulses

Here we consider the case of a linear three-spin
chain with only nearest-neighbor longitudinal couplings
J12 = J23 = J and J13 = 0. According to Eq. (B1), the
transfer efficiency from the initial state A = I1z+I2z+I3z
(corresponding to the thermal equilibrium operator for
the case of a homonuclear spin system) to the target
state C = I+1 I+2 I+3 (corresponding to triple-quantum co-
herence with coherence order p = +3) by a unitary trans-
formation U is given by

Q =
1

2
√
6
|3u∗

11u81 + u∗
12u82 + u∗

13u83 − u∗
14u84

+ u∗
15u85 − u∗

16u86 − u∗
17u87 − 3u∗

18u88| , (C1)

with the upper bound of (for details c.f. sections V A and
V B of the Supplementary Material55)

Qmax =

√
3

8
. (C2)

The unitary operator U achieving the maximal transfer
has the general form

Uopt =


1√
2
eir1 0 . . . 0 1√

2
eir2

0 u22 . . . u27 0
...

...
. . .

...
...

0 u72 . . . u77 0
− 1√

2
e−ir2 0 . . . 0 1√

2
e−ir1

 , (C3)

with arbitrary real numbers r1 and r2 (c.f. section V B
of the Supplementary Material55). In general, all U tri =
e−i2πI1ζ1I2ζ2I3ζ3 with ζi ∈ x, y have this form, since U tri

can be generated from e−i2πI1xI2xI3x by a unitary trans-
formation with e−i(α1I1z+α2I2z+α3I3z) (c.f. section V C of
the Supplementary Material55).
Particularly, U tri = e−i2πI1yI2xI3y has this form and

thus can achieve the maximal transfer efficiency. From
previous work26,27, the time optimal sequence generat-
ing U tri for a linear three-spin chain in the longitudinal
coupling limit with Hamiltonian Hlong

c = 2πJ(I1zI2z +
I2zI3z) is

e−iπ
2 (I1x−I2x+I3x)eT [−i2πJ(I1zI2z+I2zI3z)+i π

T I2x]

ei
π
2 (I1x+I3x), (C4)

where T = T ∗
long(ana) =

√
3/(2J) (c.f. section V D of

the Supplementary Material55).
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