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Here we study the optimum efficiency of the excitation of maximum
analytical and numerical methods based on optimal control theory. e theoretical limit of the achievable
MaxQ amplitude and the minimum time to achieve this limit aré explored fer a set of model systems consisting
of up to five coupled spins. In addition to arbitrary pulse s ,“6wo simple pulse sequence families of
practical interest are considered in the optimizations. o conventional approaches, substantial
gains were found both in terms of the achieved Max(Q amplitude ans in"pulse sequence durations. For a model
system, theoretically predicted gains of a factor of three c ared to the conventional pulse sequence were
experimentally demonstrated. Motivated by the numérical results; also two novel analytical transfer schemes
were found: Compared to conventional approaches, based on nign-selective pulses and delays, double-quantum
coherence in two-spin systems can be created twice as fatt sing isotropic mixing and hard spin-selective

pulses. Also it is proved that in a chain of thiree weakly coupled spins with the same coupling constants,
triple-quantum coherence can be created in atimesopti

\J | fashion using so-called geodesic pulses.

PACS numbers: 02.30.Yy, 03.65.Aa, 43.6 hlkk, 82.56.-b, 82.56.Jn

Keywords: Multiple quantum excitation; Optimal control; Maximum quantum coherence; Unitary bound;
Time-optimal transfer; GRAPE optim

antum (Max(Q) coherence using
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I. INTRODUCTION efficient. In order to generate Max(@ coherence, this se-

N

The simplification and editing of complimd over-
lapping spectra is highly desirable<in many applications,
such as the analysis of compléx mixtures or of large
n be achieved
by using two-dimensional NMR spec-
troscopy. The largest spectral simplifigation for homonu-
clear experiments is o?gned exCiting and evolving
the maximum quantun*( Q) order (also denoted ”to-

*Qj‘ilat can be created in a given
variety of pulse sequence elements

spin system?3 19,

form 90°-

of the delay A to refocus chemical
THe delay A between the 90° pulses can

ders by'simple 90°-A-90° sequence elements is quite in-

a)Electronic mail: glaser@tum.de

quence requires that there is at least one spin in the sys-
tem that is directly coupled to all other spins. Especially
for large spin systems, the smallest coupling constant
(long-range coupling) forms a bottleneck for the speed
of multiple quantum generation, resulting in long inter-
pulse delays A and concomitant signal loss due to relax-
ation. Significantly improved MaxQ excitation efficiency
can be achieved by using more sophisticated sequences
adapted to specific coupling topologies®!2.

The efficient excitation of multiple quantum coherence
is also of interest for multiple quantum filters®'? and for
multiple quantum EPR spectroscopy.!4 17

Ultimately we are interested in the best possible pulse
sequence for a given application and a defined set of po-
tential spin systems. More specifically, here we focus on
the following questions:

(a) What is the physical limit of the efficiency with
which multiple quantum coherence of a desired order can
be created in a given spin system with defined coupling
constants and resonance frequencies?

(b) What is the shortest possible pulse sequence dura-
tion T that is required to reach this physical limit for a
given spin system?

(c) What is the maximum possible efficiency of multi-
ple quantum generation for shorter times, i.e. if the du-
ration T" of the pulse sequence is limited to T' < T*7
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LPQ answers to questions (a)-(c¢) would provide bench-

iarks that allow us to judge the relative performance of

PUbI|§ﬁf| [«1& vn or future pulse sequence. Further questions
ot immediate practical relevance are:

(d) What is the best possible pulse sequence for a given
coupling network with defined coupling constants?

(e) What is the best performance of relatively simple
pulse sequences (consisting of a small number of hard
pulses and delays) and how large is the achievable gain
relative to the simple 90°-A-90° pulse sequence element?

Question (a) can be answered based on the gen-
eral concept of unitary bounds of spin dynamics!'®24.
Questions (b)-(e) can be explored using optimal-control-
based analytical methods?® 2?8 and numerical optimiza-
tion algorithms, such as GRAPE (gradient ascent pulse
engineering)?* 33 to optimize multiple quantum excita-
tion sequences. Previously, this algorithm has been suc-
cessfully used for a large range of NMR applications of
uncoupled®* 37 as well as coupled spin systems?%-38-42
including multiple quantum excitation in solid state
NMR*? and the efficient implementation of quantum
algorithms*?. Although it has been demonstrated that
relaxation effects can be fully taken into account in
GRAPE optimizations??:39:40:45-47 for simplicity here
focus on the excitation of Max(Q coherence in liquid stage
NMR of small molecules, where relaxation effects gan be
neglected. In this paper we demonstrate general =
ods of pulse design for excitation of maximu
coherence, focusing on specific exemplary familieg
systems, which are in part motivated ex

)
)

o]

tal work on mixtures of mono- and polycyeliesaromatic
hydrocarbons®. We discuss the theory’ and apply it to
weakly coupled homonuclear spin syste isting of
up to five spins 1/2. A time-frequency analygis*® of the

as used to help re-
of action. The signif-
neri¢ally optimized
erimentally.

numerically optimized pulse sha
veal the principles of their mo
icantly improved performan
pulse sequences is also de

itation of multiple quantum

4

stem is characterized by the den-
t) and its equation of motion is given by
eumann equation®:

of
nstr}tted

4

Il. THEORY

A. Quality factgrs for
coherence y.

ﬂ
The state of a spin

sity operat (
the Libuville-vi

5 p(t) = —i[H, p(1)], (1)

whh{ 1Sthe total Hamiltonian H = Ho + ‘H,s which
consistyof the free evolution Hamiltonian Hgy and the
radio-frequency (rf) Hamiltonian #,y.

The free evolution Hamiltonian

'HoZ'Hoff-i-'Hc (2)

consists of the offset term

M

Hoff - ZZm/kaz,
k=1

3)

where M is the number of spins in the coupling network.
In the case of homonuclear spin systems without residual
dipolar couplings*?, the coupling term is isotropic?:

S QW?{ (Iiolio + Tng Dy + I Ii). (4

k<l

180 __
HO =

In the weak coupling limit (|vg=v;| > |Jxi|), the coupling
term can be si

‘) 2n Il 1o (5)
duringfdelays periods of weak rf irradiation. How-
ever, pote that even in the weak coupling limit the full

isgtropiecoupling term H*° can be recovered by irradiat-
iflg isotro ixing sequences®® ®2. The coupling term
in Eq. is often called "weak coupling term”. How-
ver, ljgc we prefer the term ”longitudinal coupling”?®3
in“erder to avoid any confusion that may be created by
the fact that in weakly coupled spin systems an isotropic
ling Hamiltonian H*° or a longitudinal effective cou-
pling Hamiltonian H!°"9 can be created, depending on
e irradiated sequence. For a rigorous definition and a
more detailed discussion of the limiting cases considered
here, see Appendix A.
The non-selective rf Hamiltonian is given by

Hy gt = 27 (u (1) Py + wy (1) Fy), (6)

where u,(t) and u,(t) are the amplitudes of the z- and

y-components of the rf field and F, = ZQ/[:l I (for
a € {x,y,z}). In the limit of hard spin-selective pulses>
which address each spin individually, the rf Hamiltonian
can be expressed as

M
M35 =20 (e (t) Tiw + tny () Iky) (7)
k=1

see Appendix A for more details.

In the optimizations the goal is to find pulse sequences
that steer a given initial density operator p(0) in a spec-
ified time T to a density operator p(T) which has maxi-
mum overlap with a desired target operator. Starting at
thermal equilibrium, the initial density operator is pro-
portional to

p(0) =F. =Y I (8)
k

and the target state of the density operator is the multi-
ple quantum operator

M M
Pt =] 1} = [[Uke +ily) (9)
k=1 k=1
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The efficiency of Max(Q generation by a given pulse

Pu b||§H1!1l§lxg' can be quantified by the quality factor!?20,22,24

e
@ = @A

i.e. by the absolute value of the scalar product be-
tween the (normalized) final density operator p(T) and
the (normalized) target operator Pt, where ||p(T)| =
[lp(0)]] if relaxation can be neglected. A given initial
pulse can be efficiently optimized in an iterative fashion
using the GRAPE algorithm in combination with a finite
difference gradient9:31:32,

(10)

B. Approaches of pulse sequence optimization

Here we consider three different approaches of pulse
sequence optimization, corresponding to three major
classes of pulse sequences (c.f. Fig. 1, for more details
see Appendix A and section I of the Supplementary
Material®®):

Approach I In the most general approach, arbitrary

sider weakly coupled homonuclear spin systems, shere
the spins are assumed to have large offset diffe
compared to Jpqz, Where Jpq. is the largestt coupli
constant in the spin system as discussed in se ?ﬂjIA

and in Appendix A. -

A detailed analysis showed that it is he to ‘gon-
sider four limiting cases: isotropic (isé) andNongitudi-
nal (long) coupling both with non-selectiye “(non-sel) or

spin-selective (sel) pulses (c.f. Table II, Fi
pendix A). This distinction is i
and quantitatively understand
able limits and to put the
mization results in persp

of large offset differences it is'possiblefto recover the full
isotropic coupling terrg/"t 50 g in isotropic mixing
experiments®®°2. Ho ev:r‘ﬁﬁ{rirical tests showed that
the optimization algorithm is likely to be trapped in lo-
cal maxima for relatiyely weak initial pulse amplitudes
and hence is offén not able to reach the case of isotropic
mixing (data not sown). In addition, as discussed be-
low, some pransfer cheées are based on spin-selective
rotations. {Although stuch selective rotations can always
be realized uging aggon—selective rf Hamiltonian H:}}m'“l
. elays (assuming the spins have dif-
ferent offset frbquencies due to different chemical shifts),

i ulse sequence durations strongly depend
ffset differences in the spin system. In these
much simpler, offset-independent picture results
nsiders the limiting case of hard selective pulses

with negligible duration using the rf Hamiltonian ’Hf,jf

(c.f. Eq. (7))38.
Approach II In the second approach (c.f. Fig. 1 B), we
considered sequences of Ng basic building blocks®* where

D<)
-
pulse shapes u(t) and u,(t) are considered that are irr
diated during a given duration T' (c.f. Fig. 1 A). We cog-

FIG. 1. Schematic representation of the families of pulse se-
quences considered here for excitation of multiple quantum
coherence: (A) arbitrary pulse shapes uz(t) and uy(¢) of du-
ration T' that are optimized in approach I, (B) sequence of
Np basic building blocks (represented by dotted boxes) that
is used in approach II, where in the given example the num-
ber of blocks Np is four. Each block consists of a hard pulse
of arbitrary flip angle aj and phase ¢y, a period Aﬁ:”g of
longitudinal coupling evolution and an optional period A%*°
of isotropic mixing (represented by a grey box; approach II
(iso/long)), (C) sequences consisting of Np 90° pulses sep-
arated by periods Aﬁ:”g of longitudinal coupling evolution,
where in the given example Np = 4. The (Np — 1) delays
A;O"g are optimized in approach III. The phases pr of the
pulses are fixed to either z or y and combinations of these
phases were considered, (D) basic 90°-A-90° sequence with
phase difference w2 — 1 = 7/2 or 0 for excitation of multiple
quantum coherence of odd or even order, respectively®®.

each block consists of (a) a hard pulse of arbitrary flip
angle o, and phase ¢y, (b) a period A;O"g of longitudinal
coupling evolution and (c) an optional period A*° of
isotropic mixing (approach II (iso/long)). In practice, we
focused on sequences consisting of Ng =4 and N = 16
blocks and the sequence parameters oy, g, Aﬁ:”g and
A}f" were optimized for 1 < k < Np (c.f. section II B of
the Supplementary Material®®).

Approach III: In the third approach we focused on sim-
ple sequences consisting only of Np pulses with fixed flip
angles of 90° separated by periods Aﬁ:"g of longitudinal
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FIG. 2. Schematic representation of the considered ideal-
ized coupling topologies: (A-D) show spin chains consist-
ing of up to five spins 1/2. The corresponding offsets are
given in Table I. In addition to the the case of only nearest-
neighbor couplings Ji k+1 = Jmae (solid lines), we also con-
sider the case of additional second-nearest neighbor couplings
Ik k+2 = Jmaz/7 (dottet lines). (E) shows the case of a three-
spin chain with unequal coupling constants (Ji2 = Jmaaz,
J23 = Jmae/2) and (F) shows the case of a triangular cou-
pling topology with couplings Ji2 = Jmaz, J13 = Jmaz/2 and
J23 = _Jmaz'

TABLE I. Summary of the assumed relative offsets v/ Jmaz
and coupling constants Jg,;/Jmaer for spin systems A-F

zero, except in Figs. 4 and 5 where also second-nearest neigh-

This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

A

—-—

FIG. 3. Exan)ﬂes of 'H spin systems that are approxi-
at‘ay repr ted by some of the idealized coupling topolo-

s shownyin Fig. 2: (A) In fluoranthene, the protons labeled
1-Hs (':e’)) and H}-Hj (green) form two (approximately iso-
e-spin chains (Fig. 2 B) and the protons labeled

{ (blue) form a four-spin chain (Fig. 2 C). (B) The

. lated
(c.f. Fig. 2), where the asterisk (*) denotes second-neare H )
. . 1~
neighbor coupling constants that by default are assumed t"K ‘otdn spin system of phenol can be approximated by a five-

bor coupling constants Ji k+2 = Jmas/7 (c.f. dotted e!.]‘\~d‘ibrornopropionic acid with Ji» = 11.4 Hz, Jo3 = 4.4 Hz, and

Fig. 2) are considered for approach III.

spin number k
1 2 3 4 5

spin system

A 0 100 - - - \
B 100 0 -100 - - 1% 0
C 200 100 0 -100 = 1 7
D 200 100 0 -10 10"
E 100 0 -100 /2} 0
F 100 0 -100 /- /2}

.“For systems consist-

,%he phases ¢ of the pulses were
y and all possible combinations of
icated. For five spins, only the

ing of up to four spj

IIT can be
pulses in t

approaches II and III) and by using
i¢ mixing sequences (approach II).

SU AND DISCUSSION
=~

lized spin systems describing molecular coupling
topologies

We investigated the efficiency of MaxQ excitation for
the idealized spin systems shown in Fig. 2. Motivated by

spin chain (Fig. 2 D). (C) The proton spin system of 2,3-

Jiz = —10.15 Hz is approximated by the idealized triangular
coupling topology of Fig. 2 F.

previous Max(Q experiments on mixtures of mono- and
polycyclic aromatic hydrocarbons®, we studied idealized
linear chains of coupled spins with only nearest-neighbor
couplings Ji k41 = Jmas (solid lines in Fig. 2). In addi-
tion, we also considered the more realistic case of addi-
tional second-nearest neighbor couplings Ji 42 (dotted
lines in Fig. 2). Fig. 3 shows examples of molecules with
coupling topologies that are approximated by some of
the idealized coupling topologies show in Fig. 2. For ex-
ample, for the 'H spin systems of mono- and polycyclic
aromatic hydrocarbons such as fluoranthene and phenol
(c.f. Fig. 3 A and B), typical Ji gt+2/Jmae ratios are in
the order of 1/7. Long range Jj k43 couplings, which
are typically at least one order of magnitude smaller, are
neglected here. The relative size of the coupling con-
stants of the idealized spin system shown in Fig. 2 F
closely approximate the situation in the 'H spin system
of 2,3-dibromopropionic acid (c.f. Fig. 3 C) with the ex-
perimentally determined coupling constants Jjo = 11.4
Hz, Jo3 = 4.4 Hz, and Jy3 = —10.15 Hz%6. The coupling
network shown in Fig. 2 E forms an intermediate case
between Fig. 2 B and 2 F.

Based on numerical optimizations for each coupling
topology, we systematically optimized the efficiency of
MaxQ excitation as a function of the pulse sequence du-
ration T using approaches I-III. The results are summa-
rized in Figs. 4, 5 and 6. The unitary bound Q"% 24
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‘ s Iib e achievable efficiency of MaxQ excitation (c.f. Ta-
te IT) is indicated in each panel of Figs. 4 and 5 by a

PUb“lShJ,ﬂ)gt 1l dotted line.

B. Approach I: TOP curves and unitary bounds

The maximum possible Max(Q excitation efficiency as
a function of pulse sequence duration can be explored
numerically using approach I and its graphical represen-
tations (marked by solid circles in Figs. 4 and 5 for ap-
proach I (iso; sel)) are called TOP (time optimal pulse)
curves?>38. The numerical TOP curves provide a bench-
mark to judge the relative performance of conventional
pulse sequences and of simple sequences based on ap-
proach IT or III. The shaded areas in Figs. 4 and 5 repre-
sent the ”forbidden” regions of the graphs, i.e. all possible
experimental Max(Q excitation schemes are bounded by
the TOP curve. For increasing pulse durations, the TOP

C. Conventional approach 90°-A-90° (approach Ill with
N, = 2 pulses)

In addition to the unitary bound and the TOP curves,
in each panel of Fig. 4 the MaxQ excitation efficiency of
the basic 90;-A-90¢, pulse sequence element (with p =z
if M is odd and ¢ = y if M is even®) is shown by red
solid curves for comparison (assuming Jy, 12 = 0 for the
spin chains in Fig. 2 B
The basic two-pulse ence reaches the unitary bound
only for the two-spin sMg 4 A), but a pulse dura-
tionof ' = 0.5/J, ecessary, Wthh is about twice as
long as the mini ime T*(num) of approach I (iso;
sel). For the ‘eeus d three-spin systems, the basic
two-pulse sequencéweaclies only about 33% of the uni-
tary bou (%“ié 4 B,"E, F). No MaxQ coherence can be
simple two-pulse sequence for spin chains
and five spins (Fig. 4 C and D) if only
r couplings are non-zero (Jgpt+2 = 0).
This is as in this case there exists no spin that
iQ:iupled to all remaining spins in the coupling network

Fig. 2 C, D as well as section III B of the Supple-
entagy Material®®). Only for the case of non-vanishing
d-nearest neighbor coupling (Jg x+2 # 0), MaxQ

awl

—-

curves closely approach the theoretical unitary bounds By, . .
In order to determine the best numerical estimat \wél.ed nce is created by the simple two-pulse sequence,

the minimum times 7™ (num) and Ty, (num) for he
case of isotropic and longitudinal coupling, respec
the logarithm of the difference between the unités bou

Qmaez and the numerically obtained optimal qu %’ac—

tors Q(T) for approach I (iso; non-sel) (b

monds), approach I (iso; sel) (red circles) preach
I (long; sel) (blue squares) is plottedfin, Figh 6. Note
that the limiting cases of approach I (iso nom=sel) with
|vi —vi| > Jmax and approach I (iso; sel) withhard spin-

nite offset differences |y, —
optimizations with approa sel) yield longer
pulse durations in compdrison,to a@mach I (iso; sel).
For cases B to F, the déviations only on the order of
10% (c.f. Fig. 6). Fo case:},t{e’numerical optimization
of non-selective pulses starting from random sequences
surprisingly yiel rations about twice as long as the
pulse durationg’ found hard spin-selective optimiza-
tions. This is t% trapping in local maxima because

when starting with the analyt-
in section IITF. The minimum
1) and Tj; (num) found to approach the
i h an error of less than 1075 in the
ic and longitudinal coupling limit are defined in

e intersections of the horizontal dashed line
oy Q) = —5) with the red solid curve and the

selective pulses should result ini ical TOP curves.
However as discussed in sectiofi ]I B, the case of fi-
1|, it s _expected, that the

in Table II. As expected for the case of linear spin chains
T*(num) increases monotonically with increasing chain
length from 0.26/J,,4. for M = 210 0.90/Jp4. for M =5
due to the necessity of additional relay steps.

ashed red curves (——) in Fig. 4 C and D. Even
cly“«._iu this case, the transfer efficiency of the two-pulse se-
quence is small compared to the unitary bound (50 % at
= 3.5 J,L for 4 spins; 20 % at T = 3.5 J,,} for 5
spins) and the buildup of Max(Q coherence is slow. The
low transfer efficiency is explained by the fact that only
a fraction of the spins are coupled to all other spins of
the chain. For example, in the five-spin chain (Fig. 4 D),
only the center spin (I3) is coupled to all remaining spins
of the chain. Hence, only the polarization I3, can serve
as a source of Max(Q coherence, whereas the polariza-
tions Iy,, Is,, 14, and I5, cannot be used by this sim-
ple pulse scheme. The slow buildup of MaxQ coher-
ence is a result of the bottleneck formed by the relatively
small second-nearest neighbor couplings, chosen here as
Jis = Js35 = Jmaz/7 as for the basic two-pulse experi-
ment the transfer function is proportional to the product
sin(m Jy3T) sin(wJozT) sin(mJ34T) sin(mJ357T) in the five-
spin chain.

D. More than two 90° pulses (approach Il with N, > 2
pulses)

Significantly larger and faster excitation of MaxQ co-
herence can be achieved using more than two 90° pulses
(approach III). In Fig. 5, the green solid curves represent
the achievable transfer efficiency based on approach IIT
for the case of IV, = M, where M is the number of spins,
assuming Jj 12 = 0 for the spin chains in Fig. 2 A-D.

All possible combinations of pulse phases z or y were
simulated for systems consisting of up to four spins and
only the curves for the best combinations are presented
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FIG. 4. Panels A-F show the maximum quantum (Ma:
a function of pulse sequence duration T for the corresp
the maximum efficiency of Max(Q generation (c.f.
achievable efficiency @ for any given pulse sequen is given by the time-optimal pulse (TOP) curve (marked by
solid circles), which is found using approach I4(iso; sel)florsthe case of isotropic coupling with Ji x+2 = 0. The shaded area
limited by the TOP curve and the unitary b represents the ”forbidden” regions of the graphs. The achievable transfer
efficiency of the conventional building block co M two 90° pulses (corresponding to approach III with N, = 2 pulses)
is represented by red curves. For the casé Jewss = Jmus/7 (c.f. panels C, D, asterisk in Table I), the corresponding transfer
functions are represented by dashed curves mhe same color. Since the three-spin ring system F is already defined by
a non-zero second-nearest neighbor coupling Ji3%& —Jmaa, the transfer function of the conventional sequence is depicted by a
solid curve. The pulse sequence d aﬁU\Tis given relative to the inverse of the largest coupling constant Jy,.. in each spin

)%\Kﬁo ciency @ (c.f. Eq. (10)) for several excitation schemes as
ing4dealized coupling topologies of Fig. 2 A-F. The unitary bound for

system.

repfresente in Fig. 2 A-F, the table summarizes the unitary bound for the maximum quantum

the dumber of spins in the coupling network. 7™ denotes the minimum pulse duration
necessary to approach t Da\& nd in the isotropic mixing regime (c.f. Eq. (4)), whereas Ty, , denotes the results in
the longltudlnal coup limit Y¢.f. Eq. (5)). The fourth and sixth columns give the numerically found estimates T (num)
and T, ,(num). T"(num)jand T}, (num) are calculated based on the optimizations with approach I (iso; sel) and approach

I (long; sel), respetti c.f. Fig. 6). The analytical minimal pulse duration 7™ (ana) for the two-spin system A as well as
Tiong(ana) for tlie two Sp
Material®® and s rlze(Ll

TABLE II. For the spin syst
excitation efficiency Qmagd M

system A and the three-spin system B are derived in sections IV and V of the Supplementary
the fifth and seventh column.

£
Q in‘system Qmax T*(num) T"(ana) Tj,,(num) T, (ana)
S A 1/V2 =~ 0.707 0.26 J,,L, 1/4 J,L, 050 J.t, 1/2 J,.L.
53 B V/3/8 = 0.612 0.57 J,L, - 0.88 Jmte  V3/2 Jmew ~ 0.866 Jmey
S E 3/8 0.71 Jhts - 1.52 Jte -
. F 3/8 0.44 J,L. - 0.84 J,L, -
4 C 1/2 0.68 Jmts - 1.26 Jrmeo -

5 D V/5/32 2 0.395 0.90 J,L, - 1.61 Joao -
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0.6

0 1 2 3 4
T/J!

max

FIG. 5. In addition to the TOP curves (solid black CHN

efficiencies achievable by pulses optimized using approaeh
of spins) are represented by green and orange cur
the red curve from Fig. 4 A corresponds to N, =
transfer functions are represented by dashed curves

in Fig. 5 (see section II C
mentary Material®®). The

(Fig. 5 D) were hmiteds‘zu/the

five spin system
re all pulse phases
inchains"(Fig. 2 A-D), approach
ui'}c&%ent pulse sequences for
eqr}esbar time to reach the uni-
M = 2 spins, 1.75 T*(num) for
for M = 4 and 2.22 T*(num)
he resulting pulse sequences can be
fof ard way using the product op-
séctions ITI.A and III B of the Sup-
® for two illustrative examples). For
three-spin chain with equal coupling
'n system B), the optimal sequence con-
ee 90° pulses with identical phases separated
s of 1/(2J), which is identical to the sequence
d i1t references 1 and 12 for an AX, system cor-
responding to a linear three-spin topology.

are identical. For the
11T yields simple an
N, = M pulses.
tary bound is 1.9

While for the case of linear chains (or symmetric cou-
pling topologies) with equal coupling constants it is pos-
sible to derive sequences with reasonable transfer efficien-
cies by hand using the well-known rules of the product

T/J max

\@ﬁd circles) for the coupling topologies A-F, the transfer

h N, = M pulses and M + 1 pulses (where M is the number
:tively, assuming Ji r4+2 = 0. Note that for system A with M = 2,

the ease Ji k+2 = Jmas/7 (c.f. asterisk in Table I), the correspondlng
\Eb ofighe same color (c.f. panel D). Since the three-spin ring system F
coupling Ji3 =
M pulses and M + 1 pulses, respectively). Open and solid squares
ithout and with periods A%*® of isotropic mixing (approach II (long),

—Jmag, the transfer efficiency achievable by approach

operator formalism!'2, finding optimal pulse sequences
in the case of unequal couplings or complex coupling net-
works is a highly non-trivial task. The effect of including
second-nearest neighbor couplings is shown in Fig. 5 D
for N, = M = 5. In contrast to the case of the two-pulse
sequence (Fig. 4 D), the dashed green line (for the case
Jkk+2 = Jmaz/7) and the solid green line (for the case
Jik.k+2 = 0) are quite similar because the sequences ex-
ploit the large nearest-neighbor couplings. Only for short
pulse durations T < 1.6/ J44, the achieved MaxQ coher-
ence of the five-pulse sequence can be slightly improved
by taking the Jj r12 couplings into account. Similar re-
sults are found for the three and four spin chains (data
not shown).

For the three-spin system of Fig. 2 E with unequal
couplings, the largest transfer amplitude of the sequence
consisting of N, = M = 3 pulses (90°) is only about
71% of the unitary bound (c.f. Fig. 5 E). For the three-
spin systems of Fig. 2 F, the unitary bound is reached,
but only for a relatively long pulse duration of 4J,,! =
9.09 T*(num) (c.f. Fig. 5 F). Increasing the number of
90° pulses from N, = M =3 to Ny = M +1 =4 (or-
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FIG. 6. The logarithm of the difference between the unitary bound Q.
Q(T) for the pulse sequences optimized with approach I as a function of
(connected by red lines to guide the eye) correspond to the idealized li
of isotropic couplings, approach I (iso; sel). Similarly, the blue squares
case of hard spin-selective pulses in the presence of longitudinal couplings, q

able JI) required to approach the unitary bound with an error

the minimum pulse durations T (num) and Tj,,,(num) (c.f.

of less than 1075 are determined by the intersections of the hi
g; sel

with the red (approach I (iso; sel)) and blue (approach I (1

2
T/ J " nax

of hard spin-selective pulses in the presence
nected by blue lines) depict the idealized limiting
ach I (long; sel). The numerical estimates of

izontal [daghed line (corresponding to log(Qmaee — Q) = —5)
.urves. In addition to the idealized cases of hard selective
Ises in the presence of isotropic couplings and different

pulses, optimization results for the more realistic case of non-selective
offset frequencies (c.f. Table IV in Appendix A) are repr:,&ggi black diamonds, approach I (iso; non-sel). In panels B-E,
ei

only the case of vanishing couplings between next-ne esws (Jr,k+2 = 0) is considered for simplicity (c.f. Fig. 4).

ange solid curves) only slightly improves the a mb.].es
transfer efficiency in Fig. 5 E. However, in 5 F
ditional degrees of freedom reduce the pulse seq
ration to achieve the unitary bound by $0%

transfer efficiency compared to/Sequences consisting of
three 90° pulses (N, = M) fo sen:%ence durations
that are longer than the ti Jrdae to reach the
unitary bound.

E. Approach Il: Ng blo N

alsozshows the results of block optimiza-
:h II. Open and solid blue squares rep-

Finally, Fig.
tions using appr

lue lines correspond to the optimiza-
blocks, whereas dark blue squares con-
ark blue lines correspond to the optimization
16 blocks. In the considered symmetric spin
ul no\(Fig. 5 A, B) or relatively small (Fig. 5 C,
ing are found compared to approach III (N, = M).
However, in Fig. 5 E and F, significantly improved perfor-
mance is found using approach II compared to approach
III. In comparison to the performance of 4 blocks, 16
blocks yield slightly larger quality factors ). The linear

coupling topology with unequal couplings (Fig. 2 E) is the
only spin system of the spin topologies considered here,
where the use of isotropic mixing periods in approach
IT was found to be beneficial (see Fig. 5 E). Here, even
with only four blocks, approach II (iso/long) yields pulse
sequences that closely approach the unitary bound near
T =2 J,,! (which is about 2.8 T*(num)) whereas for
the same time the four-block sequences without isotropic
mixing reaches only about 80% of the unitary bound.
The optimized pulse sequences (with and without
isotropic mixing periods) for topology E based on ap-
proach II with four blocks and for a pulse duration of
T =22 J,l (close to the minimum time of approach
IT to reach the unitary bound) are summarized in sec-
tion II B of the Supplementary Material®®.

F. Analysis of pulses by time-frequency representations

Approach I does not assume a restricted family of pulse
sequences and provides maximum flexibility for pulse se-
quence optimization. This allows us to explore the phys-
ical limits of pulse performance and to establish bench-
marks for the maximum achievable MaxQ efficiency as
a function of pulse duration, as discussed above. How-
ever, the large number of available degrees of freedom
generally results in quite complicated and rapidly oscil-
lating pulse shapes (c.f. Fig. S1 in the Supplementary
Material®®) that are difficult to interpret. As shown
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FIG. 7. Resonance-frequency-adapted phase-sensitiye spectrograms®® of pulse sequences optimized using approach I (iso; non-
sel) with Jg r42 = 0 for the pulses shown in RFig. SNinthesSupplementary Material®®. The normalized amplitude A(t,v) is
depicted as brightness and the phase ¢(t, ) isWisualized as color (c.f. color bar Fig. 8 A). Panel B of the figure is reproduced
with permission from J. Magn. Reson. 249, 64 (2014). Cepyright 2014 Elsevier Inc.

TABLE III. Approximate flip angle§ esfor each peak in the
spectrogram. The flip angles are4determined by integration
over the u, amplitude along time forthe crosssection pulse
shapes shifted to x phase. Thé integration limits are given as
factors for the pulse duration T

offset A B
Vk/Jmaa: (T = 0.58 J;ulzz) (T = 0.88 J’r:ulzm)

o limits /T« limits /T
100 " 99% 0 -.0%19 90° 0-0.4
985, 081-1 90° 0.6-1
0 96% 0-0.19 33° 0-0.15
96 0.81-1 162° 0.15-0.83
- 76°  0.83-1
-100 - 90° 0-0.4
- 90° 06-1

previously*®, a joint time-frequency analysis of pulses
can provide a more intuitive and intelligible spectrogram
representation of shaped pulses. Fig. S2 in the Supple-

mentary Material®® shows representative absolute value
spectrograms of pulses that were optimized for the spin
systems summarized in Fig. 2 using approach I (iso; non-
sel). Since the non-selective optimizations with approach
I (iso; non-sel) do not achieve T*(num) determined with
approach I (iso; sel) (c.f. section IIB), non-selective se-
quences which closely approach @4, with T 2 T are
chosen for the spectrogram representations of spin sys-
tems C-F (c.f. Fig. 2). For coupling topologies A and B,
pulses with duration T" ~ T~ were chosen, although
these pulses were optimized using approach I (iso; non-
sel) in the limit of isotropic coupling and non-selective
pulses. For T'~ Tj; = interesting pulse shapes could be
identified and analyzed. The spectrogram representation
provides detailed information about the time-frequency
structure of the pulses, which is not obvious in the tem-
poral representation. In addition, Fig. 7 depicts cor-
responding resonance-frequency-adapted phase-sensitive
spectrograms®®. Although the pulse shapes were not re-
stricted, the optimized pulses contain almost exclusively
frequency components close to the offset frequencies vy
of these spin systems. (This property is also found for
shorter and longer pulse durations.) In Fig. 8 A and B,
cross sections of Fig. 7 A and B are shown at the offsets
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dashed lines visualize the threshold of 0.15 A,az for the de
tude over time. The areas of the individual peaks multi

Amaz(B) = 36.7 Jmaz) correspond to the effective fli
coded. The second and fourth columns (A’, B’) show t
pulse sequences based on the time-optimal (syste
the generation of effective bilinear and trilinear co
I (long; sel)). 6, ¢ and v are arbitrary phase angles
arbitrary flip angle. Column B of the figure i rod

2014 Elsevier Inc.

) thewoptimized pulse
own approach shown

wo 90° pulses
re separated by
ch#Spin, the phases of

identieal (c.f. section IITC
7)4,6.

V.
For system A (two-spin syst,

sequence corresponds to the

in Fig. 8 A’ for longitudin

that simultaneously act

a delay of about 1/(2{

the first and last puls

ar

est numerically optimized se-
iso; non-sel) that closely ap-
bound had a duration of only
th random initial pulses, indi-
ssible to achieve Max(Q excitation in
i (§10rter than 0.50/J. This numerical
more detailed theoretical analysis of
ansfer time.

quence using
proached the

sis showed that it is in fact possible to

achie 1l double-quantum excitation in a duration of
only '™ (ana) = 0.25/J (cf. Eq. (B16) in Appendix B
and secgion III C of the Supplementary Material) in the

limit of hard spin-selective pulses with negligible duration
and using a period of isotropic mixing, which to the best
of our knowledge has not been realized before. A detailed
theoretical analysis of this novel transfer scheme is given

angles'with
ana) = 1/(2J), system B: Ty, ,(ana) =
Hﬂ%cerm in system A and B in the longitudinal coupling limit (approach

nd deseribe the relationships of the pulse phases to each other. « is an

pEase s‘;ltlve two-dlmenswnal spectrogram representation

) spine(different rows in systems A and B The horlzontal

assumption of constant phase. The phase (¢, V) is color
ic representation of the analytically derived, globally optimal
v/3/(2J)) sequences for

cd with permission from J. Magn. Reson. 249, 64 (2014). Copyright
90°, isotropic mixing 90°,
1/(4))
1/(2Av) 1/(2Av)

FIG. 9. Schematic representation of the analytically derived
pulse sequence for the generation of Max(@ coherence in a
two-spin system with isotropic mixing based on non-selective
pulses. The I, — Iz, state which is necessary for the gener-
ation of double-quantum coherence is achieved by a delay of
1/(2Av) subsequent to the initial 905 pulse.

in Appendix B. It is based on the generation of the initial
state I, — Is, before the isotropic mixing period, which
can also be achieved by a non-selective pulse followed by
a delay of duration 1/(2Av) (c.f. Fig. 9), assuming the
first spin to be on resonance (c.f. Table I).

However, as discussed above, in this case the optimiza-
tion algorithm based on non-selective pulses is prone to
be trapped in local maxima, which appears to prevent the
ab-initio optimization of the optimal isotropic mixing se-
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e with T*(ana) = 0.25/Ja.. However, numerical
optimizations based on the spin-selective rf Hamiltonian
AHIE. (7))38 were able to closely approach T*(ana),
see solid red curve in Fig. 6 A. The numerically derived
TOP curves for hard spin-selective pulses in the pres-
ence of longitudinal and isotropic couplings are shown in
Fig. 6.

Superficially, also the sequence optimized using ap-
proach I (iso; non-sel) for system B (three-spin chain)
with T' =~ T, appears to essentially consist of strong
pulses applied at the beginning and at the end of the se-
quence, separated by a delay (c.f. Fig. 8 B). However, a
closer inspection reveals that in fact an entirely different
mechanism of maximum quantum excitation is exploited
by this sequence. Note that in the conventional approach
it would be mandatory to excite the second spin of the
three-spin chain, because only this spin is coupled to both
of the remaining spins of the system. The optimum du-
ration of the conventional pulse sequence (approach III,
N, =2)is 0.5 J,,} and only achieves a maximum effi-
ciency of 0.2041 (c.f. red curve in Fig. 4). However, the
shaped pulse optimized for system B has a significantly
longer duration of 0.88 J~-! and is able to closely ap-

max

and Table II). Hence the optimized sequence is a fa

DROPS (discrete representation of operators for spin
systems)®” visualization. The Figure was created using
the SpinDrops app®®. As version 1.2 of SpinDrops as-
sumes ideal pulses with negligible coupling evolution dur-
ing the pulses, the long, weak I>-selective pulse of Fig. 8 B
was approximated using a DANTE-type sequence?® co

sisting of pulses with small flip angles (5.6°) separated
by delays (v/3/(32 - 2Jpmaz) ~ 0.027/Jpmaz). The con-
ventional sequence (c.f. Fig. 10 A) reaches its maximum
performance of 33% g/ for T = 0.5/ Jn4s and shows a
decrease in the trans iency for T' > 0.5/ Jpq. as de-
scribed in section JT 155,
In contrast, the g

of thi upplementary Materia,
sequence (c.f. Fig. 10 B) achieves
quence duration of T' = 0.5/ 0z
3% of the transfer efficiency

mimal time 77, (ana) = V3/(2Jmaz )
the geodesic pulse sequence approaches
bs of 4/3/8 in the longitudinal cou-
Note that in the isotropic mixing case the
is already approached for T*(num) =

Jan  Therefore, we can provide a shaped pulse
in the u) ropic mixing limit which is not only a factor of

tary Material®® and Table II) but also only marginally

proach the unitary bound of /3/8 = 0.6124 (c.f. Fig. \:ng more efficient (c.f. section III B of the Supplemen-
an

of three (c.f. Appendix C and Fig. 10) more efficieng th
the conventional approach! In order to analyze this

rior performance of the optimized pulse in morg detail,

the two-dimensional spectrogram represent
represent the individual pulse sequences t
rienced by each of the three spins (gff.

contrast to the first and third spin, t

the pulse sequence. This is r
derived time-optimal pulse s

responding to system B 1th S/in the longitudinal
coupling limit, so-calledfgegdesic ences?%27. This ob-
servation motlvated mo?e\ﬂﬁle analysis of the opti-
mal exmtatlon of t ple- antumscoherence in the three-
pendlx C, it is possible to an-
 optimal pulse sequence with
ltonian based on the time-

H
r ?Z(ten generation of an effective tri-
iltonian. Fig. 8 B shows a schematic

representation of the optimal geodesic sequence of du-
ratio TE:‘W = V3/(2Jmaz) = 0.87/Jmas with an

az/V/3 of the weak pulse that is applied
td the second spin. As shown in Figs. 7, 8 B and in Tables
I %5?4 of the Supplementary Material®®, the flip an-
clative phases and the duration 17, (num) closely
1e analytically derived time-optimal geodesic so-
lution of Fig. 8 B’ (maximum deviation of flip angles
0.5%, c.f. section VI of the Supplementary Material®).
Fig. 10 shows the efficiency of Max(Q excitation for sys-
tem B by representing the operator IlJr I;r I;r using the

r (T*(num) = 0.57J,,

—L.) than the conventional ap-

N:oach based on two 90° pulses (T" = 0.50 J,,} )! For

the remaining spin systems C-F, the numerically found
pulses are very complex and have relatively high rf am-
plitudes. The spectrogram representations of these non-
selective pulses (c.f. Figs. 7 and S2 in the Supplemen-
tary Material®®) show that the sequences cannot be inter-
preted in terms of pulses and delays. Instead, the pulses
consist of spin-selective ramped irradiation periods that
often have constant rf phases.

Superficially, these pulse schemes are reminiscent of
ramped adiabatic irradiation schemes®®®?, but a more
detailed analysis is beyond the scope of the present
manuscript.

IV. EXPERIMENTS

For an experimental demonstration of optimized MaxQ
excitation sequences, we chose the 'H spin system of
2,3-dibromopropionic acid (c.f. Fig. 3 C) dissolved in
CDCI3°%. The experiments were performed at room tem-
perature using a Bruker Avance 600 MHz spectrometer.
The experimentally determined coupling constants are
J12 = 114 HZ, J23 =44 HZ, and J13 = —10.15 Hz.
A Shigemi tube (magnetic susceptibility matched for
CDCl3) with a diameter of 5 mm was used to achieve
a rf field with high homogeneity.

In the experiments, spin 1 was set on resonance (v; = 0),
and the offsets for spins 2 and 3 were 347 Hz and —130
Hz, respectively. After the excitation of Max(Q coherence
of order three, other coherences were eliminated using a
six-step phase cycling procedure. In all experiments, the
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FIG. 10. Efficiency of MaxQ excitation for a system consisting of three weakly coupled spins with Jio = Jag = Jmae and
J13 = 0 as a function of sequence duration for (A) the standard 90° — A — 90° sequence (c.f. Fig. 1 D) and (B) the geodesic
pulse sequence (c.f. Fig. 8 B’). The operator If'I;'I; is visualized ds-donut®shapéd objects using the DROPS representation®”
(a generalized Wigner representation for coupled spin systems). {Thea€lative sizes of the shapes correspond to the relative
amplitudes (MaxQ efficiencies) of I}t I I created by the differént sequences and pulse durations. The color reflects a complex

phase factor e'®

as defined by the color bar in Fig. 8, where x, y, = and =y correspond to ® = 0 (red), 7/2 (yellow), =

(green)

and 37 /2 (blue), respectively. The figure was created usingéhe SpinBrops app®®

\p\’ﬂ

T/ms

0 50 100,

FIG. 11. Experimental and theoretical Max() excitation effi-
ciencies Q of conventional ahd eptimized/pulse sequences for
the 'H spin system of 2,3¢dibromopropionic acid (Fig. 3 C)
with Ji2 = 11.4 Hz, Jos = 4.4Hz, and J;3 = —10.15 Hz for
pulse sequence duratidns0,< 7" <200 ms = 2.28/Jmas. Red
triangles and curves ‘rgpresént experimental and simulated @Q
values for the simple standard sequence consisting of two 90°
pulses, respectively. Green pentagons and curves (— --) show
the experimental™and theotetical performance of optimized
pulse sequefices«usingyapproach III consisting of three 90°
pulses separated by eptimal delays. Light blue stars and open
squares_(whieh are connected by straight lines to guide the
eye) r@present experimental and simulated results of Np = 4
blocksW(approaéh II (long) without periods of isotropic mix-
ing).

same seguence of 90 — 7 —180° , — 7 was used to convert
Max(@Q coherence to detectable single quantum coherence
(c.f. section II D of the Supplementary Material®®).

Fig. 11 shows the experimental excitation efficiencies and
the corresponding theoretical curves. Although the ex-

perimental relative coupling constants are similar to the
ideal case shown in Figs. 2 F, 4 F and 5 F, we recalcu-
lated the TOP curve (using approach I (iso; non-sel))
and the maximum excitation efficiency for approaches IT
(long) and III for the actual experimental coupling con-
stants. A reasonable match is found between simulations
and experiments. The pulse sequence consisting of two
90° pulses performs better than the sequence with three
90° pulses for the experimental range of pulse durations.
But in agreement with Figs. 4 F and 5 F simulations show
that the optimized three 90° pulse sequence exceeds the
quality factor achieved by two 90° pulses considerably for
longer pulse durations (T = 250 ms, data not shown).
The minimum time to reach the unitary bound of MaxQ
excitation for the block optimization (approach II (long))
is about 0.14 s. This is about 88% shorter than the time
needed using approach III (T, = 1.15 s, determined by
numerical simulations). A factor of about three larger
MaxQ amplitude is obtained compared to conventional
approaches based on 90° pulses.

V. CONCLUSION

In this paper, we explored the physical limits of the
efficiency of maximum-quantum (MaxQ) excitation in
model spin systems with defined coupling constants and
offset frequencies. The detailed study of this topic opened
a surprisingly rich and multifaceted field of research with
many interesting aspects. For six model spin systems, the
maximum amplitude of MaxQ coherence was determined
using the general unitary bound of spin dynamics!'® 24,
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hortest possible duration T* to reach this bound
as.nunerically explored using the optimal-control based
IS arbitrary pulse shapes (approach I). This ap-
proach also allowed us to find time-optimal pulse (TOP)
curves?®38  which provide the maximum MaxQ ampli-
tude for durations that are smaller than 7*. The TOP
curves were obtained by optimizing the Max(Q transfer
efficiency for a number of pulse sequence durations T'
using approach I. As long as the offset frequencies are
sufficiently separated (|Avmin| > |Jmaz|, where |Avp,in|
is the minimum difference of offset frequencies), the TOP
curves are independent of the specific chemical shifts and
hence provide a general benchmark for the assessment of
pulse sequences. However, the optimized pulse shapes
differ for different offset frequencies and it is desirable
to find robust offset-independent sequences that are also
simple to implement. We therefore considered two dif-
ferent types of simple sequences. In approach II, we
studied sequences consisting only of well defined broad-
band building blocks (hard pulses of arbitrary flip an-
gle and phase, longitudinal coupling evolution and op-
tional periods of isotropic mixing). In approach III, we
explored simple pulse sequences consisting only of hard

For systems with nearest-neighbor couplings and spin
chains with more than three coupled spins, a novel class
of Max(Q excitation sequences based on ramped, selective
pulses was found.

The optimal excitation of maximum quantum coherence
based on approach II and III was experimentally demon-
strated for the case of 2,3-dibromopropionic acid. A rea-
sonable match was found between the simulated and ex-
perimental Max(Q excitation efficiencies as a function of
pulse duration. Comg%éd to the best sequences consist-
ing only of two 90° pulses, a sensitivity gain of about a

factor of three wa, erimengally achieved.
e@ summarized in Table IT (and

The unitary

ond to the case of spin systems
metry. This applies to the
e considered here for the opti-

730) r based on different offset frequencies
c.f. Table IV in Appendix A. For spin sys-
netically equivalent spins, such as in AXo,

)

(Hair
ms with
Aag spin systems etc., the unitary bounds can
\%Egi&} tightened due to the presence of permutation
sy

90° pulses with phases z or y and delays. The pulse s hetry!9:20,22,24
quences resulting from qpproqches IT as well as i a\g e, we focused on the optimization of experiments
be made broadband by inserting 180° refocusing pulse specific spin systems with well defined coupling

in the delays. It was found that approaches II
provide practical broadband sequences which closely ‘ap-
proach the unitary bound. However, the seq du-

T*(num) for the case of chains consisting o
spins (Figs. 4 A-D and 5 A-D). Lar g axQ
excitation are found compared to simple
sisting of two 90° pulses and a delay.
Based on the numerical results
fer scheme for two-spin syst as
cation of isotropic mixing e? i
ence

allows for double-quantu il
spin systems that is tg\ c as fagt 4s conventional ap-
proaches based on non-selective pulses and a delay.
The complicated p se\)lswape esulting from approach
I were studied g Jshort-time Fourier transform
48 icular for the case of three-spin
timde-frequency representation provided
thp’ mode of action of the numer-
This allowed us to identify
globally optimal geodesic pulse se-
éxcitation in the limit of longitudinal
These geodesic sequences rely on a well de-
/ rotation of the center spin in addition to hard
eginning and at the end. In practice, this

eneration in two-

spectrograms
chains, this joi

the cemtral spin. Geodesic sequences that are robust to
variations in chemical shifts can be constructed by imple-
menting the slow rotation by a DANTE-type sequencef!
based on (band-selective) small flip angle pulses and de-

lays in combination with broadband refocusing pulses2®.

1“&topologies, coupling constants and offset frequencies. It

is also possible to optimize robust pulse sequences for a
desired range of coupling constants, chemical shifts and
coupling topologies that are of interest for a given ap-
plication, such as the analysis of biofluids or mixtures
of aromatic hydrocarbons®. Conversely, it is also possi-
ble to maximize Max(Q) excitation selectively for a given
set of spin systems while suppressing multiple quantum
excitation for others in order to simplify spectra with
overlapping signals.

In this paper the transfer from thermal equilibrium
(F.) to MaxQ coherence (P, c.f. Eq. (9)) was inves-
tigated. The reversed transfer from P to detectable
single quantum coherence can be optimized using the
same approach. The optimized F, — P sequences can
be converted to PT — F, sequences by time and phase
inversion.!'? An additional 905 pulse converts F, to Fj.
However, the maximum efficiency!?20:22:24 for the trans-
fer between the two non-Hermitian operators Pt and
the detection operator F'~ is larger than for the trans-
fer between PT and F, and hence it is expected that an
additional gain in sensitivity by specifically optimizing
sequences for the Pt — F'~ transfer is achievable.

In the examples considered here, relaxation effects were
neglected, which is justified for applications to small
molecules, where relaxation times are longer than the du-
ration of multiple quantum excitation. This is the case
for 2,3-dibromopropionic acid®?:%3 with .J,,4, = 11.4 Hz
shown in Fig. 11, where the optimized, experimentally
implemented MaxQ excitation sequences based on block
optimization (approach II) have a duration of about
150 ms. For applications (e.g. to proteins), where relax-
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Al

wea? is not negligible, it is possible to include relaxation
.effects in the pulse sequence optimization

29,45

Publis lﬂg rresented approach for efficient excitation of
Max(y coherence can also be applied to study the effi-
cient generation of multiple quantum coherence of lower
order.

It is expected that the presented methods and bench-

marks will help to develop significantly improved pulse
sequences for practical applications.
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APPENDIX

Appendix A: Definition of the studied limiting cases and of
the minimal times T™ and Ty,

In order to see general trends in the maximum -
sible performance of Max(Q experiments, it is useful to
consider characteristic limiting cases, c.f. Table IV
provides a level of abstraction that allows usgto esta
lish generic benchmarks that are applicable fon a
class of experimentally relevant spin systeins
sequences.

Possible criteria for the classificatiod of sp
and the corresponding pulse sequences
(a) homonuclear versus heteronuclear syste

b) weak versus strong coupling,

(
(c) longitudinal versus isotropictgoupling terms,
(d) non-selective versus spinséelectiue pulses.
clear spin systems. In héte
thermal equilibrium deuSity oper depends on the rel-
ative size of the the YTOM ratios of the spins and
is not simply prop, ti@l to as in the homonuclear
ce' the Max(Q) excitation efficiency

thermore, the s
1/3 for th
isotropic
homo

ixing seﬁlnen es®?, whereas J;lff’iso/Jkl <1lin
iments considered here.
ity, we only consider weakly coupled

It oupling constants Jy; are much smaller than
d}(?t differences of the spins, i.e. |Jy| < |k — 1.
(¢t is important to note that even for weakly coupled
homonugclear spins systems, in general the full isotropic
coupling terms H*° of Eq. (4) needs to be considered to
correctly describe the time evolution under an arbitrary
pulse sequence®. In particular it is possible to suppress
the offset terms H,¢s of Eq. (3) and to recover the full

isotropic coupling terms Hi*° (Eq. 4) with the help of
broadband isotropic mixing sequences®?%4. If the maxi-
mum available rf amplitude w4, is larger than the off-
sets vy, scaling factors J,flff’”o/Jkl of about 1 can be
approached, i.e. J,‘:lf 1450~ Jiu. However, during delays
or periods of weak rf irradiation, the correct spin dy-
namics is closely approximated by considering only the
longitudinal coupling terms H!°"9 (c.f. Eq. (5)) in the

weak coupling limit.

(d) The sequence ( ilies considered in approaches I1
and III consist only.o ir(glexﬁf\debroadband, non-selective
pulse sequence e eﬁ such%as hard pulses, periods of
longitudinal coupling evolution (corresponding to delays

and periods of isotropic mix-
adband isotropic mixing se-

ing (corres
quences).
consider the limit of short non-selective
duration of non-selective pulses (on the
u L )}s negligible compared to the overall pulse

sequencesduration 7' (on the order of J,,! ), which is
‘éﬁ if U az

Jmaz~
the Jmost general case of approach I, pulse se-
encdg dre not restricted to combinations of hard, offset-
independent pulses. Using frequency-selective weak irra-
iation, it is possible to realize spin-selective rotations.
In“this case, it is useful to consider also the limit of hard
in-selective pulses with negligible duration (duration
on the order of |y, — 1;|~!), which can be approached if
|V — vi| > Jimas- Relatively fast spin-selective rotations
can be implemented by shaped pulses or by simple com-
binations of non-selective pulses and delays (c.f. Fig. 9).
We call this the limit of hard selective pulses. In this
limit, the theoretical analysis of homonuclear pulse se-
quences can be further simplified by describing the spin
system in a multiple-rotating frame (similarly as in the
case of heteronuclear spin systems). Hence, the offset-
term Hosp (c.f. Eq. (3)) of the free evolution Hamilton
Ho can be neglected when optimizing idealized sequences
to explore numerically the minimum time for MaxQ ex-
citation (see Table IV).

Note that the universal bound Qmq, for the maximum
possible transfer amplitude for a given initial and final
state is independent of the experimental setting. How-
ever, the minimum t¢ime to achieve Q),,q. depends on the
parameters of the spin system and on the considered lim-
iting case. For simplicity, here we distinguish the mini-
mum times for the following two cases:

T* denotes the minimal time to achieve the unitary
bound for a homonuclear spin system in the weak coupling
limit, but assuming the ability to exploit the full isotropic
coupling term H*° and the limit of hard selective pulses
as defined above. This corresponds to situations, where
Umaz > |Vk - Vl| > Jmaw-

1}, denotes the minimal time to achieve the unitary
bound for a homonuclear spin system in the weak cou-
pling limit, assuming the limit where only longitudinal
coupling terms H!°™9 can be exploited. Furthermore, it
is assumed that hard spin-selective pulses can be short


http://dx.doi.org/10.1063/1.4945781

15

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

‘ s Iiz:llh ;0 be negligible compared to the overall pulse

Scquence duration (hard selective pulses). This corre-
PUbll%hﬂ& o situations, where |V — vy > Umaz > Tmaz-
For the sequence families in approaches I, II, and III,
Table IV summarizes all combinations of coupling ten-
sors (isotropic versus longitudinal) and pulse selectivity
considered in the text. For each of these cases, the used
terms in the Hamiltonian are indicated by a bullet. The
last column summarizes for which cases the minimum
times to excite Max(Q coherence were numerically ex-
plored and defines the corresponding labels used in the
text. Note that the limiting cases of approach I (iso;
non-sel) with |vg — vj| > Jmas and approach I (iso; sel)
with hard spin-selective pulses are expected to require the
same minimum time T*. If this was not the case in the
numerical optimizations (c.f. section IIB) the smaller of
these two values is given in Table IT as our best numerical
estimates T*(num) of T*. Asshown in Fig. 6, the smaller
minimum times were always found for the case of hard
selective pulses (red circles), whereas longer times were
found for the case of non-selective pulses (black open dia-
monds). Similarly, the limiting cases of approach I (long;
non-sel) and approach I (long; sel) are expected to re-
quire the same minimum time 7}, g- For completenes

terms in the cases of isotropic and longitudinal couplin

table IV also summarizes the considered Hamiltor'gr;\

for which the theoretical limits 7 (ana) and Tj;,,§
presented in Table II were derived analytically (c.f. see-
tions IV and V of the Supplementary Materia

5 .
Appendix B: Time optimal generation of doubl \w\tu

coherence in a system consisting of two Ns

In this section, we analytical rive the minimum
times 7" (ana) and T}, (ana){to achigve the unitary

bound Quaz = 1/v2 (c.ff Tab
tion of double-quantum co in a*homonuclear sys-
tem consisting of two spin icles. Assuming

the limit of hard selegti ulsesswith negligible dura-
tion, T*(ana) and T} Wespond to the idealized
cases of isotropic afid longitudinal coupling terms (H %,
Eq. (4) and Hl¥, )), respectively.

pa) and Tj,, (ana), we first
identify the general form of a propagator U that achieves

IT) for the excita-

({UAUT|C)]

2= ArTel (B1)
T UAiUio)]
- JTe(ATA)/Tx(CTO)’ (B2)

which reduces to Eq. (10) for the initial density operator
p(0) = A, the final density operator p(T) = UAU' and
the target operator C' = P+.

The initial state A = I, + I5, corresponds to the ther-
mal equilibrium operator for the case of a homonuclear
spin system and the target state C' = I;" I} to double-
quantum coherence with coherence order p = +2.

Explicit matrices for the operators A and C' are given
in section IV A of the Supplementary Material®®. For
these initial and ﬁn&z/states and a general propagator
represented by the ubitary matrix

)11 U2 U13 U4

U21 U22 U223 U24
U3, U32 U33 U34

) 41 U42 U43 U4y

(with i gener c@ex matrix elements uy;), a straight-
forward calcu%ti yields

sedon Eq. (B4) and the properties of unitary matrices,

it cam be shown (c.f. section IV B of the Supplementary
atérial®®) that the maximum transfer efficiency @ is

(B3)

1
Q= ﬁ\uﬁuu — uj4u44l- (B4)

lm_)\given by

€
\/57

which corresponds to the unitary bound'®2* for this
transfer (c.f. Table II). The most general form of a prop-
agator achieving this bound is given by

Qmax = (B5)

1 eir 0 0 \1f eir2

V2 V2
0 Uz U 0
opt __ 22 23
Uort = 0 I 0 , (B6)
%ei(rl-&-m) 0 0 %ei(m-‘rﬁ)

with arbitrary real numbers r1, ro, and r3 and where the
sub block consisting of the matrix elements ugs, us3, uss,
and ugs can be an arbitrary unitary 2 x 2 matrix (see
section IV B of the Supplementary Material®®). Hence,
the minimum times 7 (ana) and T}, (ana) to achieve
the unitary bound @4, for the excitation of double-
quantum coherence correspond to the minimum times to
create a propagator of the form U°P! by a pulse sequence
in the isotropic and longitudinal coupling case, respec-
tively.

As shown in section IV C of the Supplementary
Material®®, the creation of U°P* takes the same amount
of time as the creation of a propagator of the form

U = exp{=im(coalialan + cyyliylay + .. 112152} (BT)

with |z, —cyy| = 1. U contains only the bilinear terms
Iiploy, Iiylay, and Ii,15, in the exponent and hence
has the appropriate form to derive the minimal times
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ALRE 'V. Hamiltonian terms considered in different numerical and theoretical approaches. The Hamiltonian terms are
PUb“g ra%'nthe following equations of the main text: H:® (Eq. (4)), Hi™ (Eq. (5)), Hre™** (Eq. (6)), Hi§ (Eq. (7)), and
S (H Numerical estimates 7™ (num) for the minimal duration 7" are provided both by approach I (iso; non-sel or

sel). Slmllarly, numerlcal estimates for T7,,,, are provided by approach I (long; non-sel or sel).

sequence family

sto Hlong r}_lnon sel Hsel Hoff min. time

approach I (iso; non-sel) °
approach I (iso; sel)
theoretical limit (iso) .

approach I (long; non-sel) -
approach I (long; sel) -
theoretical limit (long) -

approach II (iso/long) .
approach II (long) -

approach 111 -

. - o T (num)

- . - THnum)
- . - ﬂ ana)

.( b

T*(ana) and Ty, (ana) based on the approach of Yuan

and Khaneja.?8

In their paper, Eq. (1
imum time 7T required to generate a propagator U usi
a constant Hamiltonian H,. by

Bﬁ <s 9_7{ T
with ,6_’;7 =0V + 21 i
for either 7 = (0,0,0) or 7 = (—1 OO,W
6V are the so-called canonical forms b near co-
efficients of the Hamiltonian H and the tor U,
respectively?®. The symbol < represents operator

ed vector of di-
the Ssupplementary

of s-majorization and B is a re
mension three (see section I
Material®®).

For the longitudinal a "‘o‘r/Oplc coupling cases for
(0,0,0), Eq. (B8) ?2111‘55 1

Bro.oth= 0= 07T (B10)
corresponding to t cgitions
{f 1
<s27J | 0 | Tiong, (B11)
0
and
oY 1
<s2nJ | 1 | Tiso, (B12)
eU 1

re more restrictive than the conditions for
‘Fhe inequalities (4) in the paper by Yuan and
a8 which describe the properties of s-majorized
vectors, translate to
0V 4+ 05 +16Y| < 20T Tiong

and 291U + 295 < 8 JT;s,.

(B13)
(B14)

A
teria.l.., this
9) of Theorem 2 defines the mm‘w ana) and T*(ana) = T}, are given by

(
ﬁm

in section IV D of the Supplementary
implies that the minimum times

. 1
T‘long(ana) = ﬁ (B15)
1
T — B1
(ana) = 1. (B16)

respectively.

The ideal pulse sequence for generating double-
quantum coherence in the isotropic coupling limit is
based on the conversion of the initial state I, — I>, to
2I1yls, — 21,15, by an isotropic mixing period of dura-
tion 1/(4Jmaz)-

1802 (1)

90°
P(O) = I, + I, — Lig+ 1oy ——— 11y — Iy

2nJi2(T1aloa+T1yloy+112122)1/(4J)

2hyla, — 211,19y

1802 (I2) 90°
—

2Iylo, + 211,15y — — 211yloy — 211412y

The operator Iy, — I, is created from Iy, + Is, by an
Is-selective 1809 rotation, which can be realized by a de-
lay (c.f. Fig. 9). Similarly, the operator 211,15, — 2115,
(corresponding to zero-quantum coherence in the tilted
frame with the x axis as quantization axis), which is cre-
ated by the isotropic mixing period, can be transformed
by an Ir-selective 1803 rotation to 21,2, + 21,1, (cor-
responding to double-quantum coherence in the tilted
frame with the x axis as quantization axis). A non-
selective 90; pulse finally results in —2Iy,1s; — 211,12,
(corresponding to the desired double-quantum coherence
in the rotation frame with quantization axis z). In
the context of heteronuclear cross-polarization experi-
ments, the creation of zero-quantum coherence by planar
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#ig®” and its conversion to double-quantum coher-
efice with the help of spin-selective 180° rotations has

PUb“lsehhn[g( viously discussed®”. However, for the heteronu-
clear case, a planar mixing period of duration 1/(2J)
would be required for the full conversion, whereas an
isotropic mixing period of duration 1/(4J) is sufficient
in the homonuclear case considered here (c.f. Fig. 9).

Al

Appendix C: Time optimal generation of triple-quantum
coherence in a three-spin chain based on geodesic pulses

Here we consider the case of a linear three-spin
chain with only nearest-neighbor longitudinal couplings
Jiz = Jag = Jand Ji3 = 0. According to Eq. (B1), the
transfer efficiency from the initial state A = I, + 15, + 13,
(corresponding to the thermal equilibrium operator for
the case of a homonuclear spin system) to the target
state C' = If'[;'[;‘ (corresponding to triple-quantum co-
herence with coherence order p = +3) by a unitary trans-
formation U is given by

1
* * * *
Q =—7= [uj us1 + ujpuss + ujzus3 — uj,Usa
21/6

(€1)

with the upper bound of (for details c.f. sections VA and
V B of the Supplementary Material®®)

* * * *
+ ujsuss — U gUss — U rUST — 3u18u88| R

3

Qmax = g

The unitary operator U achieving the
has the general form

%e”l 0 ... 0

Uopt —

0 ur:

—%e e /5 % 0 %
with arbitrary real man ro (c.f. section V B
of the Supplementary M?terial . In general, all U =
i ; € ,y have this form, since U
27 hal2alsz by g unitary trans-
2=taslsz) (c.f. section V C of
1&&41&155).

maximal transfer efficiency. From
27 the time optimal sequence generat-
inear three-spin chain in the longitudinal

ith Hamiltonian H°" = 2xJ (11,12, +

B
5 (I1o—Too+150) T[—i20 T (Tn2 T2z + T2z T52) i Tas

61'5(111-1—13:)7

(C4)
where T' = T, (ana) = V3/(2J) (c.f. section V D of

the Supplementary Material®®).
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