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Abstract

Polynomial chaos expansions are frequently used by engineers and modellers
for uncertainty and sensitivity analyses of computer models. They allow rep-
resenting the input/output relations of computer models. Usually only a few
terms are really relevant in such a representation. It is a challenge to infer
the best sparse polynomial chaos expansion of a given model input/output
data set. In the present article, sparse polynomial chaos expansions are in-
vestigated for global sensitivity analysis of computer model responses. A new
Bayesian approach is proposed to perform this task, based on the Kashyap
information criterion for model selection. The efficiency of the proposed al-
gorithm is assessed on several benchmarks before applying the algorithm to
identify the most relevant inputs of a double-diffusive convection model.
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1. Introduction

Mathematical models are widely used in many scientific disciplines to
explain and understand the observed real world. Their translation into com-
puter models allows studying different scenarios by exploring the input space.
However, the use of computer models for specific applications is usually ham-
pered by the inherent uncertainties about the input values and the model
itself. Hence, good modelling practice requires that uncertainties be ac-
knowledged and taken into account by modellers. Uncertainty and sensitiv-
ity analyses should be routinely implemented both in the modelling process
and in the operational use of the model [1].

For this purpose, polynomial chaos expansion (PCE) has received much
attention over the last two decades (e.g., [2, 3, 4, 5, 6, 7, 8, 9]). In computer
models in engineering, PCE has been proven useful for the analyses of uncer-
tainty, sensitivity and risk of failure. A ‘good’ PCE representation contains
all the salient features of the model response within the input space in which
it has been built. The challenge is to obtain such a ‘good’ representation.
There are typically two approaches to building a PCE: intrusive and non-
intrusive. The intrusive approach requires modifying the computer model,
whereas the non-intrusive approach only needs input/output samples. In
this paper, we discuss non-intrusive approaches.

The non-intrusive computation of the PCE coefficients is often conducted
with one of two methods, projection or regression. The latter is efficient
when dealing with a moderate number of input variables. However, with a
large number of input variables or a high-degree polynomial, the number of
coefficients increases dramatically. In that case, a large number of model
evaluations is required to compute the overall set of PCE coefficients (see
[7]). Moreover, a large number of coefficients poses the problem of overfitting
when regression-based methods are employed. To circumvent this problem,
one needs to decrease the number of coefficients in the PCE. To this end,
several approaches have been developed to construct a sparse PCE, where
only basis functions and coefficients that make significant contributions to
the model response of interest are retained. As far as our knowledge extends,
the original idea of a sparse PCE came from Blatman and Sudret [10, 11, 12],
where they developed an iterative forward–backward algorithm to construct
a sparse PCE based on a stepwise regression technique. Later, a least angle
regression algorithm was proposed by [13]. Hu and Youn [14] presented
a sparse iterative scheme using the projection technique. More recently,
Fajraoui et al. [15] developed a simple strategy to construct a sparse PCE
from a heuristic rule.

In the present paper, a new algorithm based on Bayesian model averag-
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ing (BMA) is proposed to construct sparse PCEs. BMA, relying on Bayes’
theorem, is a well known statistical approach to perform quantitative com-
parisons of competing models [16, 17]. The difficulty of BMA lies in the
evaluation of a quantity referred to as the ‘Bayesian model evidence’ (BME),
which involves an integral over the whole input space, so it generally has no
analytical expression. The Kashyap information criterion (KIC) was derived
from BMA under some assumptions regarding the posterior probability dis-
tribution [18]. In the present paper, the KIC is employed to select the best
sparse PCE for a given input/output sample.

The sparse PCE is employed in the present paper for the global sensitiv-
ity analysis of computer model responses. For this purpose, variance-based
sensitivity indices are of interest. These sensitivity indices (also called Sobol’
indices) are defined in Section 2. In Section 3, the polynomial chaos rep-
resentation of a multi-dimensional function is recalled. In particular, it is
given in detail how to determine the Sobol’ indices from the PCE coeffi-
cients. Then, in Section 4, the BMA and KIC are defined before proposing,
in § 5, our algorithm for inferring the optimal sparse PCE from a given data
set. The performance of the proposed algorithm is assessed on different well-
known benchmarks for global sensitivity analysis in Section 6. Finally, an
application to a porous medium is proposed in Section 7, before concluding
(§ 8).

2. Sobol’ decomposition

Let us consider a mathematical model Y = M(X) having an independent
input vector X = (X1, . . . , Xn)

T and a scalar output Y . We denote by
x = (x1, x2, . . . , xn)

T the isoprobabilistic transformed vector of X, namely,










x1 = F1(X1)
...

xn = Fn(Xn)

(1)

where Fi is the cumulative distribution function of Xi, that is, Xi ∼ pi(Xi) =
dFi(Xi)/dXi. Such a transformation is convenient because the input vector
x contains independent random parameters uniformly distributed in the n-
dimensional unit hypercube Kn. In the sequel, we assume that Y is square
integrable, that is, Y ∈ L2.

The Sobol’ decomposition represents any square-integrable function M(X)
into a sum of terms of increasing dimensions:

M(X) ≡ M0 +
n

∑

i1=1

Mi1(xi1) +
n

∑

i2>i1

Mi1i2(xi1 , xi2) + · · ·+M12...n(x) (2)
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such that
∫ 1

0

Mi1...is(xi1 , . . . , xis)dxik = 0 if k ∈ {1, . . . , s} (3)

On the one hand, Eq. (3) ensures the uniqueness of the decomposition
Eq. (2), and on the other hand, ensures the pairwise orthogonality of the
summands in the following sense:

∫

Kn

Mi1...is(xi1 , . . . , xis)Mj1...jt(xj1 , . . . , xjt)dx = 0

for {i1 . . . is} 6= {j1, . . . , jt}
(4)

where dx = dx1 . . .dxn for the sake of simplicity.
Moreover, with the above properties, each term in Eq. (2) can be derived

analytically. For example, the constant term, the univariate term, and the
bivariate terms can be written, respectively, as follows:

M0 = E[M(X)] ≡
∫

Kn

M(X)dx (5)

Mi1(xi1) =

∫

Kn−1

M(X)dx∼i1 −M0 (6)

Mi1i2(xi1 , xi2) =

∫

Kn−2

M(X)dx∼{i1,i2} −Mi1(xi1)−Mi2(xi2)−M0 (7)

In these expressions,
∫

Kn−1 dx∼i1 denotes the integration over all variables
except xi1 . Similarly,

∫

Kn−2 dx∼{i1,i2} denotes the integration over all param-
eters except xi1 and xi2 .

As X is a vector of random variables, the model response Y = M(X) is
also a random variable, with variance D:

D = V[M(X)] ≡
∫

Kn

M2(X)dx−M2
0 (8)

Due to the orthogonality property in Eq. (4), the total variance Eq. (8) can
be decomposed as follows:

D =
n

∑

i1=1

Di1 +
n

∑

i2>i1

Di1i2 + · · ·+D12...n (9)

where Di1...is is the partial variance:

Di1...is =

∫

Ks

M2
i1...is

(xi1 , . . . , xis)dxi1 . . . , dxis (10)
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Thereby, the partial sensitivity indices (Sobol’ indices) due to the coopera-
tive effect of the input random variables {xi1 , . . . , xis} can be defined in the
following form:

Si1...is =
Di1...is

D
∈ [0, 1] (11)

Hence, the first-order sensitivity index Si represents the amount of variance
of the model response due to xi alone. The higher Si, the more Y is sensitive
to the variable xi. Sij measures the amount of variance of Y due to the co-
operative effect (also called the interaction) of xi and xj . To further evaluate
the whole contribution of xi to the variance of Y , the total sensitivity index
ST
i is introduced [19]:

ST
i =

∑

u:i∈u
Su (12)

There have been a plethora of methods proposed in the literature to assess
the Sobol’ indices. They can be classified as spectral methods [7, 20, 21, 22],
non-parametric methods [23, 24, 25, 26], emulator-based methods [27, 28, 29],
among others. In the present work, we focus on the spectral method called
the polynomial chaos (PC) expansion. In this approach, the model response
is cast onto an orthonormal polynomial basis of L2. Thanks to the nature of
the polynomial chaos basis, the sensitivity indices can be computed simply,
as analytical functions of the PC coefficients [7].

3. Polynomial chaos representation of the model response

3.1. Full PC expansion

The model response can be expanded as follows in terms of a polynomial
basis:

Y = M(X) ≡
∑

α∈Nn

aαψα(x) (13)

where α = α1 . . . αn (with αi > 0) is an n-dimensional index, and the aα’s
are the PC coefficients.

The multidimensional polynomial ψα1...αn
is the tensor product of uni-

variate standardized shifted-Legendre polynomials:

ψα1...αn
(x) =

n
∏

i=1

ψαi
(xi) (14)

We recall that the first shifted standardized Legendre polynomials are: ψ0 =
1, ψ1(x) =

√
3(2x− 1), ψ2(x) =

3
√
5

2
(2x− 1)2 −

√
5
2

and so on.
Eq. (13) is usually referred to as the polynomial chaos expansion (PCE) of

Y . For computational purposes, the PCE is usually truncated to retain only
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a finite number of terms. One commonly retains those polynomials whose
total degree |α| ≡ ∑n

i=1 αi does not exceed a given degree p:

Y ≃ Mp(x) ≡
∑

α∈Ap,n

aαψα(x), Ap,n ≡ {α ∈ N
n : |α| ≤ p} (15)

With such a truncation, the problem of characterizing the random response Y
is reduced to evaluating a finite set of unknown coefficients. The total number
of unknown coefficients P can be calculated from the maximal degree p and
the number n of input variables as follows:

P =

(

n+ p
p

)

=
(n+ p)!

n!p!
(16)

where P increases polynomially with both p and n. The expression Eq. (15)
is called the full PC representation of degree p of the model response Y .

3.2. Computing the PC coefficients

There are typically two ways to compute the PC coefficients: 1) by projec-
tion (see [30] among others) and 2) by regression (e.g., [7]). Projection-based
methods exploit the orthonormality of the PC basis elements by assessing the
integral

aα =

∫

Rn

M(X)ψα(x)dx (17)

using a numerical integration scheme.
The regression-based methods minimize some distance between the model

responses and the truncated PCE,

ap = argmin
ap

(L(M(X)|Mp)) (18)

with ap = {aα, 0 6 |α| 6 p} the vector of PC coefficients. L(M(X)|Mp)
defines the distance to be minimized between M and Mp. In a probabilistic
framework, L(·) represents a probability function that measures how likely
the identified PCE fits the model response.

With the regression-based methods considered in this paper, a problem
arises from the dramatic increase of P when increasing the maximal degree
p or the number of input variables n. Indeed, a large number of model
evaluations N is required in this context and the evaluation of Eq. (18) can
be hampered by overfitting issues. To prevent overfitting, a Bayesian based
algorithm is proposed in Section 5 to build a sparse PCE, which retains only
a small number of basis functions and PC coefficients to capture the main
stochastic features of the model response. Thus, a small number of model
evaluations may be sufficient to compute the sparse PC coefficients.
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3.3. Sparse polynomial chaos expansion

Let A be a non-empty finite subset of Nn, with which the truncated PCE
can be defined by

MA(x) ≡
∑

α∈A
aαψα(x) (19)

The common truncation scheme in Eq. (15) corresponds to the choice
A = Ap,n, which is referred to as the full PCE. Since the large cardinality
of this set may lead to the computational issues previously discussed, the
determination of truncation sets A of small cardinality is of interest. Thus,
we define that if the following condition is verified, the truncated PCE is
sparse:

IS =
card(A)

card(Ap,n)
≪ 1, p ≡ max

α∈A
(|α|) (20)

In the present paper, a new algorithm, based on Bayesian model selection, is
proposed to build sparse PCEs.

3.4. PC-based global sensitivity indices

Once the sparse PCE of a model response is built, a global sensitivity
analysis can be carried out at a negligible additional computational cost
by analytically computing the Sobol’ indices. Let us consider the PCE in
Eq. (19). A subset of multidimensional indices Ii1...is in A is defined such
that

Ii1...is =

{

α ∈ A :
αk > 0 k ∈ (i1, . . . , is), ∀k = 1, . . . , n
αk = 0 k /∈ (i1, . . . , is), ∀k = 1, . . . , n

}

(21)

Using this notation, the sparse PCE can be rewritten in the form of the
Sobol’ decomposition:

MA =a0 +

n
∑

i1=1

∑

α∈Ii1

aαψα(xi1) +

n
∑

i2>i1

∑

α∈Ii1i2

aαψα(xi1 , xi2)

+ · · ·+
n

∑

is>···>i1

∑

α∈Ii1,...,is

aαψα(xi1 . . . , xis)

+ · · ·+
∑

α∈I1,...,n

aαψα(x)

(22)

where each summand in Eq. (2) can be identified in the above equation as
follows: Mi1...is(xi1,...,is) =

∑

α∈Ii1...is
aαψα(xi1 , . . . , xis).
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Due to the orthonormal property of the polynomial basis, the total and
partial variances can be derived analytically from the sparse PCE represen-
tation as follows:

DA =
∑

α∈A\{0}
a2
α
, DA

i1...is =
∑

α∈Ii1...is

a2
α

(23)

Now it is easy to compute the partial sensitivity indices for the subset of
input variables {xi1 , . . . , xis} from the above equations:

SA
i1...is =

DA
i1...is

DA (24)

The total sensitivity index of an input variable xi is thus given by the
sum of all the partial sensitivity indices involving i:

ST,A
i =

∑

α:αi>0

SA
α

(25)

In the numerical exercises in Section 6, the estimated sensitivity indices
are compared to analytical values for some benchmarks functions. The effi-
ciency of the algorithm proposed in Section 5 is assessed by evaluating the
following errors with respect to the sample size (i.e., computational cost):

e1 =

n
∑

i=1

|Sex
i − SA

i | (26)

eT =

n
∑

i=1

|ST,ex
i − ST,A

i | (27)

where the superscript "ex" stands for the analytical value.

4. The Bayesian Model Averaging Framework

Let us consider Nm plausible competing sparse PCE models MAk
:

MAk
≡

∑

α∈Ak

aαψα(x), k = 1, . . . , Nm (28)

The above equation can be written in the vector form MAk
= akψk with

the parameter vector ak and the vector of polynomial terms ψk. Let X =
{X(1), . . . ,X(N)} be a set of input data and Y = {Y (1), . . . , Y (N)}T be the
set of output data such that Y (r) = M(X(r)). The challenge is to scrutinize
each model’s ability to reproduce the data set (X ,Y) and further to pinpoint
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the best sparse PC representation among the set {MAk
, k = 1, . . . , Nm}.

To this end, Bayesian model averaging (BMA), a formal statistical approach
based on Bayes’ theorem, is introduced to realize an objective ranking and
a quantitative comparison of the proposed alternative models. The BMA
approach combines prior information of each model with the observed data
to estimate the posterior probability for each individual model to be the best
one among the competing models. The posterior probabilities P(MAk

|Y)
are given by Bayes’ theorem:

P(MAk
|Y) =

P(Y|MAk
)P(MAk

)
∑Nm

i=1P(Y|MAi
)P(MAi

)
(29)

where P(MAk
) is the prior probability that model MAk

is the best one from
the set of considered models before any data is collected. The equally likely
prior P(MAk

) = 1/Nm is usually used if the prior information is vague.
P(Y|MAk

) is the likelihood of the observed data, expressing the preference
shown by the data for different models. The denominator in Eq. (29) is the
normalization constant, which ensures that the posterior distribution on the
left-hand side is a valid probability density and integrates to one. Neglecting
the normalizing constant, Bayes’ theorem can be written in the following
way:

P(MAk
|Y) ∝ P(Y|MAk

)P(MAk
) (30)

Therefore the key to obtaining the posterior probability is to define the
term P(Y|MAk

), which is known as the Bayesian model evidence (BME).
This term quantifies the likelihood of the observed data integrated over each
model’s parameter space with the following expression:

P(Y|MAk
) =

∫

R
Pk

P(Y|MAk
,ak)P(ak|MAk

)dak (31)

where Pk is the number of parameters for the model MAk
. P(ak|MAk

)
denotes the prior distribution of the parameter set ak. P(Y|MAk

,ak) is the
likelihood function, which expresses how probable is the observed data for
different settings of the parameter vector ak of the model MAk

.
The integral in Eq. (31) over the full parameter space of the model is

not easy to calculate analytically, especially for high-dimensional parame-
ter spaces. A mathematical approximation, e.g., a Taylor series expansion
followed by a Laplace approximation is thus used to render the integration
computationally tractable. The Laplace approximation assumes that the pos-
terior distribution of the parameters is Gaussian and highly peaked around
its local maximum with the expression P(ak|Y ,MAk

) ∼ N (ãk,Cãã). The
mean of the posterior ãk is referred to as the maximum a posteriori estimate
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(MAP), which represents the most likely parameter set for model MAk
, con-

sidering both the prior belief about the parameters and the fitting of the
observed data. The covariance matrix Cãã is estimated at the MAP solution
(i.e., ak = ãk).

Conducting a Taylor expansion of lnP(Y|MAk
) centred on the posterior

mode ãk, with third- and higher-order terms neglected, then taking the ex-
ponential of the resulting expansion and computing the integration with the
Laplace approximation yields

P(Y|MAk
) ≃ P(Y|MAk

, ãk)P(ãk|MAk
)(2π)Pk/2|Σ̃|−1/2 (32)

where Σ̃ is the Pk × Pk Hessian matrix of second derivatives of the negative
log posterior defined by

[

Σ̃

]

ij
= − ∂2 lnP(ãk|Y ,MAk

)

∂ai∂aj

∣

∣

∣

∣

ak=ãk

(33)

Eq. (32) yields

−2 lnP(Y|MAk
) ≃ −2 lnP(Y|MAk

, ãk)−2 lnP(ãk|MAk
)−Pk ln(2π)+ln |Σ̃|

(34)
By assuming that the posterior distribution is virtually Gaussian around

the MAP (Laplace approximation), one can set Σ̃ = C−1
ãã , which leads to the

Kashyap information criterion (KIC, [18]):

KICk = −2 lnP(Y|MAk
, ãk)− 2 lnP(ãk|MAk

)− Pk ln(2π)− ln |Cãã| (35)

Evaluating KICk is a computationally feasible alternative to directly
computing BME. KICk reduces the computational effort by considering the
most likely parameter set instead of integrating over the entire parameter
space. Note that ãk and Cãã in Eq. (35) are usually estimated by optimiza-
tion algorithms.

5. Bayesian sparse PCE

5.1. Our working assumptions

Evaluating the KICk of each competing model MAk
allows finding the

best model, the one corresponding to the smallest KIC. Let us define the
degree and the interaction order of any index α respectively as follows:

pα ≡ |α| =
n

∑

i=1

αi, qα ≡
n

∑

i=1

1αi>0 (36)
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where 1αi>0 = 1 if αi > 0 and 0 otherwise.
Moreover, let y = (Y − E [Y ])/V [Y ] be the standardized model response

variable and y the vector of standardized model responses. Our strategy to
build a sparse PCE for y relies on the first assumption that the model error,

ǫk = y −MAk
(x) (37)

is a homoscedastic Gaussian variable, that is, ǫk ∼ N (0, σ2
k). This leads to a

Gaussian likelihood function P(Y|MAk
,ak, σ

2
k) ∼ N (MAk

, σ2
k). The matrix

formulation of the previous equation also becomes

ǫk = y −ψkak (38)

Because MAk
is an approximation of y (centred and reduced), it is ex-

pected that the PCE coefficients are close to zero. Consequently, we further
assume that

P(ak|MAk
) ∼ N (0,Caa) (39)

with

Caa =













σ2
α1

0 . . . . . .

0
. . . 0 . . .

... 0
. . . 0

0 . . . 0 σ2
αPk













where σ2
αi

= (pαi
+ qαi

− 1)q2
αi

stands for the variance assigned to the ith
term in Ak. This prior assigns a high variance to the PC element with a
high level of interactions and a high polynomial degree. This has the effect
of favouring low degree and interaction terms by assigning smaller weights to
those elements. Note that because y is a standardized vector, a0 is always
equal to zero. Thus, in the following, it is supposed that a0 /∈ Ak. In the
present work, Gaussian priors are assigned to the PCE coefficients but it
is worth mentioning that Laplace priors can also be a good choice [31, 32].
Finally, it is worth mentioning that, except for the model selection criterion,
our proposed approach is equivalent to the ridge regression approach [33] and
that assuming Laplace priors is tantamount to the Least Absolute Shrinkage
and Selection Operator approach (LASSO, see [34]).

By noting that the PCE is linear with respect to its coefficients, the
analytical expression of the posterior distribution is given by

P(ak|y,MAk
, σ̃2

k) ∼ N (ãk,Cãã) (40)
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and

P(σ−2
k |y,MAk

, ãk) ∼ Γ

(

N + 2

2
,
2

N
σ̃−2
k

)

(41)

with

ãk =
Cããψ

T
k y

σ̃2
k

(42)

Cãã =

(

ψT
kψk

σ̃2
k

+C−1
aa

)−1

(43)

σ̃2
k =

(y −ψkãk)
T (y −ψkãk)

N
(44)

Eq. (44) gives the MAP estimate of the current model error σ2
k. Solving

Eqs. (42–44) requires an iterative process that starts by setting σ̃2
k (say, σ̃2

k =
1). Then, after inferring ãk and Cãã from Eq. (42) and Eq. (43) respectively,
σ̃2
k is updated from Eq. (44). The calculations are repeated until σ̃2

k converges
within a given relative precision (say 10−2). In this context, we can take
advantage of these analytical expressions to evaluate KICk and infer the
best sparse PCE for y. In the sequel, the Bayesian sparse PCE is denoted by
MA, and the associated vector of coefficients and the optimal error variance
are denoted by, respectively, aA and σ2

A. Similarly, the PCE degree and level
of interaction are denoted pA and qA, respectively, while PA corresponds to
the number of coefficients in the sparse PCE.

5.2. Post-processing

Eqs. (40–41) indicate that aA and σ2
A are random variables. Conse-

quently, the Sobol’ indices estimated with the best sparse PCE should also
be treated like random variables as well as any statistics computed with
MA. Hence, it is possible to assign a credible interval to the Sobol’ indices
estimate. This is achieved by randomly sampling draws of aA and σ2

A ac-
cording to their posterior densities and evaluating the total variance and
partial variances (from Eq. (23)) for each draw before estimating the Sobol’
indices (Eq. (24)). In this way, one obtains a sample of sensitivity indices
from which, for instance, the 95% credible interval of each statistic can be
extracted. In the sequel, Latin hypercube samples of size 100,000 are gen-
erated to evaluate the credible intervals. It is worth mentioning that these
calculations are computationally cheap with sparse PCEs.

Since KIC-based PCE selection is a compromise between model simplic-
ity and goodness of fit, overfitting is avoided. Thereby one can rely on the
relative training error to gauge whether the identified sparse PCE is an ac-
curate or poor representation of the original model M. Because the vector
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of model responses is standardized, the relative training error is nothing but
σ2
A. However, the validity of this statement relies on the assumption that

the model error is Gaussian, which is not always true. One can confirm this
assumption by checking whether the residual (i.e., the vector of model error
at the MAP) follows the expected distribution, namely, N (0, σ2

A). If it is not
the case, it is likely that the identified sparse PCE is not reliable. In this
situation, it is recommended to increase the sample size where the Laplace
approximation is more likely to hold [17].

5.3. The proposed algorithm

Suppose that we have generated an experimental design X = {X(1), . . . ,
X(N)} with N realizations, e.g., a random design based on Monte Carlo sam-
pling, Latin Hypercube sampling or quasi-random low discrepancy sequences.
The quasi-Monte Carlo (QMC) method of [35] is adopted for generating sam-
ples in this work due to its space filling property. After running the model
at the design points, the model responses of interest are gathered into the
vector Y = {Y (1), . . . , Y (N)}T . Using the concept of BMA, it is now possible
to devise an algorithm that selects the optimal sparse PCE model from the
data set (X ,Y). The algorithm is outlined in the following:

Step 1 (Initialization): The data (X ,Y) are transformed into standard-
ized vectors (x,y). Then, the initial degree and interaction order of the PCE
are defined; it is recommended to choose either (p = 2, q = 1) or (p = 4, q =
2), depending on the features of the model response of interest. Further, the
following subset is created: Ap,q = {α ∈ Nn : pα 6 p, qα 6 q}/{0}.

Step 2 (Ranking via correlation coefficient): Set P = Card (Ap,q) and
define the polynomial basis functions ψ = (ψ1, ψ2, . . . , ψP ) associated to
Ap,q. Then, calculate the Pearson correlation coefficient rj between each
polynomial term ψj(x) ∀j = 1, . . . , P and the model response vector y as
follows:

rj =
COV [y, ψj(x)]
√

V[y]V[ψj(x)]
(45)

where COV is the covariance operator. Then, sort the array (r21, r
2
2, . . . , r

2
P )

in descending order and rearrange the polynomial basis functions accordingly
in a new vector ψ̂ = (ψ̂1, . . . , ψ̂j, ψ̂j+1, . . . , ψ̂P ) such that r2j > r2j+1.

Step 3 (Ranking via partial correlation coefficient): Compute the partial
correlation coefficient r̂j|1,...,j−1 between each basis function ψ̂j(x) and y for
j = 1, . . . , P with the following equation:

r̂j|1,...,j−1 =
COV

[

y, ψ̂j(x)|ψ̂1(x), . . . , ψ̂j−1(x)
]

√

V

[

y|ψ̂1(x), . . . , ψ̂j−1(x)
]

V

[

ψ̂j(x)|ψ̂1(x), . . . , ψ̂j−1(x)
]

(46)
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where COV [·|·] is the conditional covariance operator and V [·|·] the con-
ditional variance operator. As in step 2, sort the array (r̂21, r̂

2
2|1, r̂

2
3|1,2, . . . ,

r̂2P |1,...,P−1) in descending order, based on which we update the vector of PC

basis elements ψ̃ = (ψ̃1, . . . , ψ̃j , ψ̃j+1, . . . , ψ̃P ) such that r̂2j|1,...,j−1 > r̂2j+1|1,...,j.

Initialize KIC1 = +∞, ψA = ψ̃1 and k = 2.
Step 4 (Identification of the current sparse PCE): Define a sparse PCE

model MAk
with the polynomial basis ψk = (ψA, ψ̃k). The BMA approach

is used to estimate the current sparse PCE model MAk
. Evaluate the MAP

estimates ãk and Cãã from Eqs. (42–43) as well as the KICk assigned to
the current model MAk

(Eq. (35)). If KICk 6 KICk−1, set ψA = ψk and
aA = ãk, otherwise set KICk = KICk−1. Then, set k = k + 1 and repeat
this step until k = P .

Step 5 (Enriching Ap,q): Write MA = aAψA for the identified sparse
PCE whose elements belongs to the subset A. If the subset A contains (i)
elements of degree p − 1 or p, then set p = p + 2 or (ii) elements of level
of interaction q, then set q = q + 1 and resume from Step 2 after setting
Ap,q = A and enriching the subset from elements of degree p − 1 and p as
well as elements of level of interaction q. Otherwise, stop the calculation.

The algorithm starts by considering all the PC basis elements of low
degree (typically p = 2) and low level of interactions (q = 1). This ensures
that the initial number of elements to be analyzed with the KIC is small.
Before evaluating the latter, the basis elements are reordered by order of
importance in the next two following steps. First, in Step 2, the Pearson
correlation coefficient rj between the model response y and each basis element
ψj is computed. The Pearson correlation coefficient measures the strength of
the linear relation between ψj and y. Consequently, r2j measures how ψj is
a relevant basis element for the investigated sparse PCE. Because there may
have been spurious correlations in the experimental design X , the Pearson
correlation coefficients can be misleading in highlighting the relevant terms.
Consequently, a second reordering is performed in Step 3 on the basis of the
estimated partial correlation coefficients. Step 4 proceeds to the identification
of the optimal sparse PCE for the basis elements belonging to the current
subset Ap,q. Then, the latter is enriched in Step 5 if the optimal sparse PCE
contains elements of degree exceeding p − 1 or level of interactions q. The
enrichment is made using basis elements of higher degrees (p+ 1, p+2) and
higher levels of interactions (q + 1). In this case, the procedure is resumed
for the new subset (from Step 2). If the current identified sparse PCE does
not contain basis elements of degree exceeding p − 1 or level interaction q,
then the current sparse PCE is deemed the Bayesian sparse PCE MA.

Note that for high-dimensional problems (n > 10), considering all the
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possible interaction levels q + 1 in Step 5 can provide a very high number
of terms in Ap,q. Consequently, during this phase, only the interactions that
involve the relevant inputs of the current iteration are considered. If we
consider the multi-dimensional index α = α1 . . . αn, the relevant inputs are
those with at least one nonzero index in the subset Ap,q. Thus, ∀α ∈ Ap,q,
if αi1 always equals zero, then xi1 is deemed irrelevant and is not further
considered for higher interaction levels.

Although the proposed enrichment strategy reduces the computational
cost, it may result in the identification of a sparse PCE with poor perfor-
mance. The quality of the identified PCE model MA is measured a posteriori
by assessing the relative training error σ2

A. Our experience suggests that a
good sparse PCE satisfies σ2

A < 0.05. Otherwise, it is recommended to restart
the PCE identification procedure with higher initial values of p and q. If the
identified PCE is still not satisfactory, then the experimental design X should
be enriched and the model response vector Y updated before restarting the
identification of the optimal sparse PCE.

Regarding the parameter estimation, we assume that the prior parame-
ter and error distributions are both Gaussian. Thus the parameters can be
estimated by the analytical expression of the MAP as described in Section
4. Generally, calculating the MAP analytically allows avoiding the prob-
lem of a poorly conditioned matrix usually encountered with the regression
method for small sample sizes. However, a larger data set basically yields a
more accurate estimation of the sparse PCE, as the Laplace approximation is
expected to hold in situations where a relatively large sample size is available.

6. Synthetic mathematical examples

6.1. Ishigami function

Let us consider a popular benchmark in global sensitivity analysis, the
Ishigami function [36, 37]:

Y = sinX1 + a sin2X2 + bX4
3 sinX1 (47)

where the inputs are independent random variables uniformly distributed
over [−π, π]. This function is smooth, nonlinear and non-monotonic. We
note that xi =

Xi

2π
+ 1

2
. The total and partial variances of Y can be calculated

analytically:

D =
a2

8
+
bπ4

5
+
b2π8

18
+

1

2
,

D1 =
bπ4

5
+
b2π8

50
+

1

2
, D2 =

a2

8
, D3 = 0,
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D12 = D23 = 0, D13 =
8b2π8

225
, D123 = 0.

The coefficients in the function take the numerical values a = 7, b = 0.1.
Note that the function is sparse in nature since there are three independent
variables in the model but the maximum interaction order is 2. Moreover,
the function is even with respect to the variables X2 and X3, hence the odd
polynomials of these variables should be zero in the PCE. This means that
to identify a good sparse PCE for this function, one must initialize p = 4 and
q = 2. Indeed, choosing p = 2 and q = 1 will discard the input variable X3

in the investigated sparse PCE (see the discussion in the previous section).
The sparse PCE coefficients are evaluated using quasi-random sequences

of different sizes N = 2j (j = 5, 6, . . . , 13). These sequences are used to study
the convergence of the proposed algorithm for building a sparse PCE. The
degree and interaction level of the PCE are iteratively increased from p = 4
and q = 2 as described in Section 5.3. The obtained results from the sparse
PCEs are reported in Table 1.

Table 1 reveals that N = 26 model evaluations are sufficient to obtain
relatively accurate estimates with a sparse PCE. We note that the relative
training error is very small, σ2

A ≃ 1.2 × 10−3. The sensitivity indices in this
case show a discrepancy around 2% with respect to the reference solution.
With N = 26 model evaluations, the sparse PCE produced by the iterative
procedure has a maximum degree pA = 9 but contains only PA = 13 terms,

whereas the corresponding full PCE would contain P =

(

3 + 9
9

)

= 220

terms (the index of sparsity IS = 13/220 ≈ 0.059) and would thus require
at least 220 model evaluations to compute the whole set of coefficients.

Now let us investigate the sensitivity of the sparse PCE estimation to the
number of model evaluations. In Table 1 it is observed that the accuracy of
the estimates increases with the number of model evaluations. For instance,
using N = 25 model evaluations leads to a quite large relative error (σ2

A ≃
0.31) while the latter reduces fromN = 26 model evaluations. In particular, a
two-digit accuracy is obtained for all the sensitivity indices for N = 2j, j > 7.
It is also observed that all the sparse PCEs contain relatively low numbers
of terms compared to their full counterparts (with indices of sparsity that
range from 2.6% to 6.0%), which reflect the sparse structure of the model
response.

The various 95% credible intervals of both the first-order and total sensi-
tivity indices estimates are plotted in Figure 1 together with the analytical
reference values. From this figure, it clearly appears that the credible inter-
vals obtained from N = 26 model runs are quite narrow and well centred
around the exact values, which indicates a low bias of the sparse PCE-based
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estimates.
Furthermore, the rate of convergence of the proposed procedure for build-

ing a sparse PCE is studied. In Figure 2, the absolute errors of the first-order
and total sensitivity indices are reported as functions of the number of model
evaluations. The results of this figure show a high convergence rate of the
sensitivity indices with respect to the number of model evaluations for the
sparse PCE. This high convergence rate is due to the smoothness of the
Ishigami function.

All the statistics computed with the identified Bayesian sparse PCEs for
different sample sizes are reliable under the assumption of Gaussian model
errors. To check this assumption a posteriori, the empirical cumulative dis-
tribution function (CDF) of the residual evaluated at the MAP is compared
with the expected normal CDF. This comparison is carried out for different
sample sizes (see Figure 3). It can be inferred that, except for N = 25, the
residuals are virtually normally distributed. Hence, assuming a Gaussian
error between the Ishigami function and the Bayesian sparse PCE seems a
reasonable assumption.

To test the stability of the algorithm, for different sample sizes we re-
peat one hundred times the Bayesian sparse PCE identification from different
draws. To do so, the quasi-random sequences are generated by sampling from
different points in the input space. The results are depicted in Figure 4 in the
form of box-and-whisker plots. The latter show relatively large variations of
the Sobol’ indices estimates, especially at low sample sizes (N = 25, 26). We
note that, as compared to the uncertainty ranges provided by the Bayesian
sparse PCE (see Figure 1), the effect of the experimental design is non-
negligible at low sample sizes. Thereby, the uncertainties computed with the
optimal sparse PCE are underestimated. To obtain more reliable uncertain-
ties one could consider all probable sparse PCEs instead of considering only
the best one. We did not consider this alternative in the present work.

6.2. Sobol’ function

Let us consider the Sobol’ function [23]:

Y =

n
∏

i=1

|4Xi − 2|+ bi
1 + bi

(48)

where the input variablesXi, i = 1, . . . , n are uniformly distributed over [0, 1].
This function is non-smooth and non-monotonic. The analytical expressions
of the total and partial variances are

D =
n
∏

i=1

(Di + 1)− 1, Di =
1

3(1 + bi)2
, Di1...is =

s
∏

k=1

Dik .
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For numerical application, we set the number of input variables n = 9 and
bi = (i− 1)/4. This function is a challenging one due to the presence of the
absolute value which slows down the convergence of the PCE. Moreover, the
level of interactions is very high, as revealed by the differences between the
first-order and total Sobol’ indices (see Table 2, column #2).

For the same reason as before, the initial degree and interaction order of
the sparse PCE are p = 4 and q = 2. Several sample sizes are used to assess
the efficiency of the algorithm N = 2j, (j = 5, . . . , 13). Inaccurate results
were obtained for sample sizes less than N = 28. The results are listed in
Table 2 for N = 28, . . . , 213 and depicted in Figure 5.

It can be observed that with the increase of the number of model eval-
uations, the accuracy of the Bayesian sparse PCE slightly improves. The
relative training error σ2

A never decreases below 10−2 (see the last row of
Table 2). With N = 212 model evaluations, the sparse PCE yields estimates
with an accuracy similar to the reference solution (discrepancy less than 8%).
In this case, the sparse PCE has a maximum degree pA = 18 and total terms
PA = 174, revealing a noticeably small sparsity index of 3.7× 10−5 with re-
spect to a full PCE of the same degree. Indeed, the corresponding full PCE
of degree p = 18 would contain P = 4, 686, 825 terms. This would be com-
putationally unaffordable because of the large number of model evaluations
required.

The credible intervals assigned to the estimated sensitivity indices are
depicted in Figure 5. The uncertainty bounds are particularly large at low
sample sizes and become very narrow from N > 211. Yet, despite of the rel-
atively large uncertainties at N = 28 and N = 29, the first three inputs are
identified as significantly more important than the remainder. Surprisingly,
for N = 210 the subset of inputs (x3, x4, x5) is found of equal importance.
Although at N = 211 the uncertainties assigned to the estimated total sensi-
tivity indices are very narrow, they do not encompass the analytical values
(meaning that the estimated values are slightly biased). This indicates that
the proposed approach may require a lot of model runs to accurately capture
the structure of non-smooth functions.

Figure 6 shows the rate of convergence of the proposed procedure for
building a sparse PCE in terms of the absolute errors of the first-order and
total sensitivity indices as functions of the number of model evaluations. The
results show that the convergence rate of the proposed method for the Sobol’
function is relatively slow compared to the results for the Ishigami function.
This low convergence rate is due to the loss of the spectral convergence of
the PCE for non-smooth functions.

The Gaussian error assumption is checked a posteriori by comparing the
CDF of the residual with the expected target CDF (see Figure 7). It can
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be noted that, albeit some slight discrepancies, the CDFs match surprisingly
well despite the non-smoothness of the Sobol’ function. Hence, it can be
concluded that the Gaussian error assumption is acceptable in the present
exercise.

The stability of the algorithm is again tested by replicating one hundred
times the Bayesian sparse PCE identification at different sample sizes. The
results are depicted in Figure 8. We note that the total sensitivity indices
estimates are more sensitive to the experimental design (bottom plot) than
the first-order sensitivity indices (top plot). The influence of the experimental
design at low sample sizes is very important on the uncertainty range and on
the bias. They decrease with the increase of the sample size.

6.3. Morris function

To assess the proposed method for large dimensional problems, we con-
sider now the so-called Morris function [38]:

Y = β0+
20
∑

i=1

βiXi+
20
∑

i<j

βijXiXj +
20
∑

i<j<k

βijkXiXjXk+
20
∑

i<j<k<l

βijklXiXjXkXl

(49)
where

Xi =

{

2(1.1xi/(xi + 0.1)− 0.5) if i = 3, 5, 7
2(xi − 0.5) otherwise

(50)

and the xis are uniformly distributed over [0,1]. The coefficients βi are as-
signed as follows:















βi = 20 for i = 1, . . . , 10
βij = −15 for i, j = 1, . . . , 6
βijk = −10 for i, j, k = 1, . . . , 5
βijkl = 5 for i, j, k, l = 1, . . . , 4

(51)

The remaining coefficients are zero.
The sensitivity indices are computed by post-processing the sparse PCE

obtained by setting the initial degree and interaction order to p = 2 and
q = 1. This choice is reasonable because, unlike the previous cases, the
Morris function is neither even nor odd, and its dimensionality is high. Hence,
initializing p = 2 and q = 1 allows reducing the computational time of
the postprocessing. Different sizes of experimental designs N = 2j , (j =
5, 6, . . . , 13) are used to build the sparse PCE. Because there are no reference
values for this function, we assess the quality of the estimation by comparing
the sensitivity indices and their credible intervals.
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Figure 9 shows the ten greatest total sensitivity indices with their un-
certainty bounds for the different sample sizes. It is found that the credible
intervals with a small number of model evaluations (N = 25 and N = 27)
are relatively wide, which indicates the necessity of enlarging the number of
model evaluations to get more accurate results. Much narrower uncertainty
bounds are found using large numbers of model evaluations (N = 29, 211 and
213) in Figure 9. The values of the total sensitivity indices are greater than
those of the first-order sensitivity indices, which demonstrates that the model
is non-additive and contains interactions between the parameters. Moreover,
we can observe in Figure 9 that ST

1 , ST
2 and ST

4 are the three greatest values
and have almost the same importance. ST

3 , ST
5 , ST

6 , ST
8 , ST

9 and ST
10 have in-

termediate values. From the sample size N = 29, the following classification
of the input variables can be made:

• a group of important variables: x1, x2, x4;

• variables with intermediate significance: x3, x5, x6, x8-x10;

• one variable with small importance: x7;

• a group of non-significant variables: x11-x20.

7. Application to double diffusive convection in porous media

7.1. Problem statement

In this section, the methodology developed for sensitivity analysis is ap-
plied to the problem of double diffusive convection (DDC) in saturated porous
media. DDC occurs when the saturating fluid contains several constituents
and when the density gradients inducing natural convection are caused simul-
taneously by the temperature and compositional effects. This configuration
has received considerable attention in recent years due to the wide range of
its environmental and energetic applications. DDC in porous media involves
multiple physical processes related to the flow, heat transfer, mass transfer,
and buoyancy forces. For this reason, it is an appropriate concrete problem
for testing new methods of sensitivity analysis.

The problem under consideration is that of a square porous cavity with
horizontal mass and thermal gradients (Figure 10). The left and right vertical
walls of the cavity are subjected to normalized temperatures and concentra-
tions TL = CL = 1 and TR = CR = 0, respectively. The horizontal surfaces
are assumed to be adiabatic and impermeable. The heat and mass gradients
generate buoyancy forces and yield to a rotating unit cell within the cavity.
This problem has played a key role in the investigation of the DDC in porous
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media. However, as far as our knowledge extends, no global sensitivity anal-
ysis has ever been conducted to identify the most relevant model inputs for
DDC.

To model DDC in porous media, the fluid flow in the cavity is assumed
to comply with Darcy’s law and the Boussinesq approximation. The porous
medium is in local thermal equilibrium with the fluid. Under these condi-
tions, the steady state governing equations of the fluid flow as well as the heat
and mass transfer inside the porous cavity can be written in the following
non-dimensional form:

∂u

∂x
+
∂v

∂y
= 0 (52)

H2

K
u = −∂pt

∂x
(53)

H2

K
v = −∂pt

∂y
+GrT (T +Nr.C) (54)

u
∂T

∂x
+ v

∂T

∂y
=
Rk

Pr

(

∂2T

∂x2
+
∂2T

∂y2

)

(55)

u
∂C

∂x
+ v

∂C

∂y
=

1

Le.Pr

(

∂2C

∂x2
+
∂2C

∂y2

)

(56)

where H is the size of the square cavity, u and v are the velocity components
in the x ∈ [0, 1] and y ∈ [0, 1] directions, pt is the total pressure of the
system including the fluid pressure and gravitational head, T and C are the
temperature and concentration, respectively, Rk is the ratio of the effective
thermal diffusivity of the porous medium to that of the fluid, Pr, Le and GrT
are the Prandtl, Lewis and thermal Grashof numbers, respectively, Nr is the
buoyancy ratio, and K is the permeability of the stratified porous medium,
defined by

K(x, y) = K0e
ζ1Hx+ζ2Hy (57)

Here, K0 is the permeability at the origin, while ζ1 and ζ2 are the rates of
change of ln(K) in the x and y directions. In the simulation, the average
permeability and Rayleigh number are defined for the heterogeneous porous
medium as follows:

K =

∫ 1

0

∫ 1

0

K(x, y)dxdy (58)

Ra =
K.Pr.GrT

H2
(59)

The system is solved using the highly accurate Fourier–Galerkin (FG)
method described in [39, 40]. The FG method is one of the most popular
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spectral methods, used extensively in large-scale computations to solve par-
tial differential equations because of its ability to achieve high precision with
a relatively small number of degrees of freedom. The method consists in
expanding the unknowns (stream function, temperature and concentration)
into the appropriate Fourier series truncated at given orders. As shown in
[40], the number of Fourier modes required to obtain stable solutions with
the FG method depends on the average Rayleigh number (Ra) and the level
of heterogeneity (ζ1 and ζ2). In this paper, the sensitivity analysis requires
several evaluations of the model. Hence, moderate ranges of Ra and (ζ1, ζ2)
are used in order to obtain accurate solutions in an affordable CPU time (see
Table 3). The level of truncation orders of the Fourier series is fixed to be
90 and 30 in the x and y directions, respectively. Thus a total number of
3× 90× 30 = 8100 Fourier coefficients are determined in the computation.

The model parameters are listed in Table 3. The size of the cavity H
and the ratio of thermal diffusivity Rk are considered as deterministic. The
Prandtl number, the average Rayleigh number, the average permeability, the
rates of change of the permeability in the x and y directions, the Lewis num-
ber, and the buoyancy ratio are assumed to be random parameters. Their
properties are specified in Table 3. These parameters are gathered into a
random vector X = (Pr,Ra,K, ζ1, ζ2, Le,Nr)

T of dimension n = 7. All
seven random variables are supposed to be uniformly and independently dis-
tributed.

The model responses of interest are the average Nusselt and Sherwood
numbers (Nu, Sh), as well as the maximum velocity components (umax, vmax)
in the x and y directions. These variables are commonly used to investigate
DDC problems because they provide a quantitative idea of the fluid circu-
lation velocity, as well as the heat and mass fluxes. The average Nusselt
number (resp. Sherwood number) represents the ratio of the total rate of
heat transfer (resp. mass transfer) to the rate of conductive heat transfer
(resp. diffusive mass transport) across the boundary. They are defined by

Nu =

∫ 1

0

∂T

∂x

∣

∣

∣

∣

x=0

dy (60)

Sh =

∫ 1

0

∂C

∂x

∣

∣

∣

∣

x=0

dy (61)

7.2. Sensitivity analysis

The sensitivity indices of the input parameters (Pr,Ra,K, ζ1, ζ2, Le,Nr)
are estimated using the Bayesian sparse PCE approach. The initial size of the
quasi-random experimental design isN = 25. The experimental design is pro-
gressively enriched until a satisfactory solution is reached (σ2

A < 5× 10−2).

23



In this example, a satisfactory sparse PCE is obtained with a sample size of
N = 27, for which we found σ2

A(Nu) = 3.1 × 10−3, σ2
A(Sh) = 3.9 × 10−3,

σ2
A(umax) = 2.1×10−2, and σ2

A(vmax) = 1.5×10−2. The 95% credible interval
of each sensitivity index is derived using the scheme outlined in Section 5.2.

The estimates of the first-order and total sensitivity indices are sketched
in Figure 11. In this figure, the credible intervals are quite narrow for all
the sensitivity indices, which demonstrates the validity of the sparse PCE
estimation. It also appears that the variances of the model responses are due
to distinct random variables. For instance, for the first model response Nu,
the variance is mainly explained by the average Rayleigh number Ra and
buoyancy ratio Nr. As a matter of fact, the Nusselt number represents the
dimensionless thermal diffusive flux through the hot wall, which is propor-
tional to the temperature gradient. The latter is in turn proportional to the
thickness of the thermal boundary layer generated by the fluid circulation
within the porous cavity. The origin of this flow lies in the buoyancy forces,
which are mainly controlled by the Rayleigh number and the buoyancy ra-
tio for the thermal effects. The same behaviour is noted for the average
Sherwood number Sh, which represents the solute diffusive flux at the salted
wall. However, for Sh, we can notice the additional influence of the Lewis
number Le, which is the main parameter controlling the mass diffusivity. For
both Nu and Sh, Figure 11 shows that Ra has the most significant contri-
bution. Besides, for both Nu and Sh, the total sensitivity indices are close
to the first-order sensitivity indices, which means that the relations between
the model responses (Nu, Sh) and the parameters are practically additive
(negligible interactions). Regarding the model responses umax and vmax, it is
shown in Figure 11 that the influence of Pr and Ra are both significant. This
may be explained by the fact that Pr and Ra are related to the viscous and
buoyancy effects, which play the key roles in the fluid flow process. The total
sensitivity indices of Pr and Ra are greater than their first-order sensitivity
indices, which indicates the existence of interactions between them.

The identified sparse PCEs only contain 13, 15, 16 and 15 terms in the
expansions for Nu, Sh, umax, and vmax, respectively, which indicates a high
sparsity. Taking the model response umax, for example, the maximum degree
of the sparse PCE is pA = 6. Thus a full PCE of the same degree would
contain P = 10, 296 terms, which yields a sparsity index of 1.5× 10−3.

8. Conclusion

In this paper, a new algorithm is proposed to build sparse PCEs of com-
puter model responses. They are then used to compute Sobol’ indices for
global sensitivity analysis. The new algorithm relies on the statistical ap-
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proach called BMA, which performs quantitative comparisons of competing
models. In particular, the model selection criterion KIC is adopted to identify
the best sparse PCE from a given data set. We propose a new algorithm to
construct a sparse PCE that only contains the significant polynomial terms
for the data set at hand. Thus, a reduced number of coefficients is esti-
mated. Using the analytical expression of the MAP, the retained coefficients
are computed with a low number of model evaluations (as compared to the
full PCE), avoiding the problem of a poorly conditioned matrix encountered
with the regression method.

The proposed algorithm is tested on four examples of applications, includ-
ing three analytical functions, namely the Ishigami function (smooth), the
Sobol’ function (non-smooth), and the Morris function (high-dimensional).
The fourth example is a Fourier–Galerkin model for double-diffusive con-
vection in a heterogeneous porous cavity. High sparsity is found in these
examples, with a sparsity index varying from 0% to 6%. Using Bayesian
sparse PCE, good estimates of the sensitivity indices can be obtained with a
rather low number of model evaluations compared to full PCE.

Moreover, thanks to the Bayesian framework, the posterior distribution
of the coefficients in the sparse PCE can be easily computed. Accordingly,
it is possible to assign credible interval to each sensitivity index with little
computational effort. Furthermore, the accuracy of the sparse PCE is eval-
uated by both the residual and the size of the credible intervals. Although
our study reveals that these intervals can be underestimated, they allow for
gauging the degree of importance of the input variables. The numerical ex-
ercises also show that the proposed Bayesian sparse PCE can yield estimates
of the sensitivity indices with low bias and variance.
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Table 1: Ishigami function—Sensitivity indices estimated with Bayesian sparse PCE versus
the number of model runs
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S2 0.44 0.65 46.0 0.45 2.2 0.44 0.3 0.44 0.0
S3 0.00 0.00 - 0.00 - 0.00 - 0.00 -
ST
1

0.56 0.35 -36.5 0.55 -1.8 0.56 -0.2 0.56 0.0
ST
2

0.44 0.65 46.0 0.45 2.2 0.44 0.2 0.44 0.0
ST
3

0.24 0.00 -100.0 0.24 -1.9 0.24 0.5 0.24 0.0
pA 6 9 9 12
qA 1 2 2 2
PA 5 13 13 17
IS 6.0× 10−2 6.0× 10−2 6.0× 10−2 3.7× 10−2

σ2

A
3.1× 10−1 1.2× 10−3 2.1× 10−3 1.2× 10−5
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Est. Err. (%) Est. Err. (%) Est. Err. (%) Est. Err. (%) Est. Err. (%)
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0.44 0.0 0.44 0.0 0.44 0.0 0.44 0.0 0.44 0.0
0.00 - 0.00 - 0.00 - 0.00 - 0.00 -
0.56 0.0 0.56 0.0 0.56 0.0 0.56 0.0 0.56 0.0
0.44 0.0 0.44 0.0 0.44 0.0 0.44 0.0 0.44 0.0
0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0

12 14 14 14 16
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20 22 22 22 25
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Table 2: Sobol’ function—Sensitivity indices estimated with Bayesian sparse PCE versus the number of model runs

Ref. Val. N = 28 N = 29 N = 210 N = 211 N = 212 N = 213

Est. Err. (%) Est. Err. (%) Est. Err. (%) Est. Err. (%) Est. Err. (%) Est. Err. (%)

S1 0.19 0.26 33.8 0.21 6.1 0.23 19.0 0.21 8.5 0.20 3.0 0.20 2.1
S2 0.12 0.18 43.4 0.16 26.2 0.16 25.5 0.14 8.4 0.13 3.7 0.13 2.7
S3 0.09 0.13 55.9 0.11 26.7 0.08 -7.3 0.10 10.3 0.09 1.9 0.09 1.7
S4 0.06 0.05 -14.6 0.08 22.5 0.08 33.2 0.07 4.8 0.07 6.8 0.06 1.7
S5 0.05 0.05 5.7 0.05 5.2 0.06 29.6 0.05 9.1 0.05 3.1 0.05 -0.8
S6 0.04 0.02 -53.1 0.03 -22.3 0.04 6.3 0.04 5.2 0.04 7.6 0.04 2.0
S7 0.03 0.03 -14.8 0.03 -3.4 0.03 6.7 0.03 8.7 0.03 4.1 0.03 2.0
S8 0.03 0.02 -3.4 0.03 31.7 0.03 2.1 0.03 10.7 0.03 4.6 0.03 3.5
S9 0.02 0.03 34.5 0.02 -9.2 0.02 6.1 0.02 15.1 0.02 4.5 0.02 2.6

ST
1

0.40 0.41 4.2 0.39 -1.5 0.37 -5.9 0.39 -1.8 0.39 -0.3 0.39 -0.3
ST
2

0.28 0.29 3.6 0.19 4.0 0.29 4.4 0.26 -6.0 0.27 -2.8 0.28 -0.2
ST
3

0.20 0.22 6.1 0.21 4.5 0.15 -28.7 0.20 -2.4 0.19 -5.6 0.20 -2.4
ST
4

0.16 0.07 -56.2 0.17 7.1 0.16 4.3 0.14 -11.7 0.16 0.8 0.15 -2.3
ST
5

0.12 0.10 -20.0 0.08 -30.6 0.14 14.2 0.11 -8.0 0.11 -6.4 0.11 -8.0
ST
6

0.10 0.03 -70.0 0.08 -22.6 0.10 -0.1 0.08 -16.3 0.10 -2.2 0.09 -5.1
ST
7

0.08 0.04 -50.3 0.06 -30.3 0.07 -16.9 0.07 -16.9 0.08 -4.5 0.08 -4.4
ST
8

0.07 0.04 -40.4 0.05 -31.7 0.05 -30.8 0.06 -7.3 0.06 -4.2 0.07 0.0
ST
9

0.06 0.03 -48.6 0.05 -17.5 0.07 27.6 0.05 -5.2 0.05 -6.0 0.06 -2.1
pA 4 8 18 16 18 16
qA 2 4 7 8 8 8
PA 19 30 45 99 174 321
IS 2.7× 10−2 1.2× 10−3 9.6× 10−6 4.8× 10−5 3.7× 10−5 1.6× 10−4

σ2

A
2.1× 10−1 1.8× 10−1 1.6× 10−1 5.8× 10−2 3.3× 10−2 1.9× 10−2
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Table 3: Parameters of the double-diffusive convection model
Parameter Notation Type of PDF Range of values

Size of cavity H Deterministic 1.0
Ratio of thermal diffusivity Rk Deterministic 1.0
Prandtl number Pr Uniform [0.5, 2.0]

Average Rayleigh number Ra Uniform [1.0, 100.0]

Average permeability K Uniform [10−9, 10−7]
Rate of change in x direction ζ1 Uniform [0.0, 2.0]
Rate of change y direction ζ2 Uniform [0.0, 2.0]
Lewis number Le Uniform [1.0, 5.0]
Buoyancy ratio Nr Uniform [0.0, 2.0]
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Figure 1: Ishigami function—95% confidence intervals of the first-order and total sen-
sitivity indices computed from Bayesian sparse PCE with different numbers of model
evaluations
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Figure 2: Ishigami function—Absolute errors of first-order and total sensitivity indices
computed as functions of the number of model evaluations
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Figure 3: Ishigami function—Comparison of the empirical CDF of the residual with the
target CDF at different sample sizes
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Figure 4: Ishigami function—Effect of the experimental design onto the sensitivity indices
estimate. The symbols represent the median value over 100 replicate estimates. The
whisker represents the range of variation of the estimates. The bottom and top of the
boxes are the first and third quartiles
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Figure 5: Sobol’ function—95% credible intervals of the first-order and total sensitivity
indices computed from Bayesian sparse PCE with different numbers of model evaluations
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Figure 6: Sobol’ function—Absolute errors of first-order and total sensitivity indices com-
puted as functions of the number of model evaluations

37



-2 -1 0 1 2
0

0.5

1

C
D
F

N = 28

Empirical

Target

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1
N = 29

-1.5 -1 0.5 0 0.5 1 1.5 2
0

0.5

1

C
D
F

N = 210

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1
N = 211

-1.5 -1 -0.5 0 0.5 1 1.5

Residual

0

0.5

1

C
D
F

N = 212

-1 -0.5 0 0.5 1

Residual

0

0.5

1
N = 213
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target CDF at different sample sizes
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Figure 8: Sobol’ function—Effect of the experimental design onto the sensitivity indices
estimate (see Figure 4 for details)
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Figure 9: Morris function—95% credible intervals of the first-order and total sensitivity
indices computed from Bayesian sparse PCE with different numbers of model evaluations
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Figure 10: The double-diffusive natural convection problem in the heterogeneous porous
cavity
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Figure 11: Double-diffusive convection—95% confidence intervals of the first-order and
total sensitivity indices computed from Bayesian sparse PCE for different model responses
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