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4 Università di Roma “La Sapienza”,
P.le A. Moro 2, I-00185, Roma, Italy

5ISC-CNR and Consorzio Nazionale Interuniversitario per
le Scienze Fisiche della Materia (CNISM),

Unità di Roma “La Sapienza”, P.le A. Moro 2, I-00185, Roma, Italy

6 INFN Sezione di Roma, P.le A. Moro 2, I-00185, Roma, Italy
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Abstract
In this paper we study the behavior of the Casimir energy of a “multi-cavity” across the transition

from the metallic to the superconducting phase of the constituting plates. Our analysis is carried

out in the framework of the ARCHIMEDES experiment, aiming at measuring the interaction of

the electromagnetic vacuum energy with a gravitational field. For this purpose it is foreseen to

modulate the Casimir energy of a layered structure composing a multi-cavity coupled system by

inducing a transition from the metallic to the superconducting phase. This implies a thorough study

of the behavior of the cavity, where normal metallic layers are alternated with superconducting

layers, across the transition. Our study finds that, because of the coupling between the cavities,

mainly mediated by the transverse magnetic modes of the radiation field, the variation of energy

across the transition can be very large.

PACS numbers: 12.20.Ds, 12.20.-m, 74.25.-q, 74.78.Fk
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I. INTRODUCTION

The ARCHIMEDES experiment [1] is designed for testing whether the energy of vacuum
fluctuations, foreseen by quantum electrodynamics, contributes to gravity, through the cou-
pling demanded by quantum field theory in curved spacetime [2–5], where the Einstein ten-
sor is taken to be proportional to the expectation value of the regularized and renormalized
energy-momentum tensor of matter fields. The idea is to weigh the vacuum energy stored
in a rigid Casimir cavity made by parallel conducting plates, by modulating the reflectivity
of the plates upon inducing a transition from the metallic to the superconducting phase [1].
In order to enhance the effect, a multilayer cavity is considered, obtained by superimposing
many cavities. This structure is natural in the case of crystals of type-II superconductors,
particularly cuprates, being composed by Cu-O planes, that undergo the superconducting
transition, separated by nonconducting planes. A crucial aspect to be tested is thus the
behavior of the Casimir energy [6] for a multi-cavity when the layers undergo the phase
transition from the metallic to the superconducting phase. Until now only the case of a
cavity having a single layer that undergoes the superconducting transition was considered,
the other reflecting plate being just metallic (not superconducting), in Refs. [7, 8]. The
generalization to the case of a system of coupled superconducting layered cavities is still
lacking. With respect to the ARCHIMEDES project the main goal is to study the possi-
bility of enhancing the modulation factor η = ∆Ecas

Ecas
were ∆Ecas is the difference of Casimir

energy in normal and superconducting states. The value obtained in Ref. [7, 8], considering
a cavity with a single superconducting layer and a transition temperature of about 1 K is
ηl ≈ 10−8. This value was compliant with a previous experiment devoted to ascertain the
vacuum energy contribution to the total condensation energy [9, 10], but it is not sufficient
to prove the weight of the vacuum, because it is in absolute too small. It is therefore nec-
essary to consider high-Tc superconductors where condensation energy is much higher and
also the absolute value of vacuum energy variation is expected to be correspondingly larger.

On the other hand, in Ref. [11], considering a cavity based on a high-Tc layered supercon-
ductor, a factor as high as ηh = 4 ⋅ 10−4 has been estimated, under the approximation of flat
plasma sheets at zero temperature, no conduction in normal state (here Ecas is the energy
of the ideal cavity) and charge density of n = 1014 cm−2. The ARCHIMEDES sensitivity is
expected to be capable of ascertain the interaction of gravity and vacuum energy also for
values lower than ηh = 4 ⋅10−4, up to 1/100 of this value [1]. Clearly it is important to under-
stand more firmly if dealing with layered superconducting structures the modulation depth
can be sufficiently high. This is the study of the present paper. Considering in particular the
multi-layer cavity, the general assumption adopted so far has been that the Casimir energy
obtained by overlapping many cavities is the sum of the energies of each individual cavity.
This is true if the distances between neighboring cavities are large (in the sense that the
thickness of each metallic layer separating the various cavities is very large with respect to
the penetration depth of the radiation field). Of course, this is no longer true if the thickness
of these metallic inter-cavity layers gets thinner and thinner. The evaluation of the Casimir
energy for such a configuration is the subject of the present study. It is worth stressing that
this is only a first step because in the final version ARCHIMEDES experiment will make
use of high-Tc superconducting oxides with a built-in layered structure, like YBa2Cu3O7−x,
for which a complete theory is as yet unavailable.

Having this in mind, we start with a thorough analysis of two and three coupled Casimir
cavities, made by traditional BCS (low-Tc) superconducting material (niobium), so as to

3



deal with relatively manageable and well established formulas. On trying to preserve a
macroscopic approach, we limited our study to thicknesses between 10 and 100 nm. In the
following, referring to Fig. 1, di is the distance of the i − th cavity from the (i − 1) − th,
(thickness of the i − th cavity), within the slabs 1,3 and 5 there is vacuum while the zones
0,2,4 and 6 are made of niobium. The thicknesses of the zones 0 and 6 are assumed
to be infinite. Although this choice is dictated by simplicity and by the well-established
superconducting properties of Nb, this is a first necessary step to prepare future studies
aimed at considering the more elaborate case of high-Tc superconductors, as required by the
roadmap of the ARCHIMEDES experiment.

Section II studies the Casimir energy of a multilayer cavity, while Sec. III evaluates the
Casimir energy in the normal and superconducting phases. Variation of the energy in the
transition is obtained in Sec. IV, including a detailed numerical analysis of the Matsubara
zero-mode contribution. Section V extends this scheme to the three-layer configuration, and
concluding remarks are made in Sec. VI, while relevant details are given in the Appendices.

II. THE CASIMIR ENERGY OF A MULTILAYER CAVITY

As it is customary [7, 8], at finite temperature, the Casimir variation across the transition
from a metallic to a superconducting phase is obtained as the difference between the free
Casimir energy in the metallic state and the same after the transition to superconducting
state takes place: δE(T ) = En − Es. The energy per unit area of a single cavity, (012)
in Fig. 1, can be written, at finite temperature T , as the sum of the contributions of the
transverse electric (TE) and transverse magnetic (TM) modes (see, for example, [12]) :

E[d1, d2] = kB T
∞ ′

∑
l=0
∫

dk�
(2π)2

(log ∆TE(ξl) + log ∆TM(ξl)) =∶
∞

∑
l=0

E[l, d1, d2] (1)

where ξl = 2πlkBT are the Matsubara frequencies, kB is the Boltzmann constant, l =

0,1,2, . . ., the superscript ′ on the sum means that the zero mode must be multiplied by a
factor 1

2 ,

∆TM(ξl) = (r0,1
TM(ξl)r

1,2
TM(ξl)e

−2d1K1 + 1) ,∆TE(ξl) = (r0,1
TE(ξl)r

1,2
TE(ξl)e

−2d1K1 + 1)

and the reflection coefficients ri,j
(TM,TE)

(ξl) are given by (see [12]):

ri,jTM(ξl) =
εi(ξl)Kj(ξl) − εj(ξl)Ki(ξl)

εi(ξl)Kj(ξl) + εj(ξl)Ki(ξl)
, ri,jTE(ξl) =

Kj(ξl) −Ki(ξl)

Kj(ξl) +Ki(ξl)
,

with Ki(ξl) =
√
k2
⊥ + εi(ξl)ξ

2
l . We point out that our approach captures the relevant length

scale of a superconductor, the London penetration depth λL, through the expression of εi(ξl)
in terms of the correction to the optical conductivity when entering the superconducting
state, δσBCS(iξ), see below and Appendix B. In particular, for ξl → 0, we have εi(ξl)ξ2

l → λ−2
L .

We characterize the properties of the i − th material trough the dielectric function εi(ξl)
and the change in the Casimir energy is given simply by the modification of the ε(ξl) due to
the transition [7, 8]. As we said, in the following we report calculations for the case in which
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0 d1 d2 d3 d4 d5

0  1 2 3 4 5
6

FIG. 1: A three layer cavity. In the 0,2,4, and 6 zone there is Nb; in the 1,3,5 vacuum. di
is the thickness of the i − th slab

the material is Nb and the spacer is vacuum (the modifications introduced by a dielectric
spacer deserve a separate study).

To obtain the formulas for two and three cavities we solve the problem by imposing the
continuity of the tangential component of the E⃗ and H⃗ fields (non-magnetic media) and

the normal component of the D⃗ and B⃗ at the interface [13, 14]. Thus, for example, in the
case of the three cavities (012-234-456) in Fig. 1 we have that the ∆ functions appearing in
(1) are the determinant of the matrix of the coefficients Mij (just to give an idea we report
the expression for the TM - modes in appendix A) from which it is possible to extract the
case of one, two, and three cavities by taking (i, j) = 1 . . .4, (i, j) = 1 . . .8, (i, j) = 1 . . .12,
respectively:

∆(TM,TE) = det(M ij
(TM,TE)

).

In the following we will omit the subscript TM,TE if no ambiguity is generated. All the
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formulas for the two cases can be obtained using respectively the TM or TE reflection
coefficients. Defining (no summation over repeated indices)

Eijl = ri,jrj,le−2djKj + 1, F ijl = ri,je−2djKj + rj,l, Gijl = ri,j + e−2djKjrj,l, H ijl = e−2djKj + ri,jrj,l,

we have for the single cavity (012) in Fig. 1

∆(1) = E012; (2)

for two cavities (012 − 234):

∆(2) = E012E234 + e−2(d2k2)F 012G234 =∶ E012E234 + I
(2)
012 and (3)

log ∆(2) = log (E012E234) + log
⎛

⎝
1 +

I
(2)
012

E012E234

⎞

⎠
, (4)

and for the three cavities:

∆(3) = E012E234E456 + e−2(d2k2+d4k4)F 012H234G456

+e−2d2k2E456F 012G234 + e−2d4k4E012F 234G456

=∶ E012E234E456 + I(3) +E456I
(2)
012 +E

012I
(2)
234, (5)

log ∆(3) = log (E012E234E456) + log(1 +
I(3)

E012E234E456
)

+ log
⎛

⎝
1 +

E456I
(2)
012 +E

012I
(2)
234

E012E234E456 + I(3)
⎞

⎠
. (6)

In this way, when d2 →∞ [see Eq. (3)] I
(2)
012 → 0 and

log ∆(2) = logE012E234 = logE012 + logE234.

That is to say, when the two cavities are far away their energy is simply the sum of the
individual contributions. In this respect the second term on the right of Eq. (3), I(2), can
be seen as the energy due to the coupling of the two cavities (012) − (234).

When d1 = d3 = d5, d2 = d4, ε0 = ε2 = ε4, ε1 = ε3 = ε5 we obtain E012
TM = E234, F 012 = F 234 so

that we can omit the subscripts:

log ∆(2) = log (∆(1))
2
+ log(1 +

I(2)

(∆(1))
2) . (7)

For the three cavities (012 − 234 − 456), formulas are written so as to make evident
the contribution to the energy resulting from the sum of the energies of the single cavity,
with respect to the one coming from the coupling of the two possible pairs of cavities
(012 − 234), (234 − 456), and the one coming from the coupling of the three: I(3). Thus,
under the previous hypothesis,

∆(3) = (∆(1))
3
+ 2I(2) + I(3) and we can write

log ∆(3) = log (∆(1))
3
+ log(1 + 2

I(2)

(∆(1))3 + I(3)
) + log(1 +

I(3)

(∆(1))3
) . (8)
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In a sense, we are writing the energy as a sum of the energy of the single cavity plus the
coupling energy between the nearest neighbor, plus the coupling energy among the second
nearest neighbor and so on. In this way we will have a clear indication of the strength of
the coupling between the cavities at the various orders. As far as we know this way of
displaying the various contribution to the Casimir energy has been obtained for the first time
in [15] where the so called TGTG formula (T being the Lippmann-Schwinger T operator an
G the translation matrix), is used, see also [16, 17]. In our case it can be simply recovered
by observing that the determinant of a N × N complex block matrix can be obtained in
terms of the determinants of its constituent blocks [18].

The Casimir energy in the superconducting phase is obtained by replacing, in the reflec-
tion coefficients, the expression of the dielectric function with the corresponding obtained
using the BCS theory [19, 20], see Appendix B. In the following we will characterize the
dielectric properties of the material by means of the Drude model (but see conclusions):

ε(iξ) = 1 +
σ(iξ)

ξ
, with

σk(iξ) =
σ0k

γ + ξ
, for conducting materials and

σk(iξ) =
σ0k

γ + ξ
+ δσBCS(iξ), for superconducting materials ,

where the expression of δσBCS(iξ) is given in Appendix B (see [20]).

Thus

δE(T ) = En(T ) −Es(T )

=
k T

2

∞ ′

∑
l=0
∫

dk�
(2π)2

⎛

⎝
log

∆
(k)
n,TE

∆
(k)
s,TE

+ log
∆
(k)
n,TM

∆
(k)
s,TM

⎞

⎠
=∶

∞

∑
l=0

δE[l, d1, d2].

where ∆
(k)
n,TE,TM , ∆

(k)
s,TE,TM are the generating functions (this nomenclature denotes here

just the determinant of the matrix whose zeros provide, implicitly, the allowed energies)
of the normal and superconducting phases, and, depending on how many cavities we are
considering (1,2, or 3) we must take k = 1,2, or 3 respectively.

III. CASIMIR ENERGY IN THE NORMAL AND SUPERCONDUCTING PHASES

All results described hereafter are obtained for Nb, and we use the following values for
the critical temperature and plasma frequency Tc = 9.25 K, h̵ωnio = 9.268 eV and work at
the temperature T = 9.157 K. We start by choosing d1 = 300 nm, and d2 = 600 nm, so as to
have results that can be compared with standard formulas.

We find for the energy in the normal phase En, for fixed d1, d2, and different values
of number of Matsubara modes (nmod): En

nmod[d1, d2] = ∑
nmod
j=0 En[j, d1, d2] (N.B. in the

following all the quoted numbers that concern energy or difference of energy are in J
m2 ):
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nmod En
nmod[300,600] ⋅ 108

100 −1.6577
200 −2.2248
300 −2.3760
400 −2.4122
500 −2.4203
1000 −2.4226

Thus, at least 500 Matsubara modes are necessary to obtain a result stable at the second
decimal digit.

These results can be compared with the approximate result obtained by Bordag et al.
[12] (t0 =

c h̵
2akBT

,D0 =
c

aωp
):

E =
c h̵

8πa3
[ D0

2
(

3ζ(3)

t0
−

4π3

25
) + D0 (

2π3

45
−
ζ(3)

t0
) +

ζ(3)

2 t0
−
π3

90
]

= −1.258 ⋅ 10−8.

As expected, because of the strong suppression of the exponential for large d2, the con-
tribution of the coupling term between the two cavities (012)-(123) is about ten orders of
magnitude smaller than the energy obtained from each cavity. With

E[d1, d2] =
k T

2

∞ ′

∑
l=0
∫

dk�
(2π)2

⎡
⎢
⎢
⎢
⎢
⎣

log (E012E234) + log
⎛

⎝
1 +

I
(2)
012

E012E234

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦TM

+ [TE] (9)

=∶ E
(2)
TM[d1, d2] +C

(2)
TM[d1, d2] +E

(2)
TE[d1, d2] +C

(2)
TE[d1, d2] (10)

=∶ E(2)[d1, d2] +C
(2)[d1, d2]

we obtain (nmod = 500):

En
(2)

[300,600] = −2.42035 ⋅ 10−8; Cn
(2)

[300,600] = −2.30743 ⋅ 10−17.

Indeed, having d1 ≪ d2, the total energy is simply the sum of the energies of the two
cavities:

En
(2)

[300,600]

2
=
−2.42035

2
⋅ 10−8 = −1.2102 ⋅ 10−8 ≈ −1.258 ⋅ 10−8

In the superconducting phase we have, more or less, the same behavior:

nmod Es
nmod[300,600] ⋅ 108

100 −1.6584
200 −2.2255
300 −2.3767
400 −2.4129
500 −2.4210
1000 −2.4232

The Casimir energy is always greater than the corresponding energy in the normal phase
so that, as expected, the difference is always positive. Once more, the contribution from
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the energy of the two cavities is much larger than the contribution from the coupling, but
“only” by about four orders of magnitude:

Es
500

[300,600] = −2.4210⋅10−8,Es
(2)

[300,600] = −2.4208⋅10−8,Cs
(2)

[300,600] = −2.0979⋅10−12.

IV. VARIATION OF THE ENERGY ACROSS THE TRANSITION

In computing the difference in energy between the two phases, we find that a few tens
(50) of modes are sufficient to obtain good values. This is a consequence of the fact that
the high-energy part of the spectrum is essentially the same in the metal and in the super-
conductor, making the energy difference a quantity that converges much more rapidly than
the individual terms, as a function of the upper cutoff in the Matsubara frequency, nmod.

On defining δE(2) + δC(2), i.e.

δEnmod[d1, d2] = En
(2)

[d1, d2] −Es
(2)

[d1, d2] +Cn
(2)

−Cs
(2)

=∶ δE(2) + δC(2)

as the difference between the terms coming from the energy of the two cavities in the normal
and superconducting phase, plus the difference between the values of the coupling in the
two phases respectively, we have:

nmod δEnmod[300,600] ⋅ 1012 δE(2) ⋅ 1012 δC(2) ⋅ 1012

10 6.54447 4.44655 2.09792
30 6.55295 4.45504 2.09792
50 6.55406 4.45614 2.09792
100 6.55461 4.45669 2.09792

We note that δE(2) is of the same order of magnitude of δC(2), and when d1 = d2 δC(2)

is about two orders of magnitude larger:

δE50[50,50] = 1.11259 ⋅ 10−9 = 1.24592 ⋅ 10−11 + 1.10013 ⋅ 10−9 (11)

δE50[10,10] = 9.3812 ⋅ 10−9 = 2.34485 ⋅ 10−11 + 9.35775 ⋅ 10−9. (12)

IV.1. The Matsubara zero-mode contribution

It turns out that this unexpected behavior is due to the contribution from the Matsubara
zero mode. This is evident in the following table where we report, for the n− th Matsubara-
mode, the values of the Casimir energy in the normal and superconducting phase, and their
difference (d1 = d2 = 100 nm):

9



n E[n,100,100] = {E(2) +C(2)}TE {E(2) +C(2)}TM {E(2) +C(2)}TE+TM

En 0 + 0 −6.039 ⋅ 10−10 − 2.175 ⋅ 10−13 −6.041 ⋅ 10−10

0
Es −6.284 ⋅ 10−12 − 1.647 ⋅ 10−13 −6.039 ⋅ 10−10 − 2.692 ⋅ 10−10 −8.795 ⋅ 10−10

δE 6.284 ⋅ 10−12 + 1.647 ⋅ 10−13 0.0 + 2.690 ⋅ 10−10 2.754 ⋅ 10−10

En −2.076 ⋅ 10−10 − 6.060 ⋅ 10−12 −1.207 ⋅ 10−9 − 1.235 ⋅ 10−10 −1.545 ⋅ 10−9

1
Es −2.087 ⋅ 10−10 − 6.048 ⋅ 10−12 −1.207 ⋅ 10−9 − 1.223 ⋅ 10−10 −1.545 ⋅ 10−9

δE 1.161 ⋅ 10−12 − 1.228 ⋅ 10−14 9.480 ⋅ 10−16 − 1.235 ⋅ 10−12 −8.536 ⋅ 10−14

En −4.64934 ⋅ 10−10 − 8.59787 ⋅ 10−13 −1.19878 ⋅ 10−9,−5.58978 ⋅ 10−12 −1.67017 ⋅ 10−9

10
Es −4.64952 ⋅ 10−10 − 8.5958 ⋅ 10−13 −1.19878 ⋅ 10−9 − 5.58814 ⋅ 10−12 −1.67018 ⋅ 10−9

δE 1.80615 ⋅ 10−14 − 2.07135 ⋅ 10−16 2.31737 ⋅ 10−16 − 1.64377 ⋅ 10−15 1.64423 ⋅ 10−14

En −5.11734 ⋅ 10−10 − 1.87681 ⋅ 10−13 −1.1032 ⋅ 10−9 − 9.34075 ⋅ 10−13 −1.61606 ⋅ 10−9

50
Es −5.11735 ⋅ 10−10 − 1.8768 ⋅ 10−13 −1.1032 ⋅ 10−9 − 9.34068 ⋅ 10−13 −1.61606 ⋅ 10−9

δE 3.31224 ⋅ 10−16 − 1.22071 ⋅ 10−18 3.90994 ⋅ 10−17 − 6.84111 ⋅ 10−18 3.62262 ⋅ 10−16

TABLE I: Contributions of the TE and TM modes for different values of n

and summing the first 50 modes:

δE50[100,100] = 2.76004 ⋅ 10−10 = 8.54145 ⋅ 10−12 + 2.67463 ⋅ 10−10.

A close look at the table makes it evident that the result is almost completely due to the

contribution of the coupling term of the zero mode. Indeed, C
(2)
s,TM is about 3 orders of

magnitude larger than the corresponding in the normal case C
(2)
n,TM while all the other terms

are of the same order of magnitude (in some case egual) so that in the difference they cancel
each other.

V. ENERGY OF THE THREE-LAYER CONFIGURATION

The behavior discussed in the previous section is confirmed for the three-layer configura-
tion:

E[d1, d2, d4] =
kB T

2

∞ ′

∑
l=0
∫

dk�
(2π)2

[log (E012E234E456) + log(1 +
I(3)

E012E234E456
)

+ log
⎛

⎝
1 +

E456I
(2)
012 +E

012I
(2)
234

E012E234E456 + I(3)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦TM

+ [TE], (13)

=∶ E(3)[d1, d2, d4] +C
(3)[d1, d2, d4] +C

(2)[d1, d2, d4]

Enmod[d1, d2, d4] ∶=
nmod

∑
l=0

E[l, d1, d2, d4],

To have a comparison between the formulae for two and three cavities let us compute the
Casimir energy for the three layer when d4 is very large. In this case, since the third cavity
is distant from the other two, it decouples and the result would be the sum of the energy of
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a double cavity plus the energy of a third one. Indeed we find:

E500
n (100,100,300) E

(3)
n C

(2)
n C

(3)
n

−6.2636 ⋅ 10−7 −6.2574 ⋅ 10−7 −6.2390 ⋅ 10−10 6.73512 ⋅ 10−15

this is exactly three halves the energy of a double cavity:

E500
n (100,100) = −4.17785 ⋅ 10−7 ≈ −

2

3
6.26365 ⋅ 10−7 = 4.17577 ⋅ 10−7, (14)

as expected. Of course, this is a consequence of the strong exponential suppression present
in this term, see the expression of I(3) in Eq.(5). Taking d4 = d1 = d2 = 100 nm we find

E500
n (100,100,100) E

(3)
n C

(2)
n C

(3)
n

−6.26989 ⋅ 10−7 −6.25742 ⋅ 10−7 −1.25193 ⋅ 10−9 4.39881 ⋅ 10−12

thus the contribution due to the coupling of the three cavities is three orders of magnitude
larger than in the previous case but still, for the normal Casimir energy, very much smaller
than the sum of the energies of the three individual cavities.

Once again, things are different when computing the difference between the energy in the
normal and superconducting phase. Indeed, in this case the contribution from the n − th
mode is, with obvious significance for the indicated symbols:

n δE(n,100,100,100) δE(3) δC(2) δC(3)

0 5.47751 ⋅ 10−10 9.42558 ⋅ 10−12 5.84966 ⋅ 10−10 −4.66401 ⋅ 10−11

1 −7.53124 ⋅ 10−13 1.74333 ⋅ 10−12 −2.57231 ⋅ 10−12 7.58578 ⋅ 10−14

10 2.3738 ⋅ 10−14 2.7440 ⋅ 10−14 −3.7044 ⋅ 10−15 2.49605 ⋅ 10−18

100 8.97745 ⋅ 10−17 9.15143 ⋅ 10−17 −1.73989 ⋅ 10−18 9.25498 ⋅ 10−23

We immediately realize that even in this case the energy is due almost completely to the
coupling of nearest cavities δC(2). Note that the δC(3) term is about one order of magnitude
smaller than the corresponding δC(2). Summing on the first n modes we find

nmod δEnmod(100,100,100) δE(3) δC(2) δC(3)

10 5.47634 ⋅ 10−10 1.2644 ⋅ 10−11 5.81547 ⋅ 10−10 −4.6557 ⋅ 10−11

50 5.47789 ⋅ 10−10 1.28122 ⋅ 10−11 5.81533 ⋅ 10−10 −4.6557 ⋅ 10−11

100 5.47800 ⋅ 10−10 1.28236 ⋅ 10−11 5.81533 ⋅ 10−10 −4.6557 ⋅ 10−11

For layers 10 nm thick we find:

E500
n (10,10,10) E

(3)
n C

(2)
n C

(3)
n

−1.134 ⋅ 10−4 −7.880 ⋅ 10−5 −3.641 ⋅ 10−5 1.761 ⋅ 10−6

and
δE100(10,10,10) δE(3) δC(2) δC(3)

1.875 ⋅ 10−8 3.517 ⋅ 10−11 2.166 ⋅ 10−8 −2.946 ⋅ 10−9
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FIG. 2: The behavior with respect to d2 = d4 = d ∈ [10,50] nm of the Casimir energy δE
and of the various components δE3, δC2, and δC3 for the three-layer configuration with

d1 = 10 nm. In the plot of δE it is shown, also, the fitting curve.

To give an idea of the dependence of the Casimir energy on the parameters d1, d2, d4, we
show in the figure 2 the contribution of the three terms δE3, δC2, and δC3 to the energy
difference between the normal and the superconducting phase, δE, with respect to d2 = d4 =

d ∈ [10,50] nm with d1 = 10 nm. In blue it is shown a fit of δE obtained by means of the

function δE = a + b e
−( x

x0
)

with a = 1.73 ⋅ 10−9 J/m2, b = 3.69 ⋅ 10−8 J/m2, x0 = 12.63 nm.
Note that the red dots are completely covered by the fitting curve. The only term that
substantially depends on d1 is δE3, i.e. the sum of the energies of the single cavity whose
thickness is d1. On the contrary the other terms almost depend on d2, d4 exclusively. Being
δE3 very much smaller than δC2 and δC3, this fit is very stable with respect the variation of
d1 see FIG. 3 where the same fitting curve is overimposed on the data relative to d1 = 500 nm

We conclude that, the contribution from the coupling of the three cavities being so large:
δC3 can turn out to be only one order of magnitude smaller than δC2, it will be therefore
necessary to analyze the situation of four coupled cavities.

Some comments about the contribution of the TM zero mode are in order at this point
(in the following we will analyze the configuration of two coupled cavities but the gener-
alization to three is straightforward). In the ξ ↦ 0 limit, assuming vacuum between the
two superconducting layers (see appendix B), one obtains ri,jTM = 1 for both the normal and
superconducting case, so that:

E
(2)
TM,n = E

(2)
TM,s =

kB T

4 ∫
dk�
(2π)2

log (1 − e−2d1K1)

C
(2)
TM,n =

kB T

4 ∫
dk�
(2π)2

log (1 − e−2d2K0,n)

C
(2)
TM,s =

kB T

4 ∫
dk�
(2π)2

log (1 − e−2d2K0,s)

12



20 30 40 50
d

5.×10-9

1.×10-8

1.5×10-8

δE

FIG. 3: The behavior with respect to d2 = d4 = d ∈ [10,50] nm of the Casimir energy δE for
the three-layer configuration with d1 = 500 nm and the fitting curve with the parameters

obtained for the case d1 = 10 nm.

where di are measured in nm, Ki in nm−1, and Ki,n/s =
√
k2
⊥ + α

2
i,n/s

. We immediately

realize that the contribution of the energies of the two cavities E
(2)
TM is exactly the same

in the normal and in the superconducting phase so that they cancel in the difference. On

the contrary the contribution of the interaction terms C
(2)
TM in the two phases are different

thanks to the presence of K0,n and K0,s respectively. (Note that the dependence of these
two terms on d1 cancels). Naturally, the strong suppression due to the exponential ensures
that the main contribution to the integral comes from small wave numbers k⊥ (hereafter

measured in nm−1), taking d1 = d2 = 100 nm and α2
1 ∶=

√

k2
⊥ + (ωnio

c
)

2
=
√
k2
⊥ + 0.00221 nm−1,

α2
0,n ∶= k

2
⊥, and α2

0,s ∶=

√

k2
⊥ + (ωs

c
)

2
=
√
k2
⊥ + 4.306 ⋅ 10−6 nm−1, we recover the numbers in Table

I. Of course the huge difference reduce drastically for smaller values of d2 because smaller
values of d2 allow for the contribution to the integral from larger values of k⊥ so that the

dependence on α2
i,n/s

is less evident. For example with d2 = 10 nm we get C
(2)
TM,n = 1.78 ⋅10−8 J

and C
(2)
TM,s = −3.011 ⋅ 10−8 J. However in this case, even though the two terms are very much

closer, their absolute value is larger so that they still give a strong contribution to the energy,
thus the values of δE is large, see Eqs. (12) and (13). We expect that this behavior could
change when a dielectric is inserted between the two layers.

VI. CONCLUDING REMARKS

In this paper we performed a series of numerical calculations aimed at the computation of
the Casimir energy in the normal and superconducting phase for a multilayered cavity. This
is of particular interest for the ARCHIMEDES experiment aimed at weighing the vacuum
energy of a multi-cavity by modulating the reflectivity of the constituting plates from the
metallic to the superconducting phase. As pointed out in [1] with a single cavity and with a
standard BCS superconductor a ratio η = ∆Ecas

Ecas
∼ 10−8 is expected. For this value there would
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be no possibility for the experiment to detect the signal. However, and quite surprisingly,
our results are orders of magnitude larger: We obtained a very large contribution from a
term resulting from the coupling of nearest neighbor cavities in the superconducting phase.
This strong enhancement of η results from the use of a superconducting multi-layer (at least
two) structure and it can be attributed to the strong contribution of the TM Matsubara
zero mode. From the point of view of the experiment these results are quite promising.

The important role played by the static TM physically arises because, while a static
electric field in a superconductor (and in a metal as well) is rapidly screened on short
length-scales, the magnetic field parallel to the vacuum-Nb interface can penetrate over a
substantial distance, set by the London penetration depth. This length is shortest in clean
Nb, but is still of the order of tens of nm, and increases in the presence of impurities. It
is not surprising therefore, that the zero-frequency TM mode links the various adjacent
cavities, providing a substantial inter-cavity contribution to the Casimir energy. Therefore,
in computing the Casimir energy of a large number of overlapping cavities, it is necessary
to take into account the contribution from the coupling of pairs of cavities that can lead to
a strong enhancement of the effect. This behavior is confirmed in the case of a three-layer
configuration where, in addition, the contribution of the coupling of the three cavities turns
out to be about one order of magnitude smaller. At this stage we plan to obtain in a future
work an estimate of the contribution of (at least) four coupled cavities. Because of the strong
contribution of the zero mode we expect to be able to discriminate between the Drude or
plasma model in computing the zero-mode contribution for the Casimir energy. We wish to
point out that, even though these results are encouraging, the shift in energy is still not as
large as needed. Indeed (see [1], and Refs. therein), to extract the signal we need an energy
shift of the order of few joules. With this kind of configuration, even using a very thin layer,
of the order of few nanometers, the energy shift is relatively small: δE100(1,1,1) = 6.371⋅10−8

This is a consequence of the smooth dependence of δE on d2. Indeed, for d2 ≤ 10 nm, it can
be fitted as (see [8]):

δE100(10, d2, d2) =
δE0

1 + (d2
D
)
s

with δE0 = 9.29 ⋅ 10−8, s = 0.92,D = 2.30 nm. Thus, in this way we can gain at most one
order of magnitude. This result strongly support our idea of obtaining such an improvement
by using high-temperature superconducting oxides, like YBa2Cu3O7−x. In this case, in fact,
larger areas can be used (two orders of magnitude), a larger number of layer, ∼ 106, can be
assembled together, relying on the fine built-in layered structure of cuprates, with thickness
of the order of 1 nm. It is possible to work at high temperature, ∼ 100 K (gaining here a
factor ten), and, possibly, other two order of magnitude can be gained from ∆T . Of course,
this prevision can prove to be too optimistic and for this reason the extension of the present
analysis to such a situation is underway.
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Appendix A:

For the case of the TM -modes the matching conditions give the following 12× 12 matrix
of coefficients:

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ε0 ε1 ε1 0 0 0 0 0 0 0 0 0
−K0 K1 −K1 0 0 0 0 0 0 0 0 0

0 ed1K1ε1 e−d1K1ε1 −e−d1K2ε2 −ed1K2ε2 0 0 0 0 0 0 0
0 ed1K1K1 −e−d1K1K1 e−d1K2K2 −ed1K2K2 0 0 0 0 0 0 0
0 0 0 e−K2x2ε2 eK2x2ε2 −eK3x2ε3 −e−K3x2ε3 0 0 0 0 0
0 0 0 −e−K2x2K2 eK2x2K2 −eK3x2K3 e−K3x2K3 0 0 0 0 0
0 0 0 0 0 eK3x3ε3 e−K3x3ε3 −e−K4x3ε4 −eK4x3ε4 0 0 0
0 0 0 0 0 eK3x3K3 −e−K3x3K3 e−K4x3K4 −eK4x3K4 0 0 0
0 0 0 0 0 0 0 e−K4x4ε4 eK4x4ε4 −eK5x4ε5 −e−K5x4ε5 0
0 0 0 0 0 0 0 −e−K4x4K4 eK4x4K4 −eK5x4K5 e−K5x4K5 0
0 0 0 0 0 0 0 0 0 eK5x5ε5 e−K5x5ε5 −e−K6x5ε6
0 0 0 0 0 0 0 0 0 eK5x5K5 −e−K5x5K5 e−K6x5K6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Computing the determinant of the minors of dimensions 4,8, and 12 respectively we obtain
Eqs. (2,3,5).

Appendix B:

On writing

ε(iξ) = 1 +
σ(iξ)

ξ

where σ(iξ) is the conductivity along the imaginary frequencies, we will obtain the dielectric
function in the Drude model for the normal case simply by taking

σ(iξ) =
ω2
p/4π

γ + ξ

with ω2
p = 4πne2/m the plasma frequency and γ the relaxation parameter. While in the

superconducting phase the conductivity can be written as [20]

σ(iξ) =
ωp
γ + ξ

+ δσBCS(iξ)

where the correction within the BCS model is given by (in the following h̵ = 1)

δσBCS(iξ) =
σ0γ

ξ ∫
+∞

−∞
tanh(

E

2T
)Re[G+(iξ, η)]

dη

E
,

G+(z, η) =
η2Q+(z,E) +A+(z,E)(Q+(z,E) + iγ)

Q+(z,E)[η2 − (Q+(z,E) + iγ)2
,

A+(z,E) = E(E + z) +∆2,

Q2
+(z,E) = (E + z)2 −∆2,

E =
√
η2 +∆2.
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To obtain the reflection coefficients for the zero mode we have to compute the limit ξ → 0.
In this way, considering that in the 1,3, and 5 regions there is vacuum, we find

lim
ξ→0

ri,jTM(iξ) = 1, lim
ξ→0

ri,jTE(iξ) = 0

in the conducting phase. Noting that, when ξ → 0, δσBCS(z) can be approximated by [20]

δσBCS(iξ) ≈ ω
2
s/ξ,

with

ω2
s =

ω2
p

γ

⎛
⎜
⎝
π∆ tanh

∆

2kbT
− 4γ∆2

∫

∞

0

tanh
√

∆2+x2

2kbT√
∆2 + x2(γ2 + x2)

dx
⎞
⎟
⎠
,

we obtain for ri,jTM,TE in the superconducting phase:

lim
ξ→0

ri,jTM(iξ) = 1, lim
ξ→0

ri,jTE(iξ) =
k⊥ −

√
k2
⊥ + ω

2
si

k⊥ +
√
k2
⊥ + ω

2
si

.
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