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We investigate the dynamics of a two degrees-of-freedom oscilla-
tor excited by dry friction. The system consists of two masses con-
nected by linear springs and in contact with a belt moving at a 
constant velocity. The contact forces between the masses and the 
belt are given by Coulomb’s laws. Several periodic orbits includ-
ing slip and stick phases are obtained. In particular, the existence 
of periodic orbits involving a part where one of the masses moves 
at a higher speed than the belt is proved.
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1 Introduction

In this paper, a two degrees-of-freedom oscillator excited by
dry friction is considered. The system consists of two masses con-
nected by linear springs and in contact with a belt moving at a
constant velocity. The contact forces between the masses and the
belt are given by Coulomb’s laws.

This model of stick–slip system has been the subject of several
recent publications [1–4]. Several friction characteristics have
been used, among them, the Coulomb’s friction laws are the most
frequently assumed. In this case, the system is a piecewise linear
system and it is possible to investigate the behavior of the system
by using analytical methods instead of numerical ones. Periodic
orbits including stick–slip phases are obtained. An interesting phe-
nomenon, which was in the past obtained only for more complex
models of dry friction forces [3], is also observed for this model.
Periodic orbits including stick phases followed by slip phases dur-
ing which one of the mass in contact with the belt goes faster than
the belt are found.

2 Description of the Model

The system (Fig. 1) consists of two masses m1 and m2 con-
nected by linear springs of stiffnesses k1 and k2. The masses are in
contact with a driving belt moving at a constant velocity W. Fric-
tion forces act between the masses and the belt.

This dry friction oscillator is governed by the following differ-
ential system:

M €X þ KX ¼ R; X ¼ ðx1; x2Þt; R ¼ F1;F2ð Þt

M ¼
m1 0

0 m2

 !
; K ¼

k1 þ k2 � k2

�k2 k2

 !
(1)

x1 and x2 are the displacements of the masses, and F1 and F2 are
the contact friction forces obtained from Coulomb’s laws

� W � _xi 6¼ 0 and Fi ¼ FsisignðW � _xiÞ ði ¼ 1; 2Þ (slipping
motion of the masses)

�
W � _x1 ¼ 0

F1 ¼
ðk1 þ k2Þx1 � k2x2 if jðk1 þ k2Þx1 � k2x2j < Fr1

eFs1 if e½ðk1 þ k2Þx1 � k2x2� > Fr1 ðe ¼ 61Þ

�
(sticking motion of m1)

�
W� _x2¼ 0

F2¼
k2ðx2� x1Þ if jk2ðx2� x1Þj<Fr2

eFs2 if ek2ðx2� x1Þ>Fr2 ðe¼61Þ

�
(sticking motion

of m2)

Fs1 and Fs2 are the friction forces when slip motion occurs,
while Fr1 and Fr2 are the static friction forces (Fsi

< Fri ði ¼ 1; 2Þ).
System (1) is normalized using

t ¼ ~xt0; ~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

m1

r
; V ¼ W=~x (2)

From Eq. (1), it follows:

x001 þ x1 � vx2 ¼ u1; v ¼ k2

k1 þ k2

; g ¼ m1

m2

x002 þ vg x2 � x1ð Þ ¼ gu2; ui ¼
Fi

k1 þ k2

i ¼ 1; 2ð Þ; o0ð Þ ¼ d oð Þ
dt

(3)

In the following, the unit length is chosen in order that V ¼ 1.

3 Description of the Different Modes of Oscillations

For each mass, three kinds of motions occur: slipping motion
with a velocity less than the belt velocity, overshooting motion
with a velocity greater than the belt velocity, and sticking
motion with a velocity equal to the belt velocity. The system is
not smooth and may include several phases of slipping, overshoot-
ing, or sticking motion for each mass. However, the system is
piecewise linear and for each kind of configurations, the closed-
form solution is available [2]. In the following, the description of
the different modes of the system oscillations is detailed.

3.1 Slip–Slip: x0i < V and ui5usi ði 5 1; 2Þ. This motion is
given by

Z tð Þ¼H tð ÞZ0; Z tð Þ¼
z tð Þ
z0 tð Þ

 !
; H tð Þ¼

H1 tð ÞH2 tð Þ
H3 tð ÞH1 tð Þ

!

z tð Þ¼ x tð Þ�d0; d0¼ d01;d02ð Þt

x tð Þ¼ x1 tð Þ; x2 tð Þð Þt; Z0¼ Z 0ð Þ

d01¼
us1þus2

1�v
; d02¼

vus1þus2

v 1�vð Þ

(4)

The 2� 2 matrices HiðtÞ ði ¼ 1; 2; 3Þ are obtained by a modal
analysis of system (1), where ui ¼ usi ði ¼ 1; 2Þ [2].

Fig. 1 Description of the model
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3.2 Overshoot–Overshoot: x0i > V and ui52usi ði51; 2Þ. This
motion is given by

ZðtÞ ¼ HðtÞZ0 þ 2ðHðtÞ � I4ÞD0; D0 ¼
d0

0

 !

ðI4unitarian matrix of order 4Þ
(5)

3.3 Slip–Overshoot: x01 <V;x02 >V;u15us1;andu252us2. The
motion is given by

ZðtÞ ¼ HðtÞZ0 þ 2us2ðHðtÞ � I4ÞA0

a0 ¼
1=ð1� vÞ

1=vð1� vÞ

!
A0 ¼

a0

0

 !
(6)

3.4 Overshoot–Slip: x01 >V;x02 <V;u152us1;andu25us2. The
motion is governed by

ZðtÞ ¼ HðtÞZ0 þ 2us1ðHðtÞ � I4ÞB0

b0 ¼
1=ð1� vÞ
1=ð1� vÞ

!
B0 ¼

b0

0

 !
(7)

3.5 Slip–Stick: x01 < V; x025V; u15us1; and jvðx22x1Þj< ur2.
This motion is governed by

ZðtÞ ¼ CðtÞZ0; CðtÞ ¼
C1ðtÞC2ðtÞ
C3ðtÞC1ðtÞ

!
(8)

The 2� 2 matrices CiðtÞ ði ¼ 1; 2; 3Þ are given in Ref. [2].

3.6 Stick–Slip: x015V; x02 < V; u25us2; and jx12vx2j< ur1.
This oscillation is described by

ZðtÞ ¼ CðtÞZ0; CðtÞ ¼ C1ðtÞC2ðtÞ
C3ðtÞC1ðtÞ

� �
(9)

The 2� 2 matrices CiðtÞ ði ¼ 1; 2; 3Þ are given also in Ref. [2].

3.7 Overshoot–Stick: x01 >V;x025V;u152us1; and jvðx22x1Þj
<ur2. The motion is obtained from the formula

ZðtÞ ¼ CðtÞZ0 þ 2us1ðCðtÞ � I4ÞB0 (10)

3.8 Stick–Overshoot: x015V;x02 >V;u252us2;andjx12vx2j
<ur1. The motion is defined by

ZðtÞ ¼ CðtÞZ0 þ 2us2ðCðtÞ � I4ÞA0 (11)

3.9 Stick–Stick: x015V;x025V; jx12vx2j<ur1; and jvðx22x1Þj
<ur2.
The eventual transition between one configuration to another one
leads to solve a set of transcendental equations. For example, a
transition from a slip motion of m2 (x02 <VÞ to an overshooting
motion of this mass (x02 >VÞ occurs if at some time t¼ t1, we
have

x02ðt1Þ ¼ V; v½x2ðt1Þ � x1ðt1Þ� < �ur2 (12)

In the following, several sets of periodic motions are obtained.
The initial conditions and the duration times of each parts of the
motion are computed. The MATLAB software is used to solve the

transcendental equations related to the eventual transitions
between two successive configurations occurring in these orbits.

4 Investigation of Periodic Orbits With Stick–Slip

Phases (Symmetrical Solutions)

For each period (Fig. 2), the motion is composed of a global
slipping motion (for 0 < t < tAB) followed by a sticking motion of
the first mass and a slipping motion of the second one (for
0 < t� tAB < tBA). We prove analytically that the phase portraits
of the system are symmetrical with respect to the line correspond-
ing to the constant part of the solution.

Example. For v ¼ 0:3; g ¼ 0:9; us1 ¼ us2 ¼ 0:8; ur1 ¼ 2:5255;
and ur2 ¼ 1, we obtain tAB ¼ 4; tBA ¼ 2:978; z10 ¼ 1:4888; z20 ¼
�0:789; and z020 ¼ �0:2114.

5 Periodic Orbits With Overshooting Phase of the

Second Mass

A periodic solution (Figs. 3 and 4) composed for each period of
four configurations is obtained: the first part is a slip–overshoot
motion (x01 < V; x02 > V; and 0 < t < tABÞ, the second one is a
slip–stick motion (x01 < V; x02 ¼ V; and 0 < t� tAB < tBCÞ, the
third one is a global slip motion (x01 < V; x02 < V;
and 0 < t� tAB � tBC < tCD), and the last part is a stick–slip
motion (x01 ¼ V; x02 > V; and 0 < t� tAB � tBC � tCD < tDA).

Example. For v ¼ 0:2; g ¼ 3:8; us1 ¼ 0:1; us2 ¼ 0:1749; ur1

¼ 1:9044; and ur2 ¼ 0:5943, we obtain tAB ¼ 2:118; tBC

¼ 0:3; tCD ¼ 1:7; tDA ¼ 2:16; z10 ¼ 1:2936; and z20 ¼ �2:5537:

6 Periodic Orbits With Overshooting Phase of the

First Mass

A periodic solution (Figs. 5 and 6) composed for each period
of four configurations is obtained: the first part is a
overshoot–slip motion (x01 > V; x02 < V; and 0 < t < tABÞ, the sec-
ond one is a stick–slip motion (x01 ¼ V; x02 < V; and 0 < t� tAB

< tBCÞ, the third one is a global slip motion (x01 < V; x02
< V; and 0 < t� tAB � tBC < tCD), and the last part is a slip–stick
motion (x01 < V; x02 ¼ V; and 0 < t� tAB � tBC � tCD < tDA).

Fig. 2 Symmetrical orbits of the system

Fig. 3 Phase portrait of m1 with overshooting of m2
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Example. For v ¼ 0:8; g ¼ 4:2; us1 ¼ 0:6482; us2 ¼ 0:1; ur1

¼ 1:1175; and ur2 ¼ 1:928, we obtain tAB ¼ 0:754; tBC ¼
0:2; tCD ¼ 0:78; tDA ¼ 2:771; z10 ¼ �0:4893; and z20 ¼ 1:8142.

7 Conclusions

In this work, a more complex model of dry friction oscillator is
considered. The system consists of two masses connected by lin-
ear springs. It is also assumed that each mass is in contact with a
belt moving at a constant velocity. This two degrees-of-freedom
system includes two friction forces instead of only one as it was
assumed in other investigations [4]. Several sets of periodic orbits
including stick–slip phases are obtained. Among them, we prove
the existence of periodic orbits involving a phase of
“overshooting” slip motion for one of the masses. In the past, this
kind of orbits was observed only for more complex friction char-
acteristics than Coulomb’s ones, and it is proved that these orbits
are not possible for a one degree-of-freedom system excited by
Coulomb’s dry friction [3]. Other kind of periodic motions includ-
ing, for example, a phase of global overshooting motion (over-
shooting motion for the two masses) can be the subject of future
investigations. However, it is possible to prove that for any peri-
odic solutions, a phase of sticking motion for at least one of the
masses must occur. This result limits the possible events of such a
periodic solution. A more realistic model of dry friction oscillator
can also be considered by adding to the system small damping. By
using the equivalent damping coefficients [5], a similar investiga-
tion of periodic orbits including overshooting phases can be
performed.
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Fig. 5 Phase portrait of m1 with overshooting part

Fig. 6 Phase portrait of m2 with overshooting of m1

Fig. 4 Phase portrait of m2 with overshooting part
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