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Voluntary Contributions to a Mutual Insurance Pool

Abstract

We study mutual-aid games in which individuals choose to contribute to an

informal mutual insurance pool. Individual coverage is determined by the ag-

gregate level of contributions and a sharing rule. We analyze theoretically and

experimentally the (ex ante) efficiency of equal and contribution-based cover-

age. The equal coverage mechanism leads to a unique no-insurance equilibrium

while contribution-based coverage develops multiple equilibria and improves ef-

ficiency. Experimentally, the latter treatment reduces the amount of transfers

from high contributors to low contributors and generates a “dual interior equi-

librium”. That dual equilibrium is consistent with the co-existence of different

prior norms which correspond to notable equilibria derived in the theory. This

results in asymmetric outcomes with a majority of high contributors less than

fully reimbursing the global losses and a significant minority of low contributors

less than fully defecting. Such behavioral heterogeneity may be attributed to

risk attitudes (risk tolerance vs risk aversion) which is natural in a risky context.

JEL codes: I18, H21, H41, C72, C91.

Keywords: Mutual insurance pool, voluntary contribution mechanism, equal cov-

erage, contribution-based coverage, heterogeneity of risk attitudes, experiment.
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1 Introduction

In spite of the prevalence of assistance and universal insurance in a growing number of

countries, the economic theory of insurance tends to ignore the fact that one’s coverage

against insurable risk will often not depend solely on one’s own contributions. In this

paper, we wish to examine cases in which individual coverage against risk is determined

by the aggregate level of voluntary contributions in a group and a sharing rule. We

designate this type of insurance scheme as “voluntary mutual aid”. We envision mutual

aid here as a unifying concept that can be useful for analyzing various institutions.

Mutual-aid pools offer insurance to members of a specified group, typically sharing a

common characteristic. The homogeneity of members facilitates the full coverage of

independent random losses at fair price and enhances the solidarity among members

and their willingness to contribute to the pool. To illustrate this point, Schwindt

and Vining (1998) motivate their proposal for a mutual insurance pool for transplant

organs by the incentive it provides to donate. Group members are free to join and

contribute and they redistribute resources between themselves according to a sharing

rule. All members are impartially treated and resources are divided between them

according to needs or participation : those who need or participate most are helped

most. Mutual-aid organizations have existed at least since the medieval craft guilds.1

Important contemporary examples of voluntary mutual-aid pool are “climate clubs” of

adherents to international climate policy agreements (Nordhaus, 2015) that offer some

kind of mutual insurance against differential climate change damages and trade unions

that provide unionized workers with protection against employment hazards. However,

trade unions and climate clubs are perfect illustrations of the problem raised by the

1Friendly Societies were found throughout Europe in the 18th and 19th centuries. During the
Great Depression, the American “fraternity societies” and the English “workers clubs” provided their
members with health insurance. (Almost) complete consumption insurance in small communities
(Townsend, 1994) and in large societies (Mace, 1991, Cochrane, 1991, Schulhofer-Wohl, 2011) reveals
an efficient implicit structure of mutual insurance in those groups. Anecdotally, we have been aware
of the example of students contributing to a fund used to reimburse contraveners who have been fined
for fare dodging in public transportation.
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group’s heterogeneity to voluntary mutual-aid pools. Workers who didn’t unionize and

countries who didn’t sign the agreement may still benefit from the contributions of

unionized workers or cooperative countries. Thus, a conflict arises between insurance

motives and incentives, which needs to be resolved. For illustration, going back to the

proposal of a mutual insurance pool for transplant organs, Howard (2007) remarks that

the pool derives its efficiency by linking very explicitly the willingness to donate and

the ability to benefit from transplantation and by punishing free riders: persons who

refuse to donate but would gladly accept organs from others.

In contrast with formal mutual insurance schemes in which paying a premium is

contractual, compulsory and excludable,2 voluntary contributions and indemnities to

a mutual-aid pool constitute an informal insurance scheme with no contract, no legal

obligation, and no excludability of eligible members. In particular, non-excludability

confers a public good or common resource dimension to the mutual aid. In the ab-

sence of transaction costs (loading), all risk-averse agents exposed to a random loss

and maximizing their expected utility of wealth would purchase full insurance on a

competitive insurance market (Mossin, 1968). Full coverage is also realizable in our

case with informal mutual insurance if everyone contributes the fair premium that he

would be willing to pay on a private insurance market. However, the cooperation of

all members of a mutual-aid pool is problematic when the pool is heterogeneous. We

demonstrate in this paper that the mere heterogeneity of risk attitudes is sufficient to

hamper the cooperation of members of a mutual-aid group.

Drawing on the rich literature on voluntary contributions to public goods, 3 we ask

whether mutual aid enhances fairness and the level of individual contributions to the

2In Barigozzi et al. (2013), “mutualization” corresponds to participating policies in which policy-
holders jointly hold the residual claims on the common pool. Policyholders share the aggregate risk
and, after an initial contribution, contribute whatever amount is needed yearly to meet the losses
insured by the pool (on participating policies, see also Doherty and Dionne, 1993; Smith and Stutzer,
1990, 1995; Picard, 2009; on mutual risk-sharing agreements, see notably Bourles and Henriet, 2012).
This is different in our games since full coverage is not guaranteed.

3See among many others, Andreoni, 1993, Fehr and Gachter, 2000, Isaac and Walker, 1988, An-
dreoni, Harbaugh and Vesterlund, 2003, Masclet et al., 2003 or Sefton, Shupp and Walker, 2007.
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point of offsetting the selfish drive. To this end, we study, both theoretically and exper-

imentally, two different types of mutual aid conditioning or not the reimbursement of

individuals who incur a random monetary loss on their preliminary contribution to an

insurance pool. Equal coverage guarantees an equal reimbursement to all individuals

who incur a loss irrespective of their voluntary contribution to the insurance pool. In

contrast, contribution-based coverage partly conditions the individuals’ reimbursement

on their own voluntary contributions. The second regime introduces an incentive to in-

crease individual contributions. We compare the (ex ante) efficiency of these two types

of mutual aid in enhancing the sense of responsibility of individual contributors to the

pool as measured in terms of individual contributions. Equal and contribution-based

coverage also reflects different conceptions of equity. Indeed, equal coverage guarantees

equal reimbursement for a given loss whereas contribution-based coverage guarantees

equal reimbursement for a given effort. While the first approach represents an egali-

tarian view of equity, the second one is close to the notion of “just deserts” of Frohlich,

Oppenheimer and Kurki (2004) in which individuals’ earnings are a proportion of their

contributions to income. We compare the net transfers of income, unrelated with the

occurrence of loss, among low and high contributors to the insurance pool in these two

regimes.

Our equilibrium analysis exhibits contrasting predictions under the different con-

ditions implemented. Two focal outcomes are natural in our context. The first one is

the no-insurance outcome in which nobody contributes and therefore no insurance is

created for the group.

The second, that we call the full-insurance outcome, is such that the sum of con-

tributions is high enough to provide full coverage of all losses (including those who

had not fully contributed). Whereas the equal coverage policy leads to a unique no-

insurance equilibrium, the contribution-based policy leads to multiple equilibria ac-

cording to which both no-insurance and full-insurance equilibria coexist. Our finitely
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repeated laboratory experiment allows us to analyze whether behavior converges to the

predicted Nash equilibria, and to identify which equilibrium is selected in the case of

multiple equilibria.

In accordance with predictions, the experimental evidence shows that the equal

coverage policy generates least contributions and greatest transfers from high contrib-

utors to low contributors. The contribution-based coverage policy provides stronger

incentives to contribute, which we interpret as an enhanced sense of individual respon-

sibility. It also reduces the amount of transfers unrelated with the occurrence of a loss

from high contributors to low contributors. However, under the latter regime full cov-

erage is only rarely attained, even though this is a potential equilibrium. The observed

situation can best be described as a “dual interior equilibrium”. This dual equilibrium

is consistent with the co-existence of different prior norms in the population which

correspond to notable equilibria derived in the theory. That particular outcome is

generated by two stable clusters of high and low contributors. High contributors have

an incentive to reduce their contribution below fair insurance whereas low contributors

have an incentive to give a little to reap the external benefit of coverage thanks to

the high contributors. This type of equilibrium can be explained with heterogeneous

players’ who exhibit different risk attitudes (risk averse versus risk tolerant).

The remainder of this paper is organized as follows. Section 2 presents the equi-

librium analysis of our experimental games. Section 3 details the experimental design.

Section 4 analyzes the results. Finally, Section 5 concludes and discusses the implica-

tions of these findings.
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2 Games and Incentives

2.1 The Model

In our set-up, every individual decides which part of his income to contribute to a

mutual fund, which has the purpose of covering losses for randomly hit individuals. A

key feature of mutual insurance is that the level of coverage is not chosen individually

but rather determined collectively. This is a crucial difference with private insurance.

Therefore individuals are embedded in a strategic setting in which they choose their

contribution to the mutual fund, which in turn defines the level of coverage that applies

to each agent. Overinsurance is prohibited: if the sum of contributions exceeds total

losses, all subjects who experience a loss are fully covered and the surplus is burned.

Let us now introduce some notations. The experiment involves groups of n players

choosing their contributions to a mutual fund in a risky context in which each player

can be randomly hit by a loss. We denote the set of players in a group by N = {1, ..., n}.

Initially, each player is endowed with the same level of income y > 0. Player i chooses

his contribution xi ∈ [0, y] ∀i ∈ N , and might experience an ex post random loss.

We denote by θi ∈ {0, 1} the state of nature for player i, where θi = 1 if player

i is hit by the loss and 0 otherwise. M is the set of players hit by the loss, i.e.

M = {i ∈ N : θi = 1}. Each individual hit looses d. In our experiment, a fixed

number of players m = |M | are randomly hit within a group. This hypothesis makes

the total amount of losses ` = d.m a sure value, thus shortening the gap between

the situation of a small experimental group and what the law of large numbers would

naturally achieve in a large group.4 Player i’s payoff is denoted by πi(xi, x−i, θ), where

x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ [0, y]n−1 stands for the individual contributions

of the other group members and θ = (θ1, . . . , θn) ∈ {0, 1}n summarizes the states of

nature associated with the n players. Denote ui, player i’s twice-differentiable vNM-

4An interesting extension of the analysis would consist of introducing uncertainty on the proba-
bility of being hit by a loss.
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utility function with ∂ui(πi)/∂πi > 0 and ∂2ui(πi)/∂(πi)
2 ≤ 0.

Therefore, the latter maximizes his expected utility function given by:

Ui =
∑
θ̂=0,1

pi

(
θ̂
) ∑
M\{i}⊂N\{i}

 ∏
j∈M\{i}

pj

 .ui (πi(xi, x−i, θ)) , (1)

where pi

(
θ̂
)

= Prob
(
θi = θ̂

)
and pi(1) = 1− pi(0) = pi = p, ∀i ∈ N .

We distinguish between two archetypal mutual insurance mechanisms, namely equal

coverage and contribution-based coverage. The rest of this section is devoted to a

thorough description and analysis of these games.

2.2 The Equal Coverage Mechanism

Under equal coverage, players i’s payoffs depend not only on the contribution profile

but also on the state of nature θi. Specifically, when he does not incur a loss (i.e. when

θi = 0) player i’s payoff is given by:

πi(xi, x−i, θi) = π0
i = y − xi. (2)

Otherwise, when player i incurs a loss (i.e. when θi = 1), his payoff is given by:

πi(xi, x−i, θi) = π1
i = y − xi − d (1− c(xi, x−i)) , (3)

where d(= `/m) > 0 is the loss suffered in the bad state of nature. c(xi, x−i) is a

uniform coverage rate which depends positively on the sum of contributions. In this

game, we consider the following coverage rate c(xi, x−i) = min
{

1
`

∑n
j=1 xj, 1

}
. Under

loss we have c(xi, x−i) < 1 and player i’s expected utility function is given by:

Ui = pui

(
y − xi − d

(
1−

∑n
j=1 xj

`

))
+ (1− p)ui(y − xi). (4)
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Differentiating Eq.(4) with respect to xi we get:

∂Ui
∂xi

= p
∂ui(π

1
i )

∂π1
i

(
−1 +

d

`

)
− (1− p)∂ui(π

0
i )

∂π0
i

< 0. (5)

As d < `, the first term into brackets in the RHS of Eq. (5) is clearly negative

∀(xi, x−i) ∈ [0, y]n. Therefore, 0 contribution is a dominant strategy ∀i ∈ N in the

presence of a loss and (0, . . . , 0) is an equilibrium profile of the game with equal cov-

erage. To check the uniqueness of the equilibrium, it remains to show that if player i

were in a position to balance the budget, he would rather choose a null contribution.

Formally, this will be the case if, given a contribution profile for others x̃−i such that

0 < `−
∑

j 6=i x̃j ≤ y, the following inequality holds:

Ui(0, x̃−i) ≥ Ui

(
`−

∑
j 6=i

x̃j, x̃−i

)
, ∀i ∈ N, ∀x̃−i ∈ [0, y]n−1, 0 < `−

∑
j 6=i

x̃j ≤ y. (6)

Condition (6) can be rewritten:

pui

(
y − d

`

(
`−

∑
j 6=i

x̃j

))
+ (1− p)ui(y) ≥ ui

(
y −

(
`−

∑
j 6=i

x̃j

))
. (7)

As d/` < 1, it becomes clear that (7) always holds. Therefore, a balanced budget

does not arise in equilibrium and (0, . . . , 0) is the only equilibrium of the game with

equal coverage.

2.3 The Contribution-Based Coverage Mechanism

Under this mechanism, the individual i’s coverage rate, ci(xi, x−i, θ), depends on his

contribution to the pool relative to the contributions of other individuals incurring a

loss. As in the previous game, his indemnity can never exceed his loss (i.e., ci(xi, x−i, θ)

lies between 0 and 1) and the sum of indemnities paid to the players incurring a loss
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is always covered by the sum of contributions.

When the sum of contributions covers all the losses, each individual is fully insured

and receives a sure payoff. When this sum does not cover all the losses, reimbursement

is partial and the compensation of every player incurring a loss is proportional to his

own contribution relative to that of the other players incurring a loss.5 Therefore,

under partial coverage, ci(xi, x−i, θ) can be given by the following formula:

ci(xi, x−i, θ) =


min

{∑n
j=1 xj

`
xi

1
m

∑n
j=1 xj .θj

, 1
}

if
∑n

j=1 xj.θj 6= 0

min
{∑n

j=1 xj

`
, 1
}

otherwise.
(8)

In what follows, we will simply denote ci = ci(xi, x−i, θ) for notational clarity.

In the game with contribution-based coverage, players’ payoffs in each state of

nature are analogous to those given by Eqs. (2) and (3). Thus, player i solves the

following program:

max
xi

Ui = p

 1

Cm−1
n−1

∑
M\{i}⊂N\{i}

ui (y − xi − d(1− ci))

+ (1− p)ui(y − xi). (9)

When ci < 1, i.e. when there is a loss, the FOC of (9) is:

MRS0,1
i =

p

1− p
1

Cm−1
n−1

∑
M\{i}⊂N\{i}

(
−1 + d

∂ci
∂xi

)
, (10)

where MRS0,1
i =

∂ui(π
0
i )

∂π0
i
/
∂ui(π

1
i )

∂π1
i

.

We claim that (x∗1, . . . , x
∗
n) = (0, . . . , 0) is an equilibrium of this game. To see this,

note that ∂ci/∂xi |x−i=(0,...,0)= m/`, ∀xi > 0. Consequently, the RHS of (10) equals 0

when x−i = (0, . . . , 0) and ∂Ui(xi, x−i)/∂xi|x−i=(0,...,0) < 0. Therefore we indeed have

x∗i = 0.

5If none of the players hit by a loss has contributed, each of them gets the same share of the
mutual fund.
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Of course, other outcomes might also arise in equilibrium. As an antidote against

the relative complexity of the set-up with contribution-based coverage and to give ex-

plicit solutions involving strictly positive contributions, in what follows, we will restrict

our attention to homogeneous preferences and illustrate our purpose in more detail by

taking two examples with conventional specifications of individuals’ utility fonction.6

Henceforth, we then focus on symmetric Nash equilibria, since it is expected that

homogeneous players behave the same way.

First of all, let us consider symmetric equilibria in which players give (strictly)

positive contributions but do not reimburse the global losses, so that a loss remains.

Rewriting Eq. (10) accordingly, it turns out that such symmetric equilibria, whatever

the amounts contributed, can only be sustained in the very special case where when

all individuals’ preferences are such that MRS0,1 = p
1−p

(m−1)(n−m)
m2 .7

A more interesting candidate symmetric outcome to examine is the one in which

everyone contributes x0 = `/n and all the losses can be entirely reimbursed. We now

investigate this issue using in turn a constant absolute risk aversion (CARA) and a

constant relative risk aversion (CRRA) utility function.

The contribution profile (`/n, . . . , `/n) will indeed be an equilibrium profile if player

i has no incentive to deviate to partial coverage choosing xDi < `/n, given the fact that

all other players choose `/n. xDi can then be derived from Eq. (10) given the symmetric

contribution profile of others, xS−i = (`/n, . . . , `/n).8 To verify that a deviation from

`/n is not profitable, we must check that:

Ui

(
`

n
, xS−i

)
≥ Ui

(
xDi , x

S
−i
)
. (11)

6Note that we do not require that players actually have the same preferences. It is sufficient
that they believe others’ preferences are the same as their own preferences. Psychologically-founded
patterns emphasize this tendency to project own preferences, even exaggeratedly, onto others (this is
the so-called “false consensus effect”).

7Or MRS1,0 = 0.75 with the parameter values detailed in Table 1.
8Under the conditions given in Table 1, numerical analysis shows that, with both utility fonctions

considered in the section, (CARA and CRRA utility functions) xD
i lies between 9 and 10 for all

relevant values of individuals’ risk aversion.
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Example 1 : CARA utility function.

Consider the following parametric form:

u(π) = − exp{−σπ}, (12)

where σ > 0 represents players’ absolute risk aversion.

Using Eq. (12), Condition (11) can be rewritten:

p. exp
{
−σ
(
y − xDi − d.ci

(
xDi , x

S
−i
))}

+(1−p). exp
{
−σ
(
y − xDi

)}
≥ exp

{
−σ
(
y − `

n

)}
,

(13)

A straightforward numerical analysis using the parameter values of our experi-

ment (given in Table 1 below) shows that Condition (13) holds for any reasonable

value of σ (≥ 0.003), which allows us to conclude that given xS−i there is no prof-

itable deviation for player i. Therefore, in addition to the no-insurance equilibrium

(0, . . . , 0), (x1, . . . , xn) = (`/n, . . . , `/n) is another symmetric equilibrium of the game

with contribution-based coverage in this example.

Table 1: Parameter Values Used in the Experiment.
n y d ` p m
12 100 100 400 1/3 4

Example 2 : CRRA utility fonction.

Let us consider a CRRA utility function and assume that players’ utility function

is given by:

u(π) =


1

1−ηπ
1−η if η 6= 1

ln π otherwise,
(14)

where η > 0 represents players relative risk aversion.

12



Plugging (14) into Condition (11) yields:

 p 1
1−η

(
y − xDi − d

(
1− c(xDi , xS−i)

))1−η
+ (1− p) 1

1−η (y − xDi )1−η ≤ 1
1−η

(
y − `

n

)1−η
if η 6= 1

p ln
(
y − xDi − d

(
1− c(xDi , xS−i)

))
+ (1− p) ln(y − xDi ) ≤ ln

(
y − `

n

)
if η = 1.

(15)

With the parameter values of our design, one can check numerically that Condition

(15) holds for all relevant values of η > 0. Thus, there is no profitable deviation

from `/n and (`/n, . . . , `/n) is consequently a symmetric equilibrium of the game with

contribution-based coverage under the CRRA utility specification.

Therefore, it is still true in this illustration that, like with a CARA specification of

the utility function, both (0, . . . , 0) and (`/n, . . . , `/n) are equilibria of the game.

2.4 Discussion

The above analysis emphasizes the incentives brought by each mechanism. Unambigu-

ously, in the equal coverage mechanism, equilibrium forces drive contributions to the

no-insurance outcome in which nobody contributes to the mutual fund. In contrast,

results are not clear-cut with contribution-based coverage since the no-insurance out-

come is always an equilibrium but the symmetric full-insurance outcome is another

potential equilibrium. Interestingly, the no-insurance equilibrium is sustainable even

for people with arbitrarily large degrees of risk aversion while full insurance can be

obtained for individuals with arbitrarily low (but strictly positive) degrees of risk aver-

sion. We considered a simplified version of our set-up to tackle the technical complexity

of the game with contribution-based coverage. Still, we believe that our conclusions

are of a wider applicability due to the robustness of our findings to an extended class

of preferences (namely CARA and CRRA specifications).

The intuition behind these results is the following. Under the equal coverage mech-
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anism the marginal return to contribution remains moderate whatever the amounts

contributed, which in turn kills any incentives to contribute strictly positive amounts.

In contrast, under the contribution-based coverage mechanism, the marginal return to

contribution depends on the size of the amount contributed relatively to the contribu-

tions of others. Therefore, two conflicting forces are at stake here. Players have clear

incentives to contribute little and reap some benefits of the contributions of others;

but they are limited by the fear of “punishment” in the form of low coverage if their

own contribution falls too much below the contributions of others. Which of these

two conflicting forces prevails will depend eventually on the penalty imposed on low

contributors. Multiple equilibria can be achieved depending on the inequality among

individual contributions.

Concerning (ex ante) efficiency, it could be also noticed that the marginal individual

cost of player i’s contribution is p ∂ui
∂π1
i
+(1−p) ∂ui

∂π0
i

and its marginal social benefit in terms

of an increase in the coverage rates equals p 1
Cm−1
n−1

∑n
j=1

∑
M\{j}⊂N\{j} d

∂cj
∂xi

∂uj
∂π1
j

(which re-

duces to p
∑n

j=1
d
`

∂uj
∂π1
j

under equal coverage). Obviously, comparisons are tricky between

the marginal cost and the marginal benefit and would depend on the distribution of

individuals’ risk attitudes in the population. However, it is worth noting that, despite

the large differences that existed between these games and contrary to the contrasting

incentives emphasized in this section, it is possible to draw similar welfare implications

across mechanisms. For example, consider the stylized case with homogeneous prefer-

ences.9 In this case, symmetric allocations of contributions would be such that, under

partial coverage, the marginal social benefit of a player’s contribution always exceeds

its marginal cost for both regimes. More precisely, in the equal coverage regime, this

rewrites p
1−p (−1 + n.d/`) ≥MRS0,1, or MRS0,1 ≤ 1 with our parametrization. In the

contribution-based coverage regime, this rewrites p
1−p

(
−1 + nm+n(m−1)

m2

)
≥ MRS0,1,

or MRS0,1 ≤ 14.5 with our parametrization. These inequalities unambiguously hold

9This assumption is widely common in the literature on voluntary contribution mechanisms, which
predicts a social optimum of full contribution for homogeneous groups in a riskless context.
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under both regimes for any degree of risk aversion (since MRS0,1 ≤ 1 with π0 ≥ π1).

Hence, in our set-up, creating a mutual fund that fully covers the loss is a relevant

socially optimal target ex ante across all the regimes under consideration. Interest-

ingly, this target is also the optimal policy under private fair insurance for risk averse

individuals (see Mossin, 1968). Thus, the optimal mechanism under mutual insurance

coincides with the optimal mechanism under fair private insurance. As a result, the ex

ante efficiency of mutual insurance mechanisms can be judged by their ability to en-

hance voluntary contributions. Consequently, any outcome different from full insurance

can be considered as (ex ante) sub-optimal and would reflect coordination failure.10

2.5 On Partial Insurance Outcomes

Beyond the existence of these two focal issues of no insurance and full insurance, one

could wonder whether ‘interior’ equilibria exist such that the total losses are only

partially covered by some individuals’ contributions. The range of possible outcomes

is obviously very large but to illustrate this class of outcomes, consider the subset of

equilibria such that r players contribute 0 while the n− r remaining ones (n− r > 0)

contribute at some level x > 0. It turns out that such equilibria can be sustained,

for any x, with an intermediate number of zero contributors (8 ≤ r ≤ 10 with our

parametrization).11 Indeed, as described in Eq. (8), when zero contributors are too

few, they suffer, in expectation, a high penalty because some players are likely to

contribute a (strictly) positive number of tokens and get all the indemnities. Therefore,

there is no incentive to contribute a null amount when the number of zero contributors

is too small. On the other hand, when zero contributors are too numerous, it does not

10Another way to assess the efficiency of insurance institutions is to look at realized payoffs, or ex
post efficiency. As long as the sum of contributions does not exceed losses, the insurance mechanism
maintains incomes constant in the aggregate under both regimes, no matter how large the partial
coverage. Subjects then support, on average, one nth of the total amount of losses. Therefore, ex post
efficiency is not a criterion that can be used to evaluate the optimality of either regime.

11We describe here the intuition for the existence of such a class of equilibria. A formal proof is
available from the authors upon request.
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pay for other players to contribute strictly positive amounts as the relative benefit for

positive contribution (in terms of an increase in the coverage rate) is relatively modest

if total contributions are low. As the number of contributors in these equilibria is not

larger than 4, no surplus can be generated.

In the above analysis we derive symmetric equilibria, but note that it does not imply

that we expect symmetric outcomes to be achieved in our experiment. Indeed, the coor-

dination issue that affects our contribution-based coverage treatment is likely to induce

asymmetric behaviors depending on the equilibrium outcome targeted by individuals.

Asymmetry in players’ behavior can also naturally be triggered by the heterogeneity of

preferences. Specifically, subjects’risk attitudes are likely to differ. More precisely, it

can be seen from Eq. (10) that when MRS0,1
i ≤

p
1−p

1
Cm−1
n−1

∑
M\{i}⊂N\{i}

(
−1 + d ∂ci

∂xi

)
,

it is optimal for player i to contribute x∗i = min{y, `−
∑

j 6=i xj}. This condition is au-

tomatically met when MRS0,1
i tends to 0 (as its RHS is non-negative). In other words,

extremely risk averse subjects have incentives to unconditionally give as much as they

can until global losses are recovered. It is straightforward to observe that the greater

the MRS (players’ risk tolerance) the harder it is to validate the condition. Hence

relatively low risk aversion naturally hinders players’ incentives to contribute. In con-

trast, in the polar case where subjects are all risk neutral, the symmetric equilibrium

(`/n, . . . , `/n) exhibited above where everyone is fully insured and get y − `/n cannot

be sustained. Indeed it can be shown that any deviation to a contribution strategy xD,

0.0008 < xD < `/n, would lead to higher expected payoffs.12

Again in the contribution-based coverage treatment, the set of possible equilibria is

potentially very large. The experimental data will give us clues for eliciting the most

likely equilibria and see how players eventually reach a specific outcome.

12More precisely, the expected payoff of a deviator, who chooses xD < `/n (any deviation to
xD > `/n is obviously irrelevant since the surplus is burned), is y − xD − pd(1 − c(xD)), where

c(xD) = m
`

xD`−xD

3`/n+xD , which turns out to be greater than y − `/n as soon as xD > 0.0008.
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3 Experimental Design

We now describe the protocol used in our experiment. We implemented the two mech-

anisms detailed in the previous section under a between-subject design.

Twelve participants form a group (n = 12). At the beginning of each period, each

participant receives an endowed income of 100 tokens.13 Everyone can contribute to a

common pool that serves to compensate the participants who will incur a loss of their

entire income. The individual contribution is a number of tokens chosen between 0

and 100. Four of the 12 group members are then randomly hit by the loss (m = 4) so

that the total loss is 400 tokens (` = 400).

The equilibrium is to contribute nothing in the equal coverage treatment. In the

contribution-based coverage treatment, both no-insurance and full-insurance equilibria

exist, the achieved issue remaining eventually empirical.14 Each session consists of 50

periods, allowing us to observe long run contribution dynamics.

Regarding procedures, we have conducted 6 experimental sessions per treatment,

for a total of 12 sessions of 12 participants each. In order to capture the possible

role of cultural differences regarding the feeling of individual responsibility, half of the

sessions for each treatment were run in the BUL-CIRANO lab (Center for Interuniver-

sity Research and Analysis on Organizations), Montreal (Canada), and half at GATE

(Groupe d’Analyse et de Théorie Économique), Lyon (France), on the same dates. In

total, the experiment summoned 144 French-speaking participants, mostly students.

It was programmed with the REGATE software (Zeiliger, 2000).

Upon arrival in the laboratory, each participant randomly drew a ticket with a

computer name out of a bag. After the instructions were distributed and read aloud,

13At the beginning of the first period, to avoid the possibility of negative earnings, each participant
was given an endowment of 110 tokens. This does not influence the theoretical predictions.

14We did not tell the subjects explicitly that full coverage required an individual average con-
tribution of 33 or 34, to avoid introducing a focal point and an experimenter demand effect. We
acknowledge, however, that contributing 33 or 34 may be less salient than contributing 0. Thus, this
equilibrium may be less focal than the equilibrium with a null contribution.
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the participants’ questions were answered in private and a questionnaire was used to

check that all instructions had been well understood.15 The latter were written in

neutral terms. The average duration of sessions was an hour and a half including the

payment of participants that was done privately in a separate room. The conversion

rate was 300 tokens = 1.55 Canadian Dollar = 1 Euro. The average earnings were 35

Canadian Dollars or 23 Euros.

4 Results

In this section, we analyze contributions to mutual aid which conditions outcomes

and efficiency. We first compare contribution levels between treatments in the aggre-

gate. Then, we examine the heterogeneity of strategies and individual determinants of

contribution behavior.

4.1 Aggregate Contributions and Efficiency

Table 2 displays summary statistics on aggregate behavior at the session level, by

showing the average contribution and the share of null contributions.

Table 2: Summary Statistics by Session and by Treatment
Treatment Session Number Average Contribution Percentage of Null Contribution

Equal Coverage 1 9.25 46.50%
2 10.76 39.17%
3 14.35 39.33%
4 8.24 56.67%
5 5.90 57.67%
6 4.13 76.17%

Sub-total 8.77 53.00%
Contribution-Based Coverage 1 14.71 29.50%

2 19.81 25.83%
3 19.75 16.17%
4 13.79 24.50%
5 13.23 43.00%
6 13.11 28.17%

Sub-total 15.74 28.00%

Table 2 shows that voluntary contributions per group of 12 players in a session over

all the 50 periods are not sufficient to cover aggregate losses. No surplus was found for

15The instructions for the two treatments have been translated and are presented in Appendix.
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both treatments. Hence, it is worth noticing that, although full coverage equilibrium

is a distinct possibility under contribution-based coverage, players do not conform to

this outcome in the data.16

As a crude approximation, the incentives brought by each treatment are reflected in

the difference of average contributions across treatments. The frequency of equilibrium

play corresponding to the null contribution is higher in the equal coverage treatment

(53%). Subjects only contributed an average of 8.77 (S.D. = 16.55) in this treatment.

Under contribution-based coverage, subjects contribute a larger amount of 15.74 (S.D.

= 17.77) and null contributions only represent 28% of the observations. However,

even if the latter treatment succeeds in overcoming players’ tendency to contribute

0, it fails to fully cover the losses. Subjects consequently get partially insured. More

precisely, the individuals who incur a loss on average contribute and recover only 26.3%

of the loss under the equal coverage policy and 47.2% under the contribution-based

policy. Beyond the coordination failure issue caused by the multiplicity of equilibria,

this average outcome may mask, as we shall see later, a contrasted situation due to the

heterogeneity of risk preferences, with risk-averse players asking for high coverage and

risk-tolerant ones enjoying low coverage.

Figure 1 displays the evolution of average voluntary contributions over time for

each treatment.

16Only 4% of fair contributions have been found in the data.
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Figure 1: Evolution of the Average Contributions Over Time by Treatment
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Figure 3: Evolution of the Average Contributions Over Time by Group under
Contribution-Based Coverage

Figure 1 shows the sharp contrast in mean behavior between the two treatments.

Differences can already be seen in the initial contributions and in the respective trends.

In comparison with the contribution-based coverage treatment, under equal coverage

mean contributions start at a lower level, decline more rapidly and converge to zero.

Figures 2 and 3 disaggregate the description of average behavior at the group (i.e.,

session) level. They show a striking difference in average behavior in the first period

across groups. While there is a wide dispersion of average contributions across groups

in the equal coverage treatment, a remarkable concentration can be observed in the

contribution-based coverage treatment. The latter suggests that the subjects do not
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immediately play the equilibrium and follow a common prior in the absence of infor-

mation on the others’ behavior. A common prior is common knowledge and may serve

as a social norm (Lévy-Garboua, Meidinger and Rapoport, 2006). Assume for instance

that the prior is that “all should equally contribute to get full coverage”. The same

norm initially applies to both treatments. However, it is much more strictly enforced

with contribution-based coverage than with equal coverage which treats high and low

contributors equally. Consequently, rational subjects do not deviate much from the

prior norm of equal contribution and full coverage by fear of punishment (in terms

of a relatively low coverage rate) when their final coverage is partially based on their

own contribution relatively to the contributions of others. In contrast, the lack of

punishment in the equal coverage treatment sets no bond on their private incentive

to lower their contributions so that average deviations from the norm across groups

critically vary then with the proportion of selfish players in each group. Behavior

evolves differently across treatments as the individuals get gradually informed on oth-

ers’ behavior. The contribution-based coverage stabilizes the average contributions at

a relatively high level in all groups, whereas equal coverage leads to a uniform decline

of contributions towards zero.

In complement to these statistics, a simple regression of mean contributions on the

inverse of time 17 helps us quantify the main differences of behavior across treatments.

Table 3 analyzes this influence of time on individual contributions by estimating an

Ordinary Least Squares model for each treatment.

Table 3: Evolution of the Average Contributions Over Time by Treatment
Equal Coverage Contribution-Based Coverage
Coeff. t-stat. Coeff. t-stat.

1/Period 13.80∗ 5.70 9.29∗ 5.975
Constant 7.528∗ 17.25 14.89∗ 53.14
Observations 50 50

R
2

0.391 0.415

Note: ∗ Statistically significant at the 1% level.

Table 3 confirms a difference between the two treatments in the initial average

17A hyperbolic shape was preferred to declining linear curve because it forces contributions to be
positive and allows identification of a stationary equilibrium.
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contribution: 21.33 for the equal coverage treatment and 24.09 in the contribution

based coverage treatment. The lower initial value under the equal coverage mechanism

is consistent with the lack of an enforcement institution for the social norm of equal

contribution in this treatment. Another significant difference among treatments lies in

the higher asymptotic level of average contributions for the contribution-based coverage

treatment: 14.89 versus 7.53.18

4.2 Determinants of Individual Contribution Behavior

To understand the determinants of individual contribution behavior, we proceed to

an econometric analysis that is based on a two-step estimation procedure.19 We first

explain the decision to contribute, and next the choice of the amount contributed

conditional on the decision to contribute. Indeed, we assume that these two decisions

are separated in the subjects’ decision process and that there may be a selection bias in

the contribution decisions. The first decision is studied by means of a random-effects

Probit model; and the conditional contribution is estimated with a Feasible Generalized

Least Squares model corrected for the potential selection bias. This panel data analysis

with random effects accounts for the fact that the same subject is observed fifty times.

Among the independent variables, we control for a time trend and demographic

variables.20 We also introduce a number of lagged exogenous variables and individual

18These values and the difference between them may be biased upward by the limited duration of
the game. However, the difference is so large that we can safely conclude that the contribution-based
coverage treatment is much more efficient and yields higher contribution levels than the equal coverage
treatment.

19A Tobit model of type 2 (generalized Tobit) would be ideal for a one-step estimation, but it is
not user-friendly with panel data.

20Our experimental design also includes a simple test of risk aversion. More precisely, at the
beginning of the session, the participants had a choice between getting a show-up fee of 5 Canadian
Dollars (2 Euros) and participating at the end of the session in a lottery in which they had equal
chances of winning either 11 Dollars (5 Euros) or 0. They tossed a coin at the end of the session to
determine their extra earnings. The participants who exhibited a “certainty effect” by choosing the
show-up fee were tentatively considered as being more risk averse. However, since Kahneman and
Tversky (1979), there is an agreement among decision theorists that observing a “certainty effect”
is no reliable evidence of risk aversion. Indeed, no clear pattern emerged concerning the impact of
participants’ lottery choices on their contribution behavior.
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controls.21 Lagged variables are intended to capture the process of convergence to

equilibrium and temporary deviations from the time trend. A positive effect of the

sum of the other subjects’ contributions in the previous period is intended to capture

conditional cooperation (a subject contributes all the more as the others contributed

more in the past, see Fischbacher, Gächter and Fehr, 2001). We also include a variable

indicating whether the participant has incurred a loss in the previous period. Persistent

bad luck is captured by the difference between the actual number of losses suffered by

a participant during the elapsed periods and the expected number of losses given the

objective probability of a loss. This variable captures the effect of an over-prevalence of

bad luck on current contribution behavior. Last, we introduce in the second equations

the Inverse of the Mill’s Ratio (IMR) derived from the estimation of the first equations

to control for a potential selection bias. These models are estimated separately for each

of the two treatments since we assume that behavior is driven by different factors in

various institutional environments.22 Table 4 displays the results of these regressions.

Table 4 unambiguously attributes the decline in the mean contribution to an in-

creasing propensity to not contribute in the equal coverage treatment, and to a dimin-

ishing amount of contributions in the contribution-based coverage treatment. These

observations corroborate the very different nature of equilibria in these two treatments:

a corner solution in the first case versus interior equilibria in the latter. The cultural

dimension is also found to play a role since French subjects contribute less under both

policies. Last, only few demographic variables intervene.

Short-run fluctuations around these trends are triggered by the occurrence and

past frequency of losses. The occurrence of a loss diminishes the probability of a pos-

21The individual controls include age, gender, student or worker status, education level, mathe-
matical training, past participation in an experiment, and location of the session (Lyon, Montreal).

22Non-parametric Wilcoxon rank-sum tests were performed for assessing whether two samples of
observations came from the same distribution. The null hypothesis is that the probability distributions
of the two treatments considered are equal. The null is rejected in comparisons involving the percent-
age of zero contributions and gains. Therefore, the two treatments will be considered separately in
the regression analyses.
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Table 4: Probability and Determinants of the Positive Contributions by Treatment
(Periods 2 to 50)
Treatment Equal Coverage Contribution-Based Coverage

Random Effects FGLS Panel Random Effects FGLS Panel
Probit Model Probit Model

Variable Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.
Period −0.022∗ −10.806 −0.095 −0.767 0.0017 1.389 −0.134∗ −6.646

Others’ contribution t− 1 0.026 0.556 −0.827 −1.572 0.011 0.318 −0.108 −0.328

Loss in t− 1 −0.348∗ −7.248 4.191∗∗ 2.027 −0.5099∗ −10.336 −3.243∗ −3.235
Losses minus
anticipated losses 0.030 1.499 0.288 0.920 0.018∗∗ 2.001 0.600∗ 3.211

Age −0.042∗ −3.240 0.879∗∗ 2.157 −0.029∗ −2.771 −0.021 −0.066

Gender (Males=1) −0.414∗ −3.481 7.344∗∗ 1.890 −1.640∗ −13.049 −1.025 −0.294

Experience −0.357 −1.577 −11.516∗ −2.514 0.305∗ 3.487 −0.595∗∗ −0.197

Student (Reference:

worker and unemployed) 0.129 0.602 −8.111 −1.485 −0.926 −1.418 −4.141 −0.846

Graduate 0.750∗ 6.218 −7.001 −1.198 0.622∗ 3.178 −9.078∗ −2.444

Mathematical training −0.185 −1.510 2.645 0.659 −0.460∗ −2.808 2.515 0.702

Montreal (Reference: Lyon) 0.525∗ 4.076 −8.416 −1.560 0.916∗ 7.464 9.314∗ 2.783

Constant 1.418∗ 3.564 32.027∗ 3.158 3.692∗ 4.856 25.123∗∗ 2.342

ρ 0.625∗ 26.639 0.621 22.280

IMR −14.441∗∗ −1.673 3.186 0.730

R2 0.178 0.078

Observations 3528 1655 3528 2537

Value of the likelihood

V: constrained −2438.68 −2094.92

V: probit −2244.30 −1949.83

V: probit panel −1493.57 −1411.18

Note: ∗ Statistically significant at the 1% level; ∗∗ Statistically significant at the 5% level.

itive contribution in the next period in both treatments, whereas an excess frequency

of losses in the past convinces players to contribute more in the contribution-based

treatment only.23 None of these two effects of experienced losses on the decisions to

contribute is consistent with expected utility maximization under risk. The lagged neg-

ative effect of a loss may reveal a gambler’s fallacy (Tversky and Kahneman, 1974) or a

“bomb crater” effect (Mittone, 2006), in which the unlucky individual underestimates

the chances that his bad luck persists in the future. An alternative explanation is that

participants try to regain the experienced loss by saving on contributions. The effect

of an excess frequency of losses in the past evokes the “hot hand fallacy” (Gilovich,

Tversky and Vallone, 1985). Individuals behave as if they think that, if they have been

lucky or unlucky for some time, they will continue to be so in the future because it

reflects their nature, and so they must take proper risk coverage. Such behavior runs

counter the gambler’s fallacy effect.

23An excess frequency of loss has no positive effect on contributions in the equal coverage treatment
because not contributing is then a dominant strategy.
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In contrast with the literature on public goods games, Table 4 shows that condi-

tional cooperation, captured by the influence of others’ contributions in the previous

period on one’s own contribution level, does not affect behavior. Thus, in the presence

of risk, players’ strategies seem to be more dictated by Nature than by others’ behavior

or by reciprocity.

4.3 Heterogeneity of Strategies

Recent experimental literature has emphasized the heterogeneity of preferences and

its impact on behavior in public goods games (see Burlando and Guala, 2005). To

give a feeling of heterogeneity of individual behaviors, Figure 4 displays the dispersion

of contributions over time. Notably, it shows a strong disparity across treatments.

The median contribution drops in the equal coverage treatment, while it remains more

stable in the contribution-based coverage treatment. Meanwhile, the gap between the

first and last quartiles lessens with time.
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Figure 4: Dispersion of the Contributions by Block of Periods and by Treatment

In order to track this heterogeneity properly, homogeneous groups of participants

and strategies have been separated by a cluster analysis based on three discriminating

variables: the frequency of positive contributions, the average and the standard devia-

tion of contributions. The standard deviation of contributions identifies the variety of

strategies. As shown below, two clusters for all treatments are enough to oppose very

different strategies, and Table 5 characterizes these strategies for each treatment.24

In Table 5, cluster 1 describes the high contributors and cluster 2 the low con-

24Insofar as we want to identify the most contrasting groups of behavior, we have used a difference
criterion as an aggregation mean. The maximum link method (the distance between two groups is
given by the distances of the furthest object of each group) and the Ward method (minimizing the
intra-group variance) are best fitting. Since the Ward method tends to produce smaller groups, we
have favored this method, that is, the minimization of the squared sum of the errors (the squared
Euclidian distance

∑p
k=1(zki − zkj)

2). Regarding the choice of the number of partitions, insofar we
want to preserve the greatest differences between groups, we examine the decreasing curve of the
distances between the merged partitions in each stage. This curve must diminish in a monotonic
fashion as the near partitions are merged in each stage. If a net difference is observed in the course
of iteration, it is not reasonable to group other partitions.
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Table 5: Cluster Analysis of Strategies
Treatment Equal Coverage Contribution-Based Coverage
Clusters Cluster 1 Cluster 2 Cluster 1 Cluster 2

(High Contributors) (Low Contributors) (High Contributors) (Low Contributors)

Frequency of non-null contributions
Average % 37.051 7.939 44.622 21.815
Standard deviation 10.252 6.364 6.847 11.139
Average of the contributions
Average number of tokens 14.177 2.379 20.828 7.235
Standard deviation 11.504 2.475 10.046 4.954
Average of the std. dev. of the contributions
Average 13.843 5.558 13.609 9.769
Standard deviation 8.637 5.377 8.735 4.686
Number of observations 39 33 45 27

tributors. High contributors differ from low contributors, since the null hypothesis is

often rejected in comparisons between treatments of the statistics presented in Table

5. High contributors give considerably more than low contributors but they adopt a

more variable strategy, reflected by a larger standard deviation. The larger variability

of contributions for high contributors may be caused, at least in part, by the common

tendency to not contribute after being hit (gamblers’ fallacy), as this would affect high

contributors much more than low contributors. Between 55% and 62% of participants

are classified as high contributors. Within each cluster of subjects, behaviors are rather

comparable.

Aggregate earnings remain unchanged across regimes but the distribution of earn-

ings between individuals depends on their respective contributions. More precisely,

the sharing rule takes the form of a transfer from high contributors to low contrib-

utors. Average payoffs for the clusters of high contributors and low contributors are

respectively 61.83 and 72.12 in the equal coverage treatment and 65.65 and 68.10 in the

contribution-based coverage treatment. Therefore, the amount of transfer from high

contributors to low contributors which is unrelated to the occurrence of a loss is di-

minished when coverage rates are determined on the basis of individual contributions.

This reflects the fact that a higher level of contribution from low contributors under

contribution-based coverage alleviates the burden of high contributors.

What determines the heterogeneity of contributions in the mutual-aid game? We

saw previously that risk attitudes were a major source of difference in contribution
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behavior. In an attempt to coordinate on a “normal” contribution, all risk averse play-

ers would be attracted by the fair contribution whereas all risk tolerant players would

be attracted by the null contribution. This conjecture is remarkably consistent with

the observed mean contribution in the first round of the contribution-based coverage

treatment. Indeed, if we assume that 28% of our subjects are non-risk averse (this

is the mean frequency of null contributions in Table 2), the mean contribution in the

first round (with no knowledge of others) would be given by: 0.28 (0)+0.72 (33.33)=24

which is to be compared with the observed mean contribution of 24.09! It is worth

noticing that these two prior norms of fair contribution for risk averse players and no

contribution for non-risk averse players coincide with the two extreme symmetric equi-

libria (`/n, ..., `/n) and (0,...,0) respectively. These equilibria would be reached in a

one-shot game if all players were of one type or the other. The natural heterogeneity of

risk attitudes makes this situation extremely unlikely. Instead, we observe two clusters

illustrated by Table 5: a majority of risk averse high contributors and a minority of

low contributors. Abstracting from short run deviations that may be caused by the

occurrence of a loss, high contributors have an incentive to reduce their contribution

-particularly so in the equal coverage treatment- and low contributors have an incentive

to give a little to reap the external benefit of coverage thanks to the large contributions

of the high contributors. This parallel behavior of the members of the two clusters may

remain stable over time if the preoccupation with risk dominates reciprocity motives.

It generates an asymmetric interior equilibrium with a mixture of high and low con-

tributors in which the non-risk averse players impose a negative externality on the risk

averse players who are forced to overcontribute for less than full insurance. Note that

this particular type of asymmetric equilibrium seems consistent with the heterogene-

ity of norms and risk attitudes but less consistent with other social preferences like

inequity aversion. Indeed, in our context, if players prominently wanted to reduce the

inequalities between payoffs, we would more likely observe symmetric outcomes with
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similar amounts contributed.

5 Concluding Remarks

In this paper, we study games in which individuals choose to contribute voluntarily

to a mutual-aid pool. Mutual-aid groups provide informal mutual insurance to their

members who remain free to choose their contribution and receive a share of total con-

tributions if they incur a loss. They appear under various guises to offer insurance and

assistance to members of occupational groups, trade unions, communities of villagers

or countries, etc. In spite of its importance in social life and in public policies, mutual

aid has received little attention in the economic theory of insurance. We derived the

Nash equilibria of two mutual-aid games, defined respectively by equal coverage and by

contribution-based coverage of group members who experience a random loss. We limit

our study of mutual-aid groups to exogenous and fixed groups, leaving the endogenous

formation of such groups for further research.

If we assume that players are homogeneous and essentially risk averse, we can

conclude that contribution-based coverage takes us only half-way to efficiency since the

latter requires full insurance. In that respect, one could say that coordination failures

that arise from the existence of multiple equilibria have been only partially overcome by

the provided incentives. This is a conventional interpretation in game theory. However,

if we recognize the heterogeneity of risk attitudes, a very different interpretation arises

which interferes with the issue of coordination failures. This new interpretation was

suggested by the observation of a norm-induced behavior in the first round and the

emergence of a “dual interior equilibrium” with a majority of high contributors and a

significant minority of low contributors. Under the latter interpretation, players have

heterogeneous risk attitudes, with a majority of risk averse subjects and a significant

minority of risk tolerant players. These two groups share very different prior norms:
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fair contribution and full insurance for the risk averse, but zero contribution and no

insurance for the risk tolerant players. This type of preference heterogeneity is natural

in a risky context and it seems to take the precedence over reciprocity and inequity

aversion in our data, which demonstrates that voluntary contribution mechanisms in a

risky context may yield very different outcomes than mechanisms with sure outcomes.

It leads to a dual interior equilibrium in which the two groups interact, with the risk

averse group less than fully contributing and the risk-tolerant group less than fully

defecting.

Under homogeneous risk attitudes, the mean coverage rate equals 47.2% in the

contribution-based treatment so that coordination failures are responsible for a social

loss of 52.8% of the optimal (full) insurance. The picture is very different under hetero-

geneous risk attitudes. If we assume then that each of the two groups is homogeneous,

the mean coverage rate equals 62.5% for the (risk averse) high contributors and 21.7%

for the (risk tolerant) low contributors in the contribution-based coverage treatment.

The presence of risk tolerant players deprives the high contributors of 37.5% of their

optimal insurance, 21.7% of which is transferred to the former and 15.8% is a social

loss. We can also compare across treatments the efficiency gains brought by imposing

a coverage that is proportional to contributions rather than equal for all. Under ho-

mogeneous preferences, the mean coverage rate would be raised from 26.1% to 47.2%

for everybody. However, under heterogeneous preferences, the mean coverage would

be raised from 26.1% to 62.5% for (risk averse) high contributors whereas it would be

cut down from 26.1% to 21.7% for (risk tolerant) low contributors.
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Appendix: Instructions (translated from French)

Treatment: Equal Coverage

You are participating to an experiment in which we ask you to make decisions. Each

participant makes her (his) decisions individually in front of her (his) computer. At the

beginning of the experiment, you are given an initial capital of 110 tokens. During

the experiment, you can earn an additional amount of money. The final amount of

earnings you will get depends on your decisions and on the other participants’ decisions.

At the end of the experiment, your earnings in tokens will be converted into Canadian

$ according to the following conversion rate: 300 tokens = $1.55. You will be paid

individually in a separate room to preserve the confidentiality of your earnings. Each

period, you will form a group with the other 11 participants. Communication between

participants is forbidden and you are asked not to react loudly during the course of the

experiment. The experiment has 50 periods. Each period is independent of the others.

At the beginning of each period, you will receive 100 tokens. You can contribute to a

common pool intended to cover the losses that will randomly strike 4 persons among

the 12 group members. Each of the 4 afflicted members lose their 100 tokens. The

common pool is equal to the sum of the contributions by each group member. Three

situations can occur:

• The common pool is of 400 tokens. This allows all 4 afflicted members to regain

their 100 lost tokens each.

• The common pool is greater than the sum of the lost tokens. In this case, the 4

afflicted members regain their 100 lost tokens and the surplus is not reported to

the next period.

• The common pool is insufficient to allow the 4 afflicted members to regain their

100 lost tokens. In this case, each one of the 4 afflicted members receives 1/4 of
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the common pool.

Rules for each period

You will be given 100 tokens. You choose, with the help of a cursor, the number

of these tokens between 0 and 100 that you allocate to the common pool. This choice

is validated as soon as you click on the OK button. The computer then gives you 5

pieces of information:

• You are or not one of the 4 persons who each loose their 100 tokens

• The total amount of the common pool

• If applicable, the total amount of the loss

• The number of tokens that are allocated to you if you are afflicted

• Your earnings in tokens for this period.

A new period, independent of the previous ones, is automatically shown. Each

period, you receive a new allocation of 100 tokens. A new random draw determines

the afflicted members. The conditions described above continue to apply.

How we determine your earnings

During a period, your earnings are calculated by the computer the following way:

Your 100 tokens

- the tokens that you allocate to the common pool

- the tokens that you have lost if you are afflicted

+ the partial or total reimbursement of your lost tokens if you are afflicted.

At the end of the experimental session, your total earnings are calculated by the

sum of your earnings for each of the 50 periods, plus the initial capital. It is this

amount that will be converted in Canadian $.
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Additional information

Before we begin the experimental session, we will ask you to answer a few compre-

hension questions on these instructions. As soon as you have all answered correctly all

the questions, you will be asked to provide us some details on your age, gender, level

and field of education, university or school currently frequented or your current work

situation, and if you have participated to an experiment before. This information will

remain anonymous. The experiment will then begin. After taking place in front of

your computer, please raise your hand if you have questions on these instructions. We

will come and answer your questions privately.

Treatment: Contribution-Based Coverage

You are participating to an experiment in which we ask you to make decisions. Each

participant makes her (his) decisions individually in front of her (his) computer.

At the beginning of the experiment, you are given an initial capital of 110 tokens.

During the experiment, you can earn an additional amount of money. The final amount

of earnings you will get depends on your decisions and on the other participants’

decisions. At the end of the experiment, your earnings in tokens will be converted into

Canadian $ according to the following conversion rate: 300 tokens = $1.55. You will

be paid individually in a separate room to preserve the confidentiality of your earnings.

Each period, you will form a group with the other 11 participants. Communication

between participants is forbidden and you are asked not to react loudly during the

course of the experiment.

The experiment has 50 periods. Each period is independent of the others.

At the beginning of each period, you will receive 100 tokens. You can contribute

to a common pool intended to cover the losses that will randomly strike 4 persons

among the 12 group members. Each of the 4 afflicted members loose their 100 tokens.
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The common pool is equal to the sum of the contributions by each group member.

Three situations can occur:

• The common pool is of 400 tokens. This allows all 4 afflicted members to regain

their 100 lost tokens each.

• The common pool is greater than the sum of the lost tokens. In this case, the 4

afflicted members regain their 100 lost tokens and the surplus is not reported to

the next period.

• The common pool is insufficient to allow the 4 afflicted members to regain their

100 lost tokens. In this case, each one of the 4 afflicted members receives a

reimbursement that depends on two elements: his contribution to the common

pool with respect to the other afflicted members in the group and the total

amount of the common pool. The common pool is thus redistributed to the 4

afflicted members proportionally to how much each has contributed with respect

to the other afflicted members and within the limit of their initial loss.

Rules for each period

You will be given 100 tokens.

You choose, with the help of a cursor, the number of these tokens between 0 and

100 that you allocate to the common pool. This choice is validated as soon as you click

on the OK button.

The computer then gives you 5 pieces of information:

• You are or not one of the 4 persons who each loose their 100 tokens

• The total amount of the common pool

• If applicable, the total amount of the loss
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• The number of tokens that are allocated to you if you are afflicted

• Your earnings in tokens for this period.

A new period, independent of the previous ones, is automatically shown. Each

period, you receive a new allocation of 100 tokens. A new random draw determines

the afflicted members. The conditions described above continue to apply.

How we determine your earnings

During a period, your earnings are calculated by the computer the following way:

Your 100 tokens - the tokens that you allocate to the common pool - the tokens that

you have lost if you are afflicted

and, if the common pool is sufficient

+ the reimbursement of your lost tokens if you are afflicted

or, if the common pool is insufficient

+ the reimbursement proportionally to how much each has contributed with respect

to the other afflicted members and within the limit of your initial loss.

At the end of the experimental session, your total earnings are calculated by the

sum of your earnings for each of the 50 periods, plus the initial capital. It is this

amount that will be converted in Canadian $.

Additional information

Before we begin the experimental session, we will ask you to answer a few compre-

hension questions on these instructions. As soon as you have all answered correctly all

the questions, you will be asked to provide us some details on your age, gender, level

and field of education, university or school currently frequented or your current work

situation, and if you have participated to an experiment before. This information will

remain anonymous. The experiment will then begin.
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After taking place in front of your computer, please raise your hand if you have

questions on these instructions. We will come and answer your questions privately.
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