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Compound Poisson approximation to estimate the Lévy density

Céline Duval ∗ and Ester Mariucci †

Abstract

We construct an estimator of the Lévy density, with respect to the Lebesgue measure,
of a pure jump Lévy process from high frequency observations: we observe one trajectory
of the Lévy process over [0, T ] at the sampling rate ∆, where ∆ → 0 as T → ∞. The
main novelty of our result is that we directly estimate the Lévy density in cases where
the process may present infinite activity. Moreover, we study the risk of the estimator
with respect to Lp loss functions, 1 ≤ p < ∞, whereas existing results only focus on
p ∈ {2,∞}. The main idea behind the estimation procedure that we propose is to use
that “every infinitely divisible distribution is the limit of a sequence of compound Poisson
distributions” (see e.g. Corollary 8.8 in Sato (1999)) and to take advantage of the fact
that it is well known how to estimate the Lévy density of a compound Poisson process in
the high frequency setting. We consider linear wavelet estimators and the performance of
our procedure is studied in term of Lp loss functions, p ≥ 1, over Besov balls. The results
are illustrated on several examples.

Keywords. Density estimation, Infinite variation, Pure jump Lévy processes.

AMS Classification. 60E07, 60G51, 62G07, 62M99.

1 Introduction

Over the past decade, there has been a growing interest for Lévy processes. They are a
fundamental building block in stochastic modeling of phenomena whose evolution in time
exhibits sudden changes in value. Many of these models have been suggested and extensively
studied in the area of mathematical finance (see e.g. [7] which explains the necessity of
considering jumps when modeling asset returns). They play a central role in many other
fields of science: in physics, for the study of turbulence, laser cooling and in quantum theory;
in engineering for the study of networks, queues and dams; in economics for continuous time-
series models, in actuarial science for the calculation of insurance and re-insurance risk (see
e.g. [1, 4, 5, 32]).
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From a mathematical point of view the jump dynamics of a Lévy process X is dictated
by its Lévy density. If it is continuous, its value at a point x0 determines how frequent jumps
of size close to x0 are to occur per unit time. Thus, to understand the jump behavior of X,
it is of crucial importance to estimate its Lévy density.

A problem that is now well understood is the estimation of the Lévy density of a compound
Poisson process, that is, a pure jump Lévy process with a finite Lévy measure. There is a
vast literature on the nonparametric estimation for compound Poisson processes both from
high frequency and low frequency observations (see among others, [6, 8, 10, 14, 15], and [22]
for the multidimensional setting).

Building an estimator of the Lévy density for a Lévy process X with infinite Lévy measure
is a more demanding task; for instance, for any time interval [0, t], the process X will almost
certainly jump infinitely many times. In particular, its Lévy density, which we mean to
estimate, is unbounded in any neighborhood of the origin. This implies that the techniques
used for compound Poisson processes do not generalize immediately. The essential problem
is that the knowledge that an increment Xt+∆ −Xt is larger than some ε > 0 does not give
much insight on the size of the largest jump that has occurred between t and t+∆.

Many results are nevertheless already present in the literature concerning the estimation
of the Lévy density from discrete data without the finiteness hypothesis, i.e., if we denote by
f the Lévy density, when

∫
R
f(x)dx = ∞. In that case, the main difficulty comes from the

presence of small jumps and from the fact that the Lévy density blows up in a neighborhood
of the origin. A number of different techniques has been employed to address this problem:

• To limit the estimation of f on a compact set away from 0;

• To study a functional of the Lévy density, such as xf(x) or x2f(x).

The analysis systematically relies on spectral approaches, based on the use of the Lévy-
Khintchine formula (see (5) hereafter), that allows estimates for L2 and L∞ loss functions,
but does not generalize easily to Lp for p /∈ {2,∞}. A non-exhaustive list of works related
to this topic includes: [2, 9, 11, 12, 16, 18, 20, 21, 24, 25, 29, 35]; a review is also available
in the textbook [3]. Projection estimators and their pointwise convergence has also been in-
vestigated in [17] and more recently in [27], where the maximal deviation of the estimator
is examined. Two other works that, although not focused on constructing an estimator of
f , are of interest for the study of Lévy processes with infinity activity in either low or high
frequency are [30, 31]. Finally, from a theoretical point of view, one could use the asymptotic
equivalence result in [28] to construct an estimator of the Lévy density f using an estimator
of a functional of the drift in a Gaussian white noise model. However, any estimator resulting
from this procedure would have the strong disadvantage of being randomized and, above all,
would require the knowledge of the behavior of the Lévy density in a neighborhood of the
origin.

The difference in purpose between the present work and the ones listed above is that we
aim to build an estimator f̂ of f , without a smoothing treatment at the origin, and to study
the following risk:

E

[ ∫

A(ε)
|f̂(x)− f(x)|pdx

]
,
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where, ∀ε > 0, A(ε) is an interval away from 0: A(ε) is included in R \ (−ε, ε) and such that
a(ε) := minx∈A(ε) |x| ≥ ε where, possibly, a(ε) → 0 as ε → 0. To the knowledge of the authors
the present work is the first attempt to build and study an estimator of the Lévy density on
an interval that gets near the critical value 0 and whose risk is measured for Lp loss functions,
1 ≤ p < ∞.

More precisely, let X be a pure jump Lévy process with Lévy measure ν (see (3) for a
precise definition) and suppose we observe

(
Xi∆ −X(i−1)∆, i = 1, . . . , n

)
with ∆ → 0 as n → ∞. (1)

We want to estimate the density of the Lévy measure ν with respect to the Lebesgue measure,
f(x) := ν(dx)

dx , from the observations (1) on the set A(ε) as ε → 0. In this paper, the Lévy
measure ν may have infinite variation, i.e.

ν :

∫

R

(x2 ∧ 1)ν(dx) < ∞ but possibly

∫

|x|≤1
|x|ν(dx) = ∞.

The starting point of this investigation is to look for a translation from a probabilistic to
a statistical setting of Corollary 8.8 in [34]: “Every infinitely divisible distribution is the limit
of a sequence of compound Poisson distributions”. We are also motivated by the fact that a
compound Poisson approximation has been successfully applied to approximate general pure
jump Lévy processes, both theoretically and for applications. For example, using a sequence
of compound Poisson processes is a standard way to simulate the trajectories of a pure jump
Lévy process (see e.g. Chapter 6, Section 3 in [13]).

We briefly describe here the strategy of estimation for f on A(ε). Given the observations
(1), we choose ε ∈ (0, 1] (when ν(R) < ∞ the choice ε = 0 is also allowed) and we focus
only on the observations such that |Xi∆ −X(i−1)∆| > ε. Let us denote by n(ε) the random
number of observations satisfying this constraint. In the sequel, we informally mention the
“small jumps” of the Lévy process X at time t when referring to one of the following objects.
If ν is of finite variation, they are the sum of ∆Xs, the jumps of X at times s ≤ t, that are
smaller than ε in absolute value. If ν is of infinite variation, they correspond to the centered
martingale at time t that is associated with the sum of the jumps the magnitude of which is
less than ε in absolute value.

For ∆ and ε small enough, the observations larger than ε in absolute value are in some
sense close to the increments of a compound Poisson process Z(ε) associated with the Lévy

density I|x|>ε
ν(dx)
dx =: λεhε(x), where λε := ν(R \ (−ε, ε)) and hε(x) := 1

λε

ν(dx)
dx I|x|>ε. It

immediately follows that
f(x) = lim

ε→0
λεhε(x)I|x|>ε ∀x 6= 0.

Therefore, one can construct an estimator of f on A(ε) by constructing estimators for λε

and hε separately. However, estimating hε and λε from observed increments larger than ε is
not straightforward due to the presence of the small jumps. In particular, if i0 is such that
|Xi0∆ −X(i0−1)∆| > ε, it is not automatically true that there exists s ∈ ((i0 − 1)∆, i0∆] such
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that |∆Xs| > ε (or any other fixed positive number). Ignoring for a moment this difficulty
and reasoning as if the increments of X larger than ε are increments of a compound Poisson
process with intensity λε and jumps density hε, the following estimators are constructed.
First, a natural choice when estimating λε is

λ̂n,ε =
n(ε)

n∆
. (2)

In the special case where the Lévy measure ν is finite, we are allowed to take ε = 0 and
the estimator (2), as ∆ → 0, gets close to the maximum likelihood estimator. The study of
the risk of this estimator with respect to an Lp norm is the subject of Theorems 1 and 2.
Estimators of the cumulative distribution function of f have also been investigated in [30, 31],
which is an estimation problem that is closely related to the estimation of λε. However, as
we detail in Section 3.2.2 below, the methodology used there does not apply in our setting:
it cannot be adapted to Lp risks and the results of [30, 31] are established for non-vanishing
ε whereas we are interested in having ε → 0.

Second, for the estimation of the jump density hε, we fully exploit the fact that the
observations are in high frequency. Under some additional constraints on the asymptotic of ε
and ∆, we make the approximation hε ≈ L(X∆

∣∣|X∆| > ε) and we apply a wavelet estimator

to the increments larger than ε, in absolute value. The resulting estimator ĥn,ε is close to hε
in Lp loss on A(ε) (see Theorem 3 and Corollary 1). As mentioned above, the main difficulty
in studying such an estimator is due to the presence of small jumps that are difficult to handle
and limit the accuracy of the latter approximation. Also, we need to take into account that
ĥn,ε is constructed from a random number of observations n(ε).

Finally, making use of the estimators λ̂n,ε and ĥn,ε we derive an estimator of f : f̂n,ε :=

λ̂n,εĥn,ε and study its risk in Lp norm. Our main result is then a consequence of Theorem 1
and Corollary 1 and is stated in Theorem 4.

It is easy to show that the upper bounds we provide tend to 0 (see Theorem 3, Corollary 1
and Theorem 4). It is also easy to check that in the particular cases where X is a compound
Poisson process or a Gamma process, we recover usual results. Yet, it is tricky to compute the
rate of convergence implied by these upper bounds in general. Indeed, the difficulty comes
from the fact that for the estimation of both hε and λε, quantities depending on the small
jumps arise in the upper bounds. But even on simple examples, when the Lévy density is
known, the distribution of the small jumps is unknown. We detail some examples where we
can explicitly compute the rate of convergence of our estimation procedure. The obtained
rates give evidence of the relevance of the approach presented here.

The paper is organized as follows. Preliminary Section 2 provides the statistical context
as well as the necessary definitions and notations. An estimator of the intensity λε is studied
in Section 3.1 and a wavelet density estimator of the density hε in Section 3.3. Our main
result is given in Section 4. Each of these results is illustrated on several examples. Finally
Section 5 contains the proofs of the main theorems and an Appendix Section 6 collects the
proofs of the auxiliary results.
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2 Notations and preliminaries

We consider the class of pure jump Lévy processes with Lévy triplet (γν , 0, ν) where

γν :=

{∫
|x|≤1 xν(dx) if

∫
|x|≤1 |x|ν(dx) < ∞,

0 otherwise.

We recall that almost all paths of a pure jump Lévy process with Lévy measure ν have finite
variation if and only if

∫
|x|≤1 |x|ν(dx) < ∞. Thanks to the Lévy-Itô decomposition one can

write a Lévy process X of Lévy triplet (γν , 0, ν) as the sum of two independent Lévy processes:
for all ε ∈ (0, 1]

Xt = tbν(ε) + lim
η→0

(∑

s≤t

∆Xs1(η,ε](|∆Xs|)− t

∫

η<|x|<ε
xν(dx)

)
+

Nt(ε)∑

i=1

Yi(ε)

=: tbν(ε) +Mt(ε) + Zt(ε) (3)

where

• The drift bν(ε) is defined as

bν(ε) :=

{∫
|x|≤ε xν(dx) if

∫
|x|≤1 |x|ν(dx) < ∞,

−
∫
ε≤|x|<1 xν(dx) otherwise;

(4)

• ∆Xr denotes the jump at time r of the càdlàg process X: ∆Xr = Xr − lims↑r Xs;

• M(ε) = (Mt(ε))t≥0 and Z(ε) = (Zt(ε))t≥0 are two independent Lévy processes of Lévy
triplets (0, 0, I|x|≤εν) and (

∫
ε≤|x|<1 xν(dx), 0, I|x|>εν), respectively;

• M(ε) is a centered martingale consisting of the sum of the jumps of magnitude smaller
than ε in absolute value;

• Z(ε) is a compound Poisson process defined as follows: N(ε) = (Nt(ε))t≥0 is a Pois-
son process of intensity λε :=

∫
|x|>ε ν(dx) and (Yi(ε))i≥1 are i.i.d. random variables

independent of N(ε) such that P(Y1(ε) ∈ A) = ν(A)
λε

, for all A ∈ B(R \ (−ε, ε)).

The advantage of defining the drift bν(ε) as in (4) lies in the fact that this definition allows
us to consider both the class of processes

Xt =
∑

s≤t

∆Xs,

when ν is of finite variation, and the class of Lévy processes with Lévy triplet (0, 0, ν), when
ν is of infinite variation. Furthermore, when ν(R) < ∞, we can also take ε = 0 and then
Equation (3) reduces to a compound Poisson process

Xt =

Nt∑

i=1

Yi
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where the intensity of the Poisson process is λ = λ0 = ν(R \ {0}) = ν(R) and the density of
the i.i.d. random variables (Yi)i≥0 is f(x)/λ.

We also recall that the characteristic function of any Lévy process X as in (3) can be
expressed using the Lévy-Khintchine formula. For all u in R, we have

E
[
eiuXt

]
= exp

(
ituγν + t

(∫

R

(eiuy − 1− iuyI|y|≤1)ν(dy)
))

, (5)

where ν is a measure on R satisfying

ν({0}) = 0 and

∫

R

(|y|2 ∧ 1)ν(dy) < ∞. (6)

In the sequel we shall refer to (γν , 0, ν) as the Lévy triplet of the process X and to ν as the
Lévy measure. This triplet characterizes the law of the process X uniquely.

Let us assume that the Lévy measure ν is absolutely continuous with respect to the
Lebesgue measure and denote by f (resp. fε) the Lévy density of X (resp. Z(ε)), i.e.

f(x) = ν(dx)
dx (fε(x) =

I|x|>εν(dx)

dx ). Let hε be the density, with respect to the Lebesgue
measure, of the random variables (Yi(ε))i≥0, i.e.

fε(x) = λεhε(x)1(ε,∞)(|x|).

We are interested in estimating f in any set of the form A(ε) := (A,−a(ε)] ∪ [a(ε), A) where,
for all 0 ≤ ε ≤ 1, a(ε) is a non-negative real number satisfying a(ε) ≥ ε and A ∈ [1,∞] (the
case a(ε) = ε = 0 is not excluded). The latter condition is technical, if X is a compound
Poisson process we may choose A := +∞, otherwise we work under the simplifying assumption
that A(ε) is a bounded interval. Observe that, for all A ⊂ A(ε) we have

f(x)1A(|x|) = λεhε(x)1A(|x|). (7)

In general, the Lévy density f goes to infinity as x ↓ 0. It follows that if a(ε) ↓ 0, for instance
a(ε) = ε, we estimate a quantity that gets larger and larger. In the decomposition (7) of
the Lévy density, the quantity that increases as ε goes to 0 is λε =

∫
|x|>ε f(x)dx, whereas

the density hε :=
fε
λε

may remain bounded in a neighborhood of the origin. The intensity λε

carries the information on the behavior of the Lévy measure f around 0.

Suppose we observe X on [0, T ] at the sampling rate ∆ > 0, without loss of generality, we
set T := n∆ with n ∈ N. Define

Xn,∆ := (X∆,X2∆ −X∆, . . . ,Xn∆ −X(n−1)∆). (8)

We consider the high frequency setting where ∆ → 0 and T → ∞ as n → ∞. The assumption
T → ∞ is necessary to construct a consistent estimator of f . To build an estimator of f on
the interval A(ε), we do not consider all the increments (8), but only those larger than ε in
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absolute value. Define the dataset Dn,ε :=
{
Xi∆ −X(i−1)∆, i ∈ Iε

}
, where Iε is the subset

of indices such that
Iε :=

{
i = 1, . . . , n : |X(i−1)∆ −Xi∆| > ε

}
.

Furthermore, denote by n(ε) the cardinality of Iε, i.e.:

n(ε) :=
n∑

i=1

1R\[−ε,ε](|Xi∆ −X(i−1)∆|), (9)

which is random.

We examine the properties of our estimation procedure in terms of Lp loss functions,
restricted to the estimation interval A(ε), for all 0 ≤ ε ≤ 1. Let p ≥ 1,

Lp,ε =
{
g : ‖g‖Lp ,ε :=

(∫

A(ε)
|g(x)|pdx

) 1
p
< ∞

}
.

Define the loss function

ℓp,ε
(
f̂ , f

)
:=

(
E
[∥∥f̂ − f

∥∥p
Lp,ε

])1/p
=

( ∫

A(ε)
E
[
|f̂(x)− f(x)|p

]
dx

)1/p
,

where f̂ is an estimator of f built from the observations Dn,ε.
Finally, denote by P∆ the distribution of the random variable X∆ and by Pn the law of

the random vector Xn,∆ as defined in (8). Since X is a Lévy process, its increments are i.i.d.,
hence

Pn =

n⊗

i=1

Pi,∆ = P⊗n
∆ , where Pi,∆ = L (Xi∆ −X(i−1)∆).

We consider also the following family of product measures:

Pn,ε =
⊗

i∈Iε

Pi,∆.

In the following, whenever confusion may arise, the reference probability in expectations is
explicitly stated, for example, writing EPn . The indicator function will be denoted equivalently
as 1A(x) or Ix∈A.

3 Main results

3.1 Estimation strategy

Contrary to existing results mentioned in Section 1, we adopt an estimation strategy that does
not rely on the Lévy-Khintchine formula (5). A direct strategy based on projection estimators
and their limiting distribution has been investigated in [17, 27]. Here, we consider a sequence
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of compound Poisson processes, indexed by 0 < ε ≤ 1, that gets close to X as ε ↓ 0 and we
approximate f using that

f(x) = lim
εց0

λεhε(x), ∀x ∈ A(ε).

For each compound Poisson process Z(ε), we build separately an estimator of its intensity,
λε, and a wavelet estimator for its jump density, hε. This leads to an estimator of fε = λεhε.
Therefore, we deal with two types of error; a deterministic approximation error arising when
replacing f by fε and a stochastic error occurring when replacing fε by an estimator f̂n,ε.

The main advantage of considering a sequence of compound Poisson processes is that, in
the asymptotic ∆ → 0, we can relate the density of the observed increments to the density
of the jumps without going through the Lévy-Khintchine formula (see [14]). This approach
enables the study of Lp loss functions, 1 ≤ p < ∞. Our estimation strategy is the following.

1. We build an estimator of λε using the following result that is a minor modification of
Lemma 6 in Rüschendorf and Woerner [33]. For sake of completeness we reproduce their
argument in the Appendix.

Lemma 1. Let X be a Lévy process with Lévy measure ν. If g is a function such that∫
|x|≥1 g(x)ν(dx) < ∞, limx→0

g(x)
x2 = 0 and g(x)

(|x|2∧1) is bounded for all x in R, then

lim
t→0

1

t
E[g(Xt)] =

∫

R

g(x)ν(dx).

In particular, Lemma 1 applied to g = 1A(ε) implies that

λε = lim
∆→0

1

∆
P(|X∆| > ε), ∀ 0 ≤ ε ≤ 1.

Using this equation, we approximate λε by 1
∆P(|X∆| > ε) and take the empirical coun-

terpart of P(|X∆| > ε).

2. From the observations Dn,ε = (Xi∆ − X(i−1)∆)i∈Iε we build a wavelet estimator ĥn,ε
of hε relying on the approximation that for ∆ small, the random variables (Xi∆ −
X(i−1)∆)i∈Iε are i.i.d. with a density close to hε (see Lemma 3).

3. Finally, we estimate f on A(ε) following (7) by

f̂n,ε(x) := λ̂n,εĥn,ε(x)1A(ε)(|x|), ∀x ∈ A(ε). (10)

3.2 Statistical properties of λ̂n,ε

3.2.1 Asymptotic and non-asymptotic results for λ̂n,ε

First, we define the following estimator of the intensity of the Poisson process Z(ε) in terms
of n(ε), the number of jumps that exceed ε.
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Definition 1. Let λ̂n,ε be the estimator of λε defined by

λ̂n,ε :=
n(ε)

n∆
, (11)

where n(ε) is defined as in (9).

Controlling first the accuracy of the deterministic approximation of λε by 1
∆P(|X∆| > ε)

and second the statistical properties of the empirical estimator of P(|X∆| > ε), we establish
the following non-asymptotic bound for λ̂n,ε.

Theorem 1. For all n ≥ 1, ∆ > 0 and ε ∈ [0, 1], let λ̂n,ε be the estimator of λε introduced in
Definition 1. Then, for all p ∈ [1, 2), we have

EPn

[
|λ̂n,ε − λε|p

]
≤ C

{(
P(|X∆| > ε)

n∆2

) p
2
+

∣∣∣λε −
P(|X∆| > ε)

∆

∣∣∣
p}

and, for all p ∈ [2,∞)

EPn

[
|λ̂n,ε − λε|p

]
≤ C

{(nP(|X∆| > ε)

(n∆)p
∨
(
P(|X∆| > ε)

n∆2

) p
2
)
+

∣∣∣λε −
P(|X∆| > ε)

∆

∣∣∣
p}

,

where C is a constant depending only on p.

In the asymptotic setting the latter result simplifies as follows.

Theorem 2. For all ∆ > 0 and ε ∈ [0, 1], let λ̂n,ε be the estimator of λε introduced in
Definition 1. Then, for all p ∈ [1,∞), we have

EPn

[
|λ̂n,ε − λε|p

]
≤

∣∣∣λε −
P(|X∆| > ε)

∆

∣∣∣
p
+O

((
P(|X∆| > ε)

n∆2

) p
2

)

as n → ∞, provided that n∆ remains bounded away from 0 and that nP(|X∆| > ε) → ∞.

3.2.2 Some remarks on Theorems 1 and 2

On the convergence of λ̂n,ε. Theorems 1 and 2 study how close is the estimator λ̂n,ε

to the true value λε, in Lp risk. The bound depends on the quantities P(|X∆| > ε), which
appears in the stochastic error, and |λε−∆−1

P(|X∆| > ε)|, which represents the deterministic

error of the estimator. Note that we may rewrite the stochastic error |λ̂n,ε − P(|X∆|>ε)
∆ | as

1
∆ |F∆(ε) − F̂n,∆(ε)|, if we set F∆(ε) := P(|X∆| > ε) and F̂n,∆(ε) its empirical counterpart.
Let us discuss what information we have on these terms.

If we decompose the stochastic error on the number N∆(ε) of jumps of the compound
Poisson process Z(ε) we get, for all 0 < ε ≤ 1,

P(|X∆| > ε) ≤ P(|M∆(ε) + ∆bν(ε)| > ε)e−λε∆ + u∆(ε)e
−λε∆λε∆+ P(N∆(ε) ≥ 2)

≤ v∆(ε) + λε∆+
λ2
ε∆

2

2
,
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where v∆(ε) := P(|M∆(ε) +∆bν(ε)| > ε) and u∆(ε) := P(|M∆(ε) +∆bν(ε) + Y1(ε)| > ε) ≤ 1.
Note that, by Lemma 1, we have

∀ε ∈ (0, 1], lim
∆→0

v∆(ε)

∆
= 0. (12)

Indeed, the process (Mt(ε) + tbν(ε))t≥0 is a Lévy process with Lévy measure 1[−ε,ε](x)ν(dx).
An application of Lemma 1 taking g(x) = 1R\(−ε,ε) gives us (12). This equation is important
in the sequel: it gives an upper bound on the influence of the small jumps M(ε).

For every fixed ε ∈ (0, 1], F∆(ε) = P(|X∆| > ε) is expected to converge to zero quickly
enough as ∆ goes to zero. Therefore, from the bound

1

∆p
EPn

[
|F∆(ε) − F̂n,∆(ε)|p

]
≤ C





(
v∆(ε)
n∆2 + λ2

ε
n + λε

n∆

) p
2

if p ∈ [1, 2),

nF∆(ε)
(n∆)p ∨

(
v∆(ε)
n∆2 + λ2

ε
n + λε

n∆

) p
2

if p ≥ 2,

we deduce that limn→∞ 1
∆pEPn

[
|F∆(ε)− F̂n,∆(ε)|p

]
= 0 as long as we can choose ε such that

both λ2
ε
n and λε

n∆ vanish as n goes to infinity.
Let us now discuss the deterministic error term. We have

∣∣∣λε −
P(|X∆| > ε)

∆

∣∣∣ =
∣∣∣λε − e−λε∆

(
1
∆v∆(ε)− u∆(ε)λε

− 1

∆

∞∑

n=2

P

(∣∣∣
n∑

i=1

Yi +M∆(ε) + bν(ε)∆
∣∣∣ > ε

)
(λε∆)n

n!

)∣∣∣

≤ v∆(ε)

∆
+ λε(1− u∆(ε)) + λ2

ε∆.

For the term λε(1− u∆(ε)), observe that, for all ε, ε′ ∈ [0, 1]

λε(1− u∆(ε)) ≤ λεP(|Y1| ≤ ε+ ε′) + λεP(|Y1| ≥ ε+ ε′)v∆(ε
′)

≤ ν
(
[−ε− ε′,−ε] ∪ [ε, ε + ε′]

)
+ v∆(ε

′)λε.

Therefore, if one chooses ε′ ∈ (0, 1] such that




v∆(ε

′) . v∆(ε)
∆λε

;

ν
(
[−ε− ε′,−ε] ∪ [ε, ε+ ε′]

)
.

v∆(ε)
∆

this term also goes to 0. Unfortunately, such a choice depends on the rate of converge in (12)
which is very difficult to compute, even in examples. Therefore, it seems difficult to provide
a general recipe for the choices of ε′ and ε.
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Relation to other works. In [30] and [31], the authors propose estimators of the cumula-
tive distribution function of the Lévy measure, which is closely related to λε. Indeed, following
their notation, the authors estimate the quantity

N (t) =

{∫ t
−∞ ν(dx), if t < 0∫∞
t ν(dx), if t > 0.

Then, for all ε ∈ (0, 1], we have λε = N (−ε) +N (ε). The low frequency case is investigated
in [30] (∆ > 0) whereas [31] considers the high frequency setting (∆ → 0) and includes the
possibility that the Brownian part is nonzero. In both cases, an estimator of N based on a
spectral approach, relying on the Lévy-Khintchine formula (5), is studied. In [31] a direct
approach equivalent to our estimator is also proposed and studied.

For each of these estimators the performances are investigated in L∞ and functional central
limit theorems are derived. However, the involved techniques use empirical processes and
cannot be generalized for Lp losses, p ≥ 1. Most importantly, those results hold for values of
t that cannot get close to 0, whereas in our case we require an estimator at a time ε that is
vanishing. Therefore, in this context, our Theorems 1 and 2 are new.

A corrected estimator. If we had a better understanding of the rate (12) we could improve
the estimator λ̂n,ε in some cases. A trivial example is the case where X is a compound Poisson
process. Then, one should set ε = 0, as we have exactly

P(|X∆| > 0) = P(N∆(0) 6= 0) = 1− e−λ0∆.

Replacing P(|X∆| > 0) with its empirical counterpart F̂n,∆(0) and inverting the equation,
one obtains an estimator of λ0 converging at rate

√
n∆ (see e.g. [14]). A more interesting

example is the case of subordinators, i.e. pure jump Lévy processes of finite variation and
Lévy measure concentrated on (0,∞). If X is a subordinator of Lévy measure ν = 1(0,∞)ν,
using the fact that P(Z∆(ε) > ε|N∆(ε) 6= 0) = 1, we get

P(X∆ > ε) = P(M∆(ε) + ∆bν(ε) > ε)e−λε∆ + 1− e−λε∆, ε > 0. (13)

Suppose we know additionally that

v∆(ε) = P(M∆(ε) + ∆bν(ε) > ε) = o
(
F∆(ε)

K
)

(14)

for some integer K. Equation (12) as well as F∆(ε) = O(λε∆) ensures that K ≥ 1 (neglecting
the influence of λε with respect to ∆). Using the same notations as above, define the corrected
estimator at order K

λ̃K
n,ε :=

1

∆

K∑

k=1

(
F̂n,∆(ε)

)k

k
, K ≥ 1.

11



If K = 1 we have λ̃1
n,ε = λ̂n,ε. For 1 ≤ p < ∞, straightforward computations lead to

E
(
(λ̃K

n,ε − λε)
p
)
≤ Cp

{ 1

∆p
E

(∣∣∣
K∑

k=1

(
F̂n,∆(ε)

)k

k
−

(
F∆(ε)

)k

k

∣∣∣
p)

+
∣∣∣ 1
∆

K∑

k=1

(
F∆(ε)

)k

k
− λε

∣∣∣
p}

≤ Cp

{
CK,p

E
(
|F̂n,∆(ε) − F∆(ε)|p

)

∆p
+

1

∆p

∣∣∣
K∑

k=1

(
F∆(ε)

)k

k
− log

( 1− v∆(ε)

1− F∆(ε)

)∣∣∣
p}

where we used (13). Finally, using the proof of Theorem 2, expansion at order K of log(1−x)
in 0 and assumption (14) we easily derive

E
[
(λ̃K

n,ε − λε)
p
]
≤ C

(F∆(ε)

n∆2

) p
2 ∨

(F∆(ε)
(K+1)p

∆p

)
.

However, even when the Lévy density is known, we do not know how to compute P(M∆(ε) +
∆bν(ε) > ε): assumption (14) is hardly tractable in practice. In the case of a subordinator,
taking advantage of (13) and λε∆ → 0 it is straightforward to have v∆(ε) = O

(
∆−1F∆(ε) −

λε

)
, when λε 6= 0. In many examples ∆−1F∆(ε)−λε = O(λ2

ε∆
2), therefore v∆(ε) = O(λ2

ε∆
2).

In these cases one should prefer the estimator λ̃2
n,ε.

3.2.3 Examples

Compound Poisson process. Let X be a compound Poisson process with Lévy measure
ν and intensity λ (i.e. 0 < λ = ν(R) < ∞). As ν is a finite Lévy measure, we take ε = 0 in
(11) that is,

λ̂n,0 =

∑n
i=1 1R\{0}(|Xi∆ −X(i−1)∆|)

n∆
.

Applying Theorem 1 (and observing that λ0 = λ), we have the following result.

Proposition 1 (Compound Poisson Process). For all n ≥ 1 and for all ∆ > 0 such that
λ∆ ≤ 1, there exist constants C1 and C2, only depending on p, such that

EPn

[
|λ̂n,0 − λ|p

]
≤ C1

{( λ

n∆

) p
2
+ (λ2∆)p

}
, if p ∈ [1, 2),

EPn

[
|λ̂n,0 − λ|p

]
≤ C2

{ 1

(n∆)p−1
∨
( λ

n∆

) p
2
+ (λ2∆)p

}
, if p ≥ 2.

This rate depends on the rate at which ∆ goes to 0, and the bound of ∆p might, in some
cases, be slower than the parametric rate in (n∆)−p/2 = T−p/2. Indeed, the reason for this lies

in the exact bound |λ0− P(|X∆|6=0)
∆ | = |λ− (1−e−λ∆)| = O(∆). In the compound Poisson case

another estimator of λ converging at parametric rate can be constructed using the Poisson
structure of the problem (see e.g. [14], one may also use the corrected estimator discussed
above).
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Gamma process. Let X be a Gamma process of parameter (1, 1), that is a finite variation

Lévy process with Lévy density f(x) = e−x

x 1(0,∞)(x), λε =
∫∞
ε

e−x

x dx and

P(|Xt| > ε) = P(Xt > ε) =

∫ ∞

ε

xt−1

Γ(t)
e−xdx, ∀ε > 0,

where Γ(t) denotes the Γ function, i.e. Γ(t) =
∫∞
0 xt−1e−xdx. By Theorem 1, an upper bound

for EPn |λ̂n,ε − λε|p can be expressed in terms of the quantities
∣∣λε − P(X∆>ε)

∆

∣∣ and P(X∆ > ε)
that can be made explicit. Let us begin by computing the first term

∣∣∣λε −
P(X∆ > ε)

∆

∣∣∣ =
∣∣∣
∫ ∞

ε

e−x

x
dx− P(X∆ > ε)

∆

∣∣∣. (15)

Define Γ(∆, ε) =
∫∞
ε x∆−1e−xdx, such that Γ(∆, 0) = Γ(∆). Using that Γ(∆, ε) is analytic

we can write the right hand side of (15) as

∣∣∣λε −
P(X∆ > ε)

∆

∣∣∣ = 1

∆Γ(∆)

∣∣∣∆Γ(∆, 0)Γ(0, ε) −
∞∑

k=0

∆k

k!

{ ∂k

∂∆k
Γ(∆, ε)

∣∣∣
∆=0

}∣∣∣

≤ Γ(0, ε)
∣∣∣1−∆Γ(∆, 0)

∆Γ(∆)

∣∣∣+
∣∣∣ 1

∆Γ(∆)

∞∑

k=1

∆k

k!

{ ∂k

∂∆k
Γ(∆, ε)

∣∣∣
∆=0

}∣∣∣. (16)

As Γ(∆, 0) is a meromorphic function with a simple pole in 0 and residue 1, there exists a
sequence (ak)k≥0 such that Γ(∆) = 1

∆ +
∑∞

k=0 ak∆
k. Therefore,

1−∆Γ(∆, 0) = ∆

∞∑

k=0

ak∆
k,

and
1−∆Γ(∆)

∆Γ(∆)
=

∆
∑∞

k=0 ak∆
k

1 + ∆
∑∞

k=0 ak∆
k
= O(∆).

Let us now study the term
∑∞

k=1
∆k

k!

(
∂k

∂∆kΓ(∆, ε)
)∣∣

∆=0
. We have:

∣∣∣ ∂k

∂∆k
Γ(∆, ε)

∣∣∣
∆=0

∣∣∣ ≤
∣∣∣e−1

∫ 1

ε
x−1(log(x))kdx

∣∣∣+
∣∣∣
∫ ∞

1
e−x(log(x))kdx

∣∣∣

= e−1 | log(ε)|k+1

k + 1
+

∫ ∞

1
e−x(log(x))kdx.

Let x0 be the largest real number such that e
x0
2 = (log(x0))

k. This equation has two solutions
if and only if k ≥ 6. If no such point exists, take x0 = 1. Then,

∫ ∞

1
e−x(log(x))kdx ≤

∫ x0

1
e−x(log(x))kdx+

∫ ∞

x0

e−
x
2 dx ≤ (log(x0))

k
(
e−1 − e−x0

)
+ 2e−

x0
2

≤ e
x0
2
−1 + e−

x0
2 ≤ kk + 1,

13



where we used the inequality x0 < 2k log k, for each integer k. Summing up, we get

∣∣∣
∞∑

k=1

∆k

k!

{ ∂k

∂∆
Γ(∆, ε)

∣∣∣
∆=0

}∣∣∣ ≤ e−1
∞∑

k=1

∆k

k!

| log(ε)|k+1

k + 1
+

5∑

k=1

2e−
1
2
∆k

k!
+

∞∑

k=6

∆k

k!
(kk + 1)

≤ | log(ε)|
[
e∆| log(ε)| − 1

]
+

∞∑

k=6

∆
k
2

k!

(k
e

)k
+O(∆)

≤ (log(ε))2∆+O(∆).

In the last two steps, we have used first that ∆ < e−2 and then the Stirling approximation
formula to deduce that the last remaining sum is O(∆3). Clearly, the factor 1

∆Γ(∆) ∼ 1, as

∆ → 0, in (16) does not change the asymptotic. Finally we derive that

∣∣∣λε −
P(X∆ > ε)

∆

∣∣∣ = O
(
log(ε)2∆

)
.

Another consequence is that there exists a constant C, independent of ∆ and ε, such that

P(X∆ > ε) ≤ ∆
(
λε + C log(ε)2∆

)
.

We have just established the following result.

Proposition 2 (Gamma Process). For all ε ∈ (0, 1), there exist constants C1 and C2, only
depending on p, such that, for ∆ > 0 small enough

EPn

[
|λ̂n,ε − λ|p

]
≤ C1

{(λε + log(ε)2∆

n∆

) p
2
+ (log(ε)2∆)p

}
, when p ∈ [1, 2),

EPn

[
|λ̂n,ε − λ|p

]
≤ C2

{ 1

(n∆)p−1
∨
(λε + log(ε)2∆

n∆

) p
2
+ (log(ε)2∆)p

}
, when p ≥ 2.

Cauchy process. Let X be a 1-stable Lévy process with

f(x) =
1

πx2
1R\{0} and P(|X∆| > ε) = 2

∫ ∞

ε
∆

dx

π(x2 + 1)
.

Then, under the asymptotic ∆/ε → 0, we have

∣∣∣P(|X∆| > ε)

∆
− λε

∣∣∣ = O
(∆2

ε3

)
. (17)

Indeed, observe that with such a choice of the Lévy density we have λε =
2
πε and, furthermore,

P(|X∆| > ε) = 2
π

(
π
2 − arctan

(
ε
∆

))
. Hence, in order to prove (17), it is enough to show that

lim
∆
ε
→0

2

π

∣∣∣∣
ε3

∆3

(
π

2
− arctan

( ε

∆

))
− ε2

∆2

∣∣∣∣ < ∞. (18)
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To that purpose, we set y = ∆
ε and we compute the limit in (18) by means of de l’Hôpital

rule:

2

π
lim
y→0

∣∣∣∣
1

y3

(
π

2
− arctan

(1
y

))
− 1

y2

∣∣∣∣ =
2

π
lim
y→0

∣∣∣∣
π
2 − arctan

(
1
y

)
− y

y3

∣∣∣∣ = lim
y→0

y2

(1 + y2)3πy2
< ∞.

Therefore, in the case where X is a Cauchy process of parameters (1, 1), Theorem 2 gives:

Proposition 3 (Cauchy Process). Let 0 < ε = εn ≤ 1 and ∆ = ∆n be such that limn→∞
∆n
εn

=
0. Then, for p ≥ 1 there exist constants C1, C2 and n0, depending only on p, such that ∀n ≥ n0

EPn

[
|λ̂n,ε − λ|p

]
≤ C1

∆2p

ε3p
+ (n∆)−

p
2

(1
ε
+ C2

∆2

ε3

)
.

Inverse Gaussian process. Let X be an inverse Gaussian process of parameter (1, 1), i.e.

f(x) =
e−x

x
3
2

1(0,∞)(x) and P(X∆ > ε) = ∆e2∆
√
π

∫ ∞

ε

e−x−π∆2

x

x
3
2

dx.

Then,

∣∣∣∣
P(X∆ > ε)

∆
− λε

∣∣∣∣ ≤
∣∣∣∣e

2∆
√
π

∫ ∞

ε

e−x
(
e−

π∆2

x − 1
)

x
3
2

dx

∣∣∣∣+
(
e2∆

√
π − 1

) ∫ ∞

ε

e−x

x
3
2

dx =: I + II.

After writing the exponential e−
π∆2

x as an infinite sum, we get I = O
(
∆2

ε
3
2

)
if ∆λε ∝ ∆√

ε
→

0. Expanding e2∆
√
π one finds that, under the same hypothesis, II = O(∆λε) = O

(
∆√
ε

)
.

Theorem 2 leads to the following result.

Proposition 4 (Inverse Gaussian Process). Let 0 < ε = εn ≤ 1 and ∆ = ∆n be such that
limn→∞

∆n√
εn

= 0. Then for all p ≥ 1 there exist constants C1, C2 and n0, depending only on

p, such that for all n ≥ n0

EPn

[
|λ̂n,ε − λ|p

]
≤ C1

( ∆p

εp/2
+

∆2p

ε3/2

)
+ (n∆)−

p
2

( 1√
ε
+C2

( ∆2

ε3/2
+

∆√
ε

)) p
2
.

3.3 Statistical properties of ĥn,ε

3.3.1 Construction of ĥn,ε

We estimate the density hε using a linear wavelet density estimator and study its performances
uniformly over Besov balls (see Kerkyacharian and Picard [26] or Häddle et al. [23]). We state
the result and assumptions in terms of the Lévy density f as it is the quantity of interest.
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Preliminary on Besov spaces. Let (Φ,Ψ) be a pair of scaling function and mother wavelet
which are compactly supported, of class Cr and generate a regular wavelet basis adapted to the
estimation interval A(ε) (e.g. Daubechie’s wavelet). Moreover suppose that {Φ(x−k), k ∈ Z}
is an orthonormal family of L2(R). For all f ∈ Lp,ε we write for j0 ∈ N

f(x) =
∑

k∈Λj0

αj0k(f)Φj0k(x) +
∑

j≥j0

∑

k∈Λj

βjk(f)Ψjk(x), ∀x ∈ A(ε)

where Φj0k(x) = 2
j0
2 Φ(2j0x− k), Ψjk(x) = 2

j
2Ψ(2jx− k) and the coefficients are

αj0k(f) =

∫

A(ε)
Φj0k(x)f(x)dx and βjk(f) =

∫

A(ε)
Ψjk(x)f(x)dx.

As we consider compactly supported wavelets, for every j ≥ j0, the set Λj incorporates boun-
dary terms that we choose not to distinguish in notation for simplicity. In the sequel we
apply this decomposition to hε. This is justified because fε ∈ Lp,ε implies hε ∈ Lp,ε and the
coefficients of its decomposition are αj0k(hε) = αj0k(f)/λε and βj0k(hε) = βj0k(f)/λε. The
latter can be interpreted as the expectations of Φj0k(U) and Ψjk(U) where U is a random
variable with density hε with respect to the Lebesgue measure.

We define Besov spaces in terms of wavelet coefficients as follows. For r > s > 0, p ∈ [1,∞)
and 1 ≤ q ≤ ∞ a function f belongs to the Besov space Bs

p,q(A(ε)) if the norm

‖f‖Bs
p,q(A(ε)) :=

( ∑

k∈Λj0

|αj0k(f)|p
) 1

p

+

[ ∑

j≥j0

(
2j(s+1/2−1/p)

( ∑

k∈Λj

|βjk(f)|p
) 1

p

)q] 1
q

(19)

is finite, with the usual modification if q = ∞. We consider Lévy densities f with respect to
the Lebesgue measure, whose restriction to the interval A(ε) lies into a Besov ball:

F (s, p, q,Mε, A(ε)) =
{
f ∈ Lp,ε : ‖f‖Bs

p,q(A(ε)) ≤ Mε

}
. (20)

Note that the regularity assumption is imposed on f|A(ε) viewed as a Lp,ε function. Therefore
the dependency in A(ε) (hence a(ε)) lies in the constant Mε. Also, the parameter p measuring
the loss of our estimator is the same as the one measuring the Besov regularity of the function,
this is discussed in Section 3.3.2. The following lemma is immediate from the definitions of
hε and the Besov norm (19).

Lemma 2. Let f be in F (s, p, q,Mε, A(ε)), then hε =
fε
λε

belongs to F
(
s, p, q, Mε

λε
, A(ε)

)
.

Construction of ĥn,ε. ConsiderDn,ε, the increments larger than ε. We need to estimate the
jump density hε but we only have access to the indirect observations {Xi∆−X(i−1)∆ i ∈ Iε},
where for each i ∈ Iε, we have

Xi∆ −X(i−1)∆ = Mi∆(ε)−M(i−1)∆(ε) + bν(ε) + Zi∆(ε) − Z(i−1)∆(ε).
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The problem is twofold. First, there is a deconvolution problem as the information on hε is con-
tained in the observations {Zi∆−Z(i−1)∆, i ∈ Iε}. The distribution of the noise M∆(ε)+bν(ε)
is unknown, but since this quantity is small we neglect this noise and make the approximation:

Xi∆ −X(i−1)∆ ≈ Zi∆(ε)− Z(i−1)∆(ε), ∀i ∈ Iε. (21)

Second, even overlooking that it is possible that for some i0 ∈ Iε, |Xi0∆ −X(i0−1)∆| > ε and
Zi0∆ −Z(i0−1)∆ = 0, the common density of Zi∆ −Z(i−1)∆|Zi∆ −Z(i−1)∆ 6= 0 is not hε but it
is given by

p∆,ε(x) =

∞∑

k=1

P(N∆(ε) = k|N∆(ε) 6= 0)h⋆kε (x) =

∞∑

k=1

(λε∆)k

k!(eλε∆ − 1)
h⋆kε (x), ∀x ∈ R, (22)

where ⋆ denotes the convolution product. However, in the asymptotic ∆ → 0, we can neglect
the possibility that more than one jump of N(ε) occurred in an interval of length ∆. Indeed,
we have the following lemma.

Lemma 3. If λε∆ → 0, then for all p ≥ 1 there exists some constant C > 2 such that:

∥∥p∆,ε − hε
∥∥
Lp,ε

≤ C∆‖f‖Lp,ε .

Finally, our estimator is based on the chain of approximations

hε ≈ p∆,ε ≈ L(X∆||X∆| > ε).

Therefore, we consider the following estimator

ĥn,ε(x) =
∑

k∈ΛJ

α̂J,kΦJk(x), x ∈ A(ε), (23)

where J is an integer to be chosen and

α̂J,k :=
1

n(ε)

∑

i∈Iε

ΦJk(Xi∆ −X(i−1)∆).

We work with a linear estimator, despite the fact that they are not always minimax for general
Besov spaces Bs

π,q, 1 ≤ π, q ≤ ∞ (π 6= p). Our choice is motivated by the fact that, contrary to
adaptive optimal wavelet threshold estimators, linear estimators permit to estimate densities
on non-compact intervals. But, most importantly, to evaluate the loss due to the fact that
we neglect the small jumps M∆(ε) (see (21)), we make an approximation at order 1 of our
estimator ĥn,ε. We need our estimator to depend smoothly on the observations, which is
not the case if we consider usual thresholding methods. Finally, we recall that on the class
F (s, p, q,Mε, A(ε)) this estimator is optimal in the context of density estimation from direct
i.i.d. observations (see Kerkyacharian and Picard [26], Theorem 3).
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3.3.2 Upper bound results

Adapting the results of [26], we derive the following conditional upper bound for the estimation
of hε when the Lévy measure is infinite. The case where X is a compound Poisson process is
illustrated in Proposition 5. Recall that A(ε) = (−A,−a(ε)] ∪ [a(ε), A) with A ∈ [1,∞].

Theorem 3. Assume that f belongs to the functional class F (s, p, q,Mε, A(ε)) defined in
(20), for some 1 ≤ q ≤ ∞, 1 ≤ p < ∞, ε ∈ (0, 1] and A < ∞. Let r > s > 1

p , ĥn,ε be the
wavelet estimator of hε on A(ε), defined in (23). Let v∆(ε) := P(|M∆(ε) + ∆bν(ε)| > ε),

F∆(ε) := P(|X∆| > ε) and σ2(ε) :=
∫
|x|≤ε x

2ν(dx). If v∆(ε)
F∆(ε) ≤ 1

3 and λε∆ → 0 as n → ∞,
then the following inequality holds. For all J ∈ N and for all finite p ≥ 2, there exists a
positive constant C > 0 such that:

E
(
‖ĥn,ε({Xi∆ −X(i−1)∆}i∈Iε)− hε‖pLp,ε

|Iε

)
≤ C

{
22Jp

[( v∆(ε)

n(ε)F∆(ε)

)p/2
+

( v∆(ε)

F∆(ε)

)p]

+
[(

2−JsMε

λε

)p
+

Mε

λε
2Jp/2n(ε)−p + (∆‖f‖Lp,ε)

p
]

+ 2J(5p/2−1)
[
n(ε)1−p∆+ n(ε)−p/2

(
σ2(ε)∆

)p/2
+ (bν(ε)∆)p

]}
,

where n(ε) denotes the cardinality of Iε and C only depends on s, p, ‖hε‖Lp,ε, ‖hε‖Lp/2,ε
,

‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. For 1 ≤ p < 2 this bound still holds if one requires in addition that
hε(x) ≤ w(x), ∀x ∈ R for some symmetric function w ∈ Lp/2.

The assumption v∆(ε)
F∆(ε) ≤ 1

3 is not restrictive: this term is required to tend to 0 to get a
consistent procedure. An immediate consequence of the proof of Theorem 3 is the following.

Proposition 5. Assume that f is the Lévy density of a compound Poisson process and that
it belongs to the functional class F (s, p, q,M0,R \ {0}) defined in (20), for some 1 ≤ q ≤ ∞,
1 ≤ p < ∞. Take A = ∞ and let r > s > 1

p , ĥn,0 be the wavelet estimator of h0 on R \ {0},
defined in (23). Then, for all J ∈ N and p ∈ [2,∞), there exists C > 0 such that:

E
(
‖ĥn,0({Xi∆−X(i−1)∆}i∈I0

)− h0‖pLp,0
|I0

)
≤ C

[
2−Jsp + 2Jp/2n(0)−p + (∆‖f‖Lp,0)

p
]
,

where n(0) is the cardinality of I0 and C depends on s, p, ‖h0‖Lp,0 , ‖h0‖Lp/2,0
, λ0, M0,

‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. For 1 ≤ p < 2 this bound still holds if one requires in addition that
h0(x) ≤ w(x), ∀x ∈ R for some symmetric function w ∈ Lp/2.

Taking J such that 2J = n(0)
1

2s+1 leads to an upper bound in n(0)−
s

2s+1 ∨ ∆, where

n(0)−
s

2s+1 is the optimal rate of convergence for the density estimation problem from n(0)
i.i.d. direct observations. The error rate ∆ is due to the omission of the event that more than
one jump may occur in an interval of length ∆.

To get an unconditional bound we introduce the following result.
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Lemma 4. Let F∆(ε) := P(|X∆| > ε). For all r ≥ 0 we have
(3nF∆(ε)

2

)−r
≤ E

(
n(ε)−r

)
≤ 2 exp

(−3nF∆(ε)
32

)
+

(nF∆(ε)

2

)−r
.

Using Lemma 4, together with (12) , we can remove the conditioning on Iε and we get
an unconditional upper bound for ĥn,ε.

Corollary 1. Assume that f belongs to the functional class F (s, p, q,Mε, A(ε)) defined in
(20), for some 1 ≤ q ≤ ∞, 1 ≤ p < ∞ and A < ∞. Let r > s > 1

p and let ĥn,ε be the wavelet

estimator of hε on A(ε), defined in (23). If v∆(ε)
F∆(ε) ≤ 1

3 , λε∆ → 0 and nF∆(ε) → ∞ as n → ∞,

then, for all J ∈ N and p ∈ [2,∞) the following inequality holds:

E
(
‖ĥn,ε({Xi∆−X(i−1)∆}i∈Iε)− hε‖pLp,ε

)
≤ C

{
22Jp

[( v∆(ε)

nF∆(ε)2

)p/2
+
( v∆(ε)

F∆(ε)

)p]

+
[(

2−JsMε

λε

)p
+

Mε

λε
2Jp/2

(
nF∆(ε)

)−p
+ (∆‖f‖Lp,ε)

p
]

+ 2J(5p/2−1)
[
(nF∆(ε))

1−p∆+ (nF∆(ε))
−p/2

(
σ2(ε)∆

)p/2
+ (bν(ε)∆)p

]}
,

for some C > 0 depending only on s, p, ‖hε‖Lp,ε , ‖hε‖Lp/2,ε
, ‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. For

1 ≤ p < 2 this bound still holds if one requires in addition that hε(x) ≤ w(x), ∀x ∈ R for
some symmetric function w ∈ Lp/2.

The various terms appearing in this upper bound are discussed in Section 4.1. The implied
rates are illustrated on examples in Section 4.2.

4 Statistical properties of f̂n,ε

Combining the results in Theorem 2 and Corollary 1 we derive the following upper bound for
the estimator f̂n,ε of the Lévy density f when ν(R) = ∞. The case where X is a compound
Poisson process is illustrated in Proposition 6.

Theorem 4. Let f belong to the functional class F (s, p, q,Mε, A(ε)) defined in (20), for
some 1 ≤ q ≤ ∞, 1 ≤ p < ∞, ε ∈ (0, 1] and A < ∞. Let r > s > 1

p and let f̂n,ε be the

estimator of f on A(ε), defined in (10). Then, under the assumptions v∆(ε)
F∆(ε) ≤ 1

3 , λε∆ → 0

and nF∆(ε) → ∞ as n → ∞, for all J ∈ N and p ∈ [2,∞), there exists C > 0 such that the
following inequality holds:

[
ℓp,ε

(
f̂n,ε, f

)]p ≤ C

{[(F∆(ε)

n∆2

) p
2
+

∣∣∣λε −
F∆(ε)

∆

∣∣∣
p](Mε

λε

)p

+ λp
ε

{
22Jp

[( v∆(ε)

nF∆(ε)2

)p/2
+

( v∆(ε)

F∆(ε)

)p]

+
[(

2−JsMε

λε

)p
+

Mε

λε
2Jp/2

(
nF∆(ε)

)−p
+ (∆‖f‖Lp,ε)

p
]

+ 2J(5p/2−1)
[
(nF∆(ε))

1−p∆+ (nF∆(ε))
−p/2

(
σ2(ε)∆

)p/2
+ (bν(ε)∆)p

]}}
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where v∆(ε) := P(|M∆(ε) + ∆bν(ε)| > ε), F∆(ε) := P(|X∆| > ε), σ2(ε) :=
∫
|x|≤ε x

2ν(dx) and

C depends on s, p, ‖hε‖Lp,ε , ‖hε‖Lp/2,ε
, ‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. For 1 ≤ p < 2 this bound

still holds if one requires in addition that fε(x) ≤ w(x), ∀x ∈ R for some symmetric function
w ∈ Lp/2.

4.1 Discussion

The upper bound presented in Theorem 4 is difficult to interpret in general. Here, we give
a rough intuition of what terms are dominating and where they come from. Thinking back
on our strategy, we made different approximations that entail four different sources of errors
(points 2-3-4 are related to the estimation of hε whereas point 1 to the estimation of λε).

1. Estimation of λε: In Section 3.2.2 we have already discussed this point. Our appro-
ximation strategy for the intensity λε leads to the error

(F∆(ε)

n∆2

) p
2
+

∣∣∣λε −
F∆(ε)

∆

∣∣∣
p
:= E1.

2. Neglecting the event {|M∆(ε)+bν(ε)| > ε}: We consider that each time an increment
X∆ exceeds the threshold ε the associated Poisson process N∆(ε) is nonzero. This leads
to the error

22J
{√

v∆(ε)

nF∆(ε)2
+

v∆(ε)

F∆(ε)

}
≍ 22J

v∆(ε)

F∆(ε)
:= E2.

This error is unavoidable as we do not observe M(ε) and Z(ε) separately.

3. Neglecting the presence of M∆(ε) + ∆bν(ε): In (21) we ignore the convolution
structure of the observations. This produces the error in

2J(5/2−1/p)
{
(nF∆(ε))

−1+1/p∆+ (nF∆(ε))
−1/2

(
σ2(ε)∆

)1/2
+ (bν(ε)∆)p

}
:= E3.

It would have been difficult to have a better strategy than neglecting M∆(ε) + bν(ε)∆:
the distribution of M∆(ε) is unknown, then we cannot take into account the convolution
structure of the observations. Moreover, even if we did know it (or could estimate it),
deconvolution methods are essentially adapted to L2 losses.

4. Estimation of the compound Poisson Z(ε): This estimation problem is solved in
two steps. First, we neglect the event {N∆(ε) ≥ 2} which generates the error:

∆‖f‖Lp,ε := E4.

This error could have been improved considering a corrected estimator as in [14], but this
would have added even more heaviness in the final result. Second, we recover an esti-
mation error that is classical for the density estimation problem from i.i.d. observations
in

2−JsMε

λε
+

Mε

λε
2J/2

(
nF∆(ε)

)−1
:= E5.
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One can get easily convinced that the most significant term is E2. Using (12) we see that it is
possible to choose J , going to infinity, such that E2 still tends to 0. This choice of J together
with ∆ → 0 and nF∆(ε) → 0 leads to an upper bound that goes to 0. Balancing these
five terms to get an explicit rate is difficult without further assumptions. But, in general,
the leading term will be imposed by the unknown rate of convergence of v∆(ε)

F∆(ε) to 0 of and
consequently by E2. We cannot ensure that this rate is optimal and we cannot propose an
adaptive choice of J as, in practice, as we already underlined, a sharp control of v∆(ε) is not
known. Below we discuss the main problems related with this quantity v∆(ε).

4.1.1 How to control the small jumps of a Lévy process

As we have already pointed out, a crucial role in determining the rate of convergence of our es-
timators is played by the quantity v∆(ε) := P(|M∆(ε)+∆bν(ε)| > ε). In the literature papers
devoted to expansions for the distributions of Lévy processes already exists (see, e.g., [33] and
[18]) but they cannot be used in our framework. The expansions for P(M∆(ε) + ∆bν(ε) > x)
holds only for x large enough with respect to ε.

A theoretical approach to compute v∆(ε) is offered by the inversion formula and the
Lévy-Khintchine formula. We reproduce the computations only in the case where X is a
subordinator but they can be done in general. Formally, let X be a subordinator with Lévy
measure ν, we have

Mt(ε) + tbν(ε) =
∑

s≤t

∆XsI0≤∆Xs≤ε.

By the Lévy-Khintchine formula, it follows that

E

[
eiu(M∆(ε)+∆bν(ε))

]
= exp

(
∆

∫ ε

0
(eiuy − 1)ν(dy)

)
:= ϕ(u)

and we can express the density of the random variable M∆(ε) + ∆bν(ε) as

d(x) =
1

2π

∫

R

exp

(
− iux+∆

∫ ε

0
(eiuy − 1)ν(dy)

)
du.

Therefore

P(M∆(ε) + ∆bν(ε) > ε) =
1

2π

∫ ∞

ε

∫

R

exp

(
− iux+∆

∫ ε

0
(eiuy − 1)ν(dy)

)
dudx.

Unfortunately, the double integral above is far from being easily computable. Another possible
representation that one could use is the one provided in [19]:

P(M∆(ε) + ∆bν(ε) > ε) =
1

2
− 1

2π

∫ ∞

0

e−itεϕ(−t)− eitεϕ(t)

it
dt

=
1

2
+

1

π

∫ ∞

0

Im
[
e−iuεϕ(u)

]

u
du

=
1

2
+

1

π

∫ ∞

0

e∆
∫ ε
0 (cos(uy)−1)ν(dy) sin

(
∆

∫ ε
0 sin(uy)ν(dy)− uε

)

u
du,
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but, again, these expressions are hard to handle in practice.
However, at least in the case where X is a subordinator, something more precise can be

said about v∆(ε) thanks to the relation (13)

P(M∆(ε) + ∆bν(ε) > ε) = eλε∆
[
P(X∆ > ε) + e−λε∆ − 1

]
, ε > 0.

In particular, for the class of Gamma processes and Inverse Gaussian processes treated in
Section 3.2.3, we have

v∆(ε) = eλε∆
[
(P(X∆ > ε)− λε∆) + (e−λε∆ − 1 + λε∆)

]
= O(λ2

ε∆
2)

as λε∆ → 0.

4.2 Examples

We go back to the first two examples developed in Section 3.2.3.

Compound Poisson process (Continued). In this case we take ε = 0 as λ := λ0 < ∞
and we have

F∆(0) = P(|X∆| > 0) = 1− e−λ∆ = O(λ∆).

It is straightforward to see that nF∆(0) → ∞. Moreover, the choice ε = 0, simplifies the
proof of Theorem 3 significantly. Indeed, we have that v∆(0) = 0, I0 = K0, n(0) = ñ(0) and
that X∆ has distribution p∆,0 (see Section 5.3). Proposition 5 and Lemma 4 lead then to the
following upper bound. For all J ∈ N, ∀h0 ∈ F

(
s, p, q, M0

λ ,R \ {0}), 1 ≤ q ≤ ∞ and p ≥ 1,
there exists a constant C > 0 such that:

E
(
‖ĥn,0 − h0‖pLp,0

)
≤C

{
2−Jsp + 2Jp/2(n∆)−p/2 +∆p

}

where C depends on λ, M0, s, p, ‖h0‖Lp,0 , ‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. Choosing J such that

2J = (n∆)
1

2s+1 we get

E
(
‖ĥn,0 − h0‖pLp,0

)
≤ C

{
(n∆)−

sp
2s+1 +∆p

}
,

where the first term is the optimal rate of convergence to estimate p∆,0 from the observations
Dn,0 and the second term is the deterministic error of the approximation of h0 by p∆,0. This
result is consistent with the results in [14] and is more general in the sense that the estimation
interval is unbounded.

Concerning the estimation of the Lévy density f = f0, we apply a slight modification of
Theorem 4 (due to the simplifications that occur when taking ε = 0), and we use Propo-
sition 1 to derive the following result. Let ε = 0, assume that f0 belongs to the class
F (s, p, q,M0, [−A,A] \ {0}) defined in (20), where 1 ≤ q ≤ ∞, 1 ≤ p < ∞ and A < ∞.
Here we consider a bounded set A(0) for technical reasons (see the proof of Theorem 4), this
assumptions might be removed at the expense of additional technicalities. Let J be such that

2J = (n∆)
1

2s+1 , then for p ≥ 2 we have

[
ℓp,0

(
f̂n,0, f

)]p
= O

(
(n∆)1−p ∨

(
n∆

)− p
2 + (n∆)−

sp
2s+1 +∆p

)
= O

(
(n∆)−

sp
2s+1 +∆p

)
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The case p ∈ [1, 2) can be treated similarly and leads to the same rate. As earlier, the first
term is the optimal rate of convergence to estimate p∆,0 from the observations Dn,0 and the
second term gathers the deterministic errors of the approximations of h0 by p∆,0 and λ0 by
1
∆P(|X∆| > 0). We therefore established the following result.

Proposition 6. Let f ∈ F (s, p, q,M0, [−A,A] \ {0}), 1 ≤ q ≤ ∞, 1 ≤ p < ∞ and A < ∞, be
the Lévy density of a compound Poisson process. Let r > s > 1

p and let f̂n,0 be the estimator

of f = f0 on [−A,A] \ {0}, defined in (10). Then, for all p ∈ [1,∞) and n big enough, there
exists a constant C > 0 such that

[
ℓp,0

(
f̂n,0, f

)]p ≤ C
(
(n∆)−

sp
2s+1 +∆p

)
,

where C depends on λ, M0, s, p, ‖h0‖Lp,0 , ‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p.

Gamma process (Continued). Let X be a Gamma process of parameter (1, 1). Let

ε ∈ (0, 1), we have λε =
∫∞
ε

e−x

x dx = O(log(ε−1)) and if log(ε)∆ → 0 the above computations
lead to

F∆(ε) = P(X∆ > ε) = O(λε∆) and v∆(ε) = O(λ2
ε∆

2).

Moreover bν(ε) =
∫ ε
0 xν(dx) = O(ε) and σ2(ε) =

∫ ε
0 x2ν(dx) = O(ε2). Also, we observe that

for all 1 ≤ q ≤ ∞ and 1 ≤ p < ∞, fε belongs to the class F (s, p, q,M log(ε−1), A(ε)) for some
constant M. Let r > s > 1

p , applying Theorem 4 for p ≥ 2, we derive

[
ℓp,ε

(
f̂n,ε, f

)]p
= O

(
(log(ε−1))p2−Jsp + 2J(5p/2−1)

[∆ log(ε−1)

(n∆)p−1
+
(
log(ε−1)ε∆

)p]
)
.

Neglecting the effect of ε
(
e.g. consider ε = 1

log(n)

)
and setting

J =
1

(sp+ 5p
2 − 1)

log2

( ∆

(n∆)p−1
+∆p

)
,

we obtain the following rate of convergence

[
ℓp,ε

(
f̂n,ε, f

)]p
= O

(( ∆

(n∆)p−1
+∆p

)− s
(s+5/2−1/p)

)
.

If A(ε) is bounded away from zero (e.g. a(ε) is non-vanishing), the Lévy density is regular
and s can be chosen as large as desired. For large s, we recover the rate ∆p ∨ ∆

(n∆)p−1 , which

is optimal under the classical condition ∆ = O(1/
√
n).

4.2.1 Conclusion

The accuracy of the estimation of λε and hε have already been discussed. Theorem 4 is the
aggregate of both results: the rate of f̂n,ε is the worst between the two errors. We cannot give
a general rate of convergence due to the influence of the small jumps, present in the upper
bound via the quantity v∆(ε) that is difficult to handle in practice. However, consistency of

23



f̂n,ε is ensured for Lp loss functions. Moreover, our upper bounds show clearly the influence
of the small jumps. Finally, in the case where X is a compound Poisson process or a Gamma
process we recover classical results, which gives credit to the procedure. But the question of
whether our procedure is optimal in general, as well as the question of the adaptive choice
for J , remain open. Answering them will require a deeper understanding of the quantity
P(|M∆(ε) + bν(ε)| > ε) as ε → 0.

5 Proofs

In the sequel, C denotes a generic constant whose value may vary from line to line. Its
dependencies may be given in indices. The proofs of auxiliary lemmas are postponed to the
Appendix in Section 6.

5.1 Proof of Theorem 1

Let F∆(ε) := P(|X∆| > ε) and F̂∆(ε) :=
1
n

∑n
i=1 1(ε,∞)(|Xi∆ −X(i−1)∆|). The following holds

EPn

[∣∣λε − λ̂n,ε

∣∣p
]
≤ 2p

{∣∣∣λε −
F∆(ε)

∆

∣∣∣
p
+

1

∆p
EPn

[∣∣F∆(ε)− F̂∆(ε)
∣∣p
]}

. (24)

To control the second term in (24), we introduce the i.i.d. centered random variables

Ui :=
1(ε,∞)(|Xi∆ −X(i−1)∆|)− F∆(ε)

n
, i = 1, . . . , n.

For p ≥ 2, an application of the Rosenthal inequality together with E
[
|Ui|p

]
= O

(F∆(ε)
np

)

ensure the existence of a constant Cp such that

EPn

[∣∣∣
n∑

i=1

Ui

∣∣∣
p
]
≤ Cp

(
n1−pF∆(ε) +

(F∆(ε)

n

)p/2
)
.

For p ∈ [1, 2), the Jensen inequality and the previous result for p = 2 lead to

EPn

[∣∣∣
n∑

i=1

Ui

∣∣∣
p
]
≤

(
EPn

[∣∣∣
n∑

i=1

Ui

∣∣∣
2])p/2

≤
(
F∆(ε)

n

)p/2

.

2

5.2 Proof of Theorem 2

Thanks to (24) and using the notations introduced in the proof of Theorem 1, we are only
left to show that, for p ≥ 2,

1

∆p
EPn

[∣∣∣∣
n∑

i=1

Ui

∣∣∣∣
p]

= O

((F∆(ε)

n∆2

)p/2
)
. (25)
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An application of the Bernstein inequality (using that |Ui| ≤ n−1 and the fact that the

variance V[Ui] ≤ F∆(ε)
n2 ) allows us to deduce that

P

(∣∣∣∣
n∑

i=1

Ui

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2n

2F∆(ε) +
2t
3

)
.

Therefore,

EPn

[∣∣∣∣
n∑

i=1

Ui

∣∣∣∣
p]

= p

∫ ∞

0
tp−1

P

(∣∣∣∣
n∑

i=1

Ui

∣∣∣∣ ≥ t

)
dt ≤ 2p

∫ ∞

0
tp−1 exp

(
− t2n

2F∆(ε) +
2t
3

)
dt.

Observe that, for t ≤ 3
2F∆(ε), the denominator 2F∆(ε) +

2t
3 is smaller than 3F∆(ε) while for

t ≥ 3
2F∆(ε) we have 2F∆(ε) +

2t
3 ≤ 2t. It follows that

∫ ∞

0
tp−1 exp

(
− t2n

2F∆(ε) +
2t
3

)
dt ≤

∫ 3
2
F∆(ε)

0
tp−1 exp

(
− t2n

3F∆(ε)

)
dt+

∫ ∞

3
2
F∆(ε)

tp−1e−
tn
2 dt.

After a change of variables, the following inequalities hold:

∫ 3
2
F∆(ε)

0
tp−1 exp

(
− t2n

3F∆(ε)

)
dt ≤ 1

2

(3F∆(ε)

n

)p/2
Γ
(p
2

)
(26)

and
∫ ∞

3
2
F∆(ε)

tp−1e−
tn
2 dt ≤

( 2
n

)p
Γ
(
p,

nF∆(ε)

4

)
. (27)

Here, Γ(s, x) =
∫∞
x xs−1e−xdx denotes the incomplete Gamma function and Γ(s) = Γ(s, 0) is

the usual Gamma function. Equation (26) readily gives the desired asymptotic. To conclude,
we use the classical estimate for the incomplete Gamma function for |x| → ∞:

Γ(s, x) ≈ xs−1e−x

(
1 +

s− 1

x
+O

( 1

x2

))
.

In particular, when (27) is divided by ∆p, it is asymptotically O
(

1
(n∆)p e

−nF∆(ε)
)
, which goes

to 0 faster than (25).

5.3 Proof of Theorem 3

Preliminary. Since the proof of Theorem 3 is lengthy, to help the reader we enlighten here
the two main difficulties that arise due to the fact that the estimator ĥn,ε uses the observations

Dn,ε, i.e. ĥn,ε = ĥn,ε(Dn,ε).

1. The cardinality of Dn,ε is n(ε) that is random. That is why in Theorem 3 we study the
risk of this estimator conditionally on Iε. We then get the general result using that

EPn

[
ℓp,ε

(
ĥn,ε, hε

)]
= E

[
EPn,ε

[
ℓp,ε

(
ĥn,ε, hε

)∣∣Iε

]]
.

Once the conditional expectation is bounded, we use Lemma 4 to remove the condition-
ing and derive Corollary 1.
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2. An observation of Dn,ε is not a realization of hε. Indeed, an increment of the process
Z(ε) does not necessarily correspond to one jump, whose density is hε, and, more
demandingly, the presence of the small jumps M(ε) needs to be taken into account. To
do so we split the sample Dn,ε in two according to the presence or absence of jumps
in the Poisson part. On the subsample where the Poisson part is nonzero, we make an
expansion at order 1 and we neglect the presence of the small jumps. This is the subject
of the following paragraph.

Expansion of ĥn,ε. Consider Dn,ε = {Xi∆ −X(i−1)∆, i ∈ Iε} the increments larger than
ε. Recall that, for each i, we have

Xi∆ −X(i−1)∆ = ∆bν(ε) +Mi∆(ε) −M(i−1)∆(ε) + Zi∆(ε)− Z(i−1)∆(ε).

We split the sample as follows:

Kε := {i ∈ Iε, Zi∆(ε) − Z(i−1)∆(ε) 6= 0}
K

c
ε := Iε \ Kε.

Denote by ñ(ε) the cardinality of Kε. To avoid cumbersomeness, in the remainder of the proof

we write M instead of M(ε) and Z instead of Z(ε). Recall that ΦJk(x) = 2
J
2Φ(2Jx − k).

Using that Φ is continuously differentiable we can write, ∀k ∈ ΛJ ,

α̂J,k =
1

n(ε)

( ∑

i∈Kε

+
∑

i∈K c
ε

)
ΦJk(Xi∆ −X(i−1)∆)

=
1

n(ε)

∑

i∈Kε

{
ΦJk(Zi∆ − Z(i−1)∆) + 23J/2(Mi∆ −M(i−1)∆ + bν(ε)∆)Φ′(2Jηi − k)

}

+
1

n(ε)

∑

i∈K c
ε

ΦJk(Xi∆ −X(i−1)∆),

where ηi ∈ [min{Zi∆−Z(i−1)∆,Xi∆−X(i−1)∆},max{Zi∆−Z(i−1)∆,Xi∆−X(i−1)∆}]. It follows
that

ĥn,ε(x, {Xi∆ −X(i−1)∆}i∈Iε) =
∑

k∈ΛJ

α̂J,kΦJk(x)

: =
ñ(ε)

n(ε)
h̃n,ε(x, {Zi∆ − Z(i−1)∆}i∈Kε)

+
23J/2

n(ε)

∑

i∈Kε

(Mi∆ −M(i−1)∆ + bν(ε)∆)
∑

k∈ΛJ

Φ′(2Jηi − k)ΦJk(x)

+
1

n(ε)

∑

i∈K c
ε

∑

k∈ΛJ

ΦJk(Mi∆ −M(i−1)∆ + bν(ε)∆)ΦJk(x),

where conditional on Kε, h̃n,ε({Zi∆ − Z(i−1)∆}i∈Kε) is the linear wavelet estimator of p∆,ε

defined in (22) from ñ(ε) direct measurements. Explicitly, it is defined as follows

h̃n,ε(x, {Zi∆ − Z(i−1)∆}i∈Kε) =
∑

k∈ΛJ

α̃J,kΦJk(x), (28)
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where α̃J,k = 1
ñ(ε)

∑
i∈Kε

ΦJk(Zi∆ − Z(i−1)∆). This is not an estimator as both Kε and

{Zi∆ − Z(i−1)∆}i∈Kε are not observed. However, α̃J,k approximates the quantity

αJ,k :=

∫

A(ε)
ΦJk(x)p∆,ε(x)dx. (29)

Decomposition of the Lp,ε loss. Taking the Lp,ε norm and applying the triangle inequality
we get

‖ĥn,ε({Xi∆ −X(i−1)∆}i∈Iε)− hε‖pLp,ε
≤ Cp

{(
ñ(ε)

n(ε)

)p
‖h̃n,ε({Zi∆ − Z(i−1)∆}i∈Kε)− hε‖pLp,ε

+
(
1− ñ(ε)

n(ε)

)p
‖hε‖pLp,ε

+
23Jp/2

n(ε)p

∫

A(ε)

∣∣∣
∑

i∈Kε

(Mi∆ −M(i−1)∆ + bν(ε)∆)
∑

k∈ΛJ

Φ′(2Jηi − k)ΦJk(x)
∣∣∣
p
dx

+
1

n(ε)p

∫

A(ε)

∣∣∣
∑

i∈K c
ε

∑

k∈ΛJ

ΦJk(Mi∆ −M(i−1)∆ + bν(ε))ΦJk(x)
∣∣∣
p
dx

}

= Cp

{
T1 + T2 + T3 + T4

}
. (30)

After taking expectation conditionally on Iε and Kε, we bound each term separately.

Remark 1. If X is a compound Poisson process and we take ε = 0, then ĥn,ε = h̃n,ε (and
n(0) = ñ(0)) and T2 = T3 = T4 = 0.

Control of T1. We have

‖h̃n,ε({Zi∆ − Z(i−1)∆}i∈Kε)− hε‖pLp,ε
≤ Cp

{
‖h̃n,ε({Zi∆ − Z(i−1)∆}i∈Kε)− p∆,ε‖pLp,ε

+ ‖p∆,ε − hε‖pLp,ε

}

=: Cp(T5 + T6).

The deterministic term T6 is bounded using Lemma 3 by (∆‖f‖Lp,ε)
p. Taking expectation

conditionally on Iε and Kε of T5, we recover the linear wavelet estimator of p∆,ε studied
by Kerkyacharian and Picard [26] (see their Theorem 2). For the sake of completeness we
reproduce the main steps of their proof. First, the control of the bias is the same as in [26],
noticing that Lemma 2 implies p∆,ε ∈ F

(
s, p, q, Mε

λε
, A(ε)

)
(see Lemma 5.1 in [14]) we get

E
(
T5|Iε,Kε

)
≤ Cp

{
2−Jsp

(
Mε

λε

)p
+ 2J(p/2−1)

∑

k∈ΛJ

E(|α̃J,k − αJ,k|p|Iε,Kε)

}
,
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where α̃J,k and αJ,k are defined in (28) and (29). First consider the case p ≥ 2. We start by
observing that

E

[∣∣∣∣
1

ñ(ε)

∑

i∈Kε

ΦJk(Zi∆ − Z(i−1)∆)−
∫

A(ε)
ΦJk(x)p∆,ε(x)

∣∣∣∣
∣∣Iε,Kε

]
=

∑

I⊂{1,...,n}
1{I=Kε}E

∣∣∣∣
1

|I|
∑

i∈I
ΦJk(Zi∆ − Z(i−1)∆)−

∫

A(ε)
ΦJk(x)p∆,ε(x)

∣∣∣∣,

where |I| denotes the cardinality of the set I. To bound the last term we apply the inequality
of Bretagnolle and Huber to the i.i.d. centered random variables

(
ΦJk(Zi∆ − Z(i−1)∆) −

E[ΦJk(Zi∆ − Z(i−1)∆)]
)
i∈I bounded by 2J/2+1‖Φ‖∞, conditional to {Kε = I}. We obtain,

E

∣∣∣∣
1

|I|
∑

i∈I
ΦJk(Zi∆ − Z(i−1)∆)−

∫

A(ε)
ΦJk(x)p∆,ε(x)

∣∣∣∣ ≤

Cp

∑

k∈ΛJ

{
1

|I|p/2
[
2J

∫

A(ε)
Φ(2Jx− k)2p∆,ε(x)dx

]p/2
+

2(p−2)(J/2+1)‖Φ‖p−2
∞

|I|p−1

∫

A(ε)
2JΦ(2Jx− k)2p∆,ε(x)dx

}
.

Therefore we get

∑

k∈ΛJ

E(|α̃J,k − αJ,k|p|Iε,Kε) ≤ Cp

∑

k∈ΛJ

{
1

ñ(ε)p/2

[
2J

∫

A(ε)
Φ(2Jx− k)2p∆,ε(x)dx

]p/2

+
2(p−2)(J/2+1)‖Φ‖p−2

∞
ñ(ε)p−1

∫

A(ε)
2JΦ(2Jx− k)2p∆,ε(x)dx

}
,

where, as developed in [26],

∑

k∈ΛJ

[ ∫

A(ε)
2JΦ(2Jx− k)2p∆,ε(x)dx

]p/2
≤ Mε

λε
2J‖p∆,ε‖p/2Lp/2,ε

and
∑

k∈ΛJ

∫

A(ε)
2JΦ(2Jx− k)2p∆,ε(x)dx ≤ Mε

λε
2J .

We can then conclude that

∑

k∈ΛJ

E(|α̃J,k − αJ,k|p|Iε,Kε) ≤ Cp
Mε

λε

{2J‖p∆,ε‖p/2Lp/2,ε

ñ(ε)p/2
+

2Jp/2‖Φ‖p−2
∞

ñ(ε)p−1

}
.

Plugging this last inequality in T5 we obtain

E(T5|Iε,Kε) ≤ C

{
2−Jsp

(
Mε

λε

)p
+

Mε

λε

( 2J

ñ(ε)

)p/2
}
,
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where C is a constant depending on p, ‖hε‖Lp/2,ε
, that is an upper bound of ‖p∆,ε‖Lp/2,ε

, and
‖Φ‖∞. Gathering all terms we get, for p ≥ 2,

E

(
‖ĥn,ε({Zi∆ − Z(i−1)∆}i∈Kε)− hε‖pLp,ε

|Iε,Kε

)

≤ C

{(
2−JsMε

λε

)p
+

Mε

λε

( 2J

ñ(ε)

)p/2
+ (∆‖f‖Lp,ε)

p

}
,

where C is a constant depending on p, ‖hε‖Lp/2,ε
and ‖Φ‖∞. For p ∈ [1, 2), together with the

additional assumption of hε, following the lines of the proof of Theorem 2 of Kerkyacharian
and Picard [26] we obtain the same bound as above. Finally, we have established that

E

(
T1|Iε,Kε

)
≤ C

{(
2−JsMε

λε

)p
+

Mε

λε

( 2J

ñ(ε)

)p/2
+ (∆‖f‖Lp,ε)

p
}
, (31)

where we used that ñ(ε) ≤ n(ε). Note that Mε/λε remains bounded. Moreover, taking J

such that 2J = ñ(ε)
1

2s+1 we have, uniformly over F (s, p, q, Mε
λε

, A(ε)), an upper bound in

ñ(ε)−s/(2s+1) for the estimation of p∆,ε, which is the optimal rate of convergence for a density
from ñ(ε) direct independent observations (see [26]).

Note that we did not use that A(ε) is bounded to control this quantity, it was possible to
have A = ∞. This together with Remark 1 lead to Proposition 5.

Control of T3. Using the fact that Φ′ is compactly supported, we get

E(T3|Iε,Kε) ≤
2

3Jp
2 ‖Φ′‖p∞
n(ε)p

∫

R

∣∣∣
∑

k∈ΛJ

Φ(x− k)
∣∣∣
p dx

2J
E

(∣∣∣
∑

i∈Kε

(
Mi∆ −M(i−1)∆ + bν(ε)∆

)∣∣∣
p
|Iε,Kε

)
.

Furthermore, we use the following upper bound for the last term in the expression above:

E

(∣∣∣
∑

i∈Kε

(
Mi∆ −M(i−1)∆ + bν(ε)∆

)∣∣∣
p
|Iε,Kε

)

≤ Cp

{
E

(∣∣∣
∑

i∈Kε

(
Mi∆ −M(i−1)∆

)∣∣∣
p
|Iε,Kε

)
+
(
ñ(ε)bν(ε)∆

)p
}

From Rosenthal’s inequality conditional on Iε and Kε we derive for p ≥ 2

E

(∣∣∣
∑

i∈Kε

(
Mi∆ −M(i−1)∆

)∣∣∣
p
|Iε,Kε

)
≤ Cp

{
ñ(ε)E(|M∆|p) +

(
ñ(ε)E(M2

∆)
) p

2

}

= Cp

{
ñ(ε)∆µp(ε) +

(
ñ(ε)σ2(ε)∆

)p/2}

where ∆µp(ε) := E(|M∆|p) = O(∆). For p ∈ [1, 2) we obtain the same result using the Jensen
inequality and the latter inequality with p = 2. Next,

∫

R

∣∣∣
∑

k∈ΛJ

Φ(x− k)
∣∣∣
p dx

2J
≤ 2−J |ΛJ |p‖Φ‖pp.
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As Φ is compactly supported, and since we estimate hε on an interval bounded by A, for every
j ≥ 0, the set ΛJ has cardinality bounded by |ΛJ | ≤ C2J , where C depends on the support
of Φ and A. It follows that,

E(T3|Iε,Kε) ≤ C‖Φ′‖p∞‖Φ‖pp2J(5p/2−1)

{
ñ(ε)n(ε)−p∆+ n(ε)−p

(
ñ(ε)σ2(ε)∆

)p/2

+
(
ñ(ε)bν(ε)∆

n(ε)

)p
}
. (32)

Control of T4. Similarly, for the last term we have

E(T4|Iε,Kε) ≤ 2J(2p−1)‖Φ‖p∞‖Φ‖pp
(
1− ñ(ε)

n(ε)

)p
. (33)

Deconditioning on Kε. Replacing (31), (32) and (33) into (30), and noticing that T2 is
negligible compared to E(T4|Iε,Kε), we obtain

E
(
‖ĥn,ε({Xi∆ −X(i−1)∆}i∈Iε)− hε‖pLp,ε

|Iε,Kε

)
≤ C

{
22Jp

(
1− ñ(ε)

n(ε)

)p

+
[(

2−JsMε

λε

)p
+

Mε

λε

( 2J

ñ(ε)

)p/2
+ (∆‖f‖Lp,ε)

p
]

+ 2J(3p/2−1)|ΛJ |p
[
ñ(ε)n(ε)−p∆+ n(ε)−p

(
ñ(ε)σ2(ε)∆

)p/2
+

(
ñ(ε)bν(ε)∆

n(ε)

)p]}
.

where C depends on s, p, ‖hε‖Lp,ε , ‖hε‖Lp/2,ε
, ‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. To remove the

conditional expectation on Kε we apply the following lemma.

Lemma 5. Let v∆(ε) = P(|M∆(ε) + ∆bν(ε)| > ε) and F∆(ε) = P(|X∆| > ε). If v∆(ε)
F∆(ε) ≤ 1

3 ,
then for all r ≥ 0, there exists a constant C depending on r such that

E
(
ñ(ε)−r

∣∣Iε

)
≤ Cn(ε)−r

E
(
(n(ε)− ñ(ε))r

∣∣Iε

)
≤ C

{(
n(ε)

v∆(ε)e
−λε∆

F∆(ε)

)r/2
+

(
n(ε)

v∆(ε)e
−λε∆

F∆(ε)

)r}
.

Finally, using the fact that λε∆ → 0 and ñ(ε) ≤ n(ε), we conclude:

E
(
‖ĥn,ε({Xi∆ −X(i−1)∆}i∈Iε)− hε‖pLp,ε

|Iε

)
≤ C

{
22Jp

[( v∆(ε)

n(ε)F∆(ε)

)p/2
+

( v∆(ε)

F∆(ε)

)p]

+
[(

2−JsMε

λε

)p
+

Mε

λε
2Jp/2n(ε)−p + (∆‖f‖Lp,ε)

p
]

+ 2J(5p/2−1)
[
n(ε)1−p∆+ n(ε)−p/2

(
σ2(ε)∆

)p/2
+ (bν(ε)∆)p

]}
,

where C depends on s, p, ‖hε‖Lp,ε , ‖hε‖Lp/2,ε
, ‖Φ‖∞, ‖Φ′‖∞ and ‖Φ‖p. The proof is now

complete. 2
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5.4 Proof of Theorem 4

Theorem 4 is a consequence of Theorem 1 and Corollary 1. For all 0 < ε ≤ 1, we decompose
ℓp,ε(f̂n,ε, f) as follows:

[
ℓp,ε

(
f̂n,ε, f

)]p
=

∫

A(ε)
EPn

[∣∣λ̂n,εĥn,ε(x)− λεhε(x)
∣∣p
]
dx

≤ 2p−1
EPn

[∣∣λ̂n,ε − λε

∣∣p
]
‖hε‖pLp,ε

+ 2p−1
EPn

[∣∣λ̂n,ε

∣∣p∥∥ĥn,ε − hε
∥∥p
Lp,ε

]

=: 2p−1(I1 + I2).

The term I1 is controlled by means of Theorem 1 combined with the fact that if fε ∈
F (s, p, q,Mε, A(ε)) then hε ∈ F (s, p, q, Mε

λε
, A(ε)), which implies ‖hε‖Lp,ε ≤ Mε

λε
. Concerning

the term I2, the Cauchy-Schwarz inequality gives

I2 =

∫

A(ε)
EPn

[∣∣λ̂n,ε

∣∣p∣∣ĥn,ε(x)− hε(x)
∣∣p]dx

≤
√

EPn

[
|λ̂n,ε|2p

] ∫

A(ε)

√
EPn

[∣∣ĥn,ε(x)− hε(x)
∣∣2p]dx =

√
J1
√

J2.

The term J1 is treated using Theorem 1 and the triangle inequality

E[|λ̂n,ε|2p] ≤ Cp(λ
2p
ε + E[|λ̂n,ε − λε|2p]).

For the term J2, notice that as A(ε) is bounded, hence applying the Jensen inequality we get:

∫

A(ε)

√
EPn

[∣∣ĥn,ε(x)− hε(x)
∣∣2p]dx ≤ C

√
EPn

[
‖ĥn,ε − h‖2p2p

]
,

where C depends on A. The rate of the right hand side of the inequality has been studied in
Corollary 1. The proof is now complete. 2

6 Appendix

In this section we collect the proofs of all auxiliary results.

6.1 Proof of Lemma 1

Let (tn)n≥0 be any sequence converging to zero and let Xn be a sequence of compound Poisson
processes with Lévy measure

νn(A) :=
P(Xtn ∈ A)

tn
, ∀A ∈ B(R \ {0}).
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Using the Lévy-Khintchine formula jointly with the fact that any Lévy process has an infinitely
divisible distribution we get:

ϕn(u) := E
[
eiuX

n
1
]
= exp

(∫

R\{0}
(eiux − 1)νn(dx)

)
= exp

(
E
[
eiuXtn

]
− 1

tn

)

= exp

((
E[eiuX1 ]

)tn − 1

tn

)
=: exp

((
ϕ(u)

)tn − 1

tn

)
. (34)

We then deduce that the characteristic function ϕn of Xn
1 converges to ϕ, the characteristic

function of X1, as n goes to infinity. Indeed, from (34), we have

ϕn(u) = exp

(
exp(tn log(ϕ(u))) − 1

tn

)
= exp

(
log(ϕ(u)) +O(tn)

)
.

This implies that the law of Xn
1 converges weakly to the law of X1.

Let us introduce the sequence of measures ρn(dx) = (x2 ∧ 1)νn(dx). From Theorem 8.7 in
[34] it follows that (ρn)n is tight, i.e. supn ρn(R) < ∞ and limℓ→∞ supn

∫
|x|>ℓ ρn(dx). So there

exists a subsequence (ρnk
)k that converges weakly to a finite measure ρ. Let us introduce the

measure ν̃(dx) := (x2 ∧ 1)−1ρ(dx) on R \ {0} and ν̃({0}) = 0. Then, for any function f such
that f(x)(x2 ∧ 1)−1 is bounded, the following equalities hold:

lim
k→∞

∫
f(x)νnk

(dx) = lim
k→∞

∫
f(x)(x2 ∧ 1)−1ρnk

(dx)

=

∫
f(x)(x2 ∧ 1)−1ρ(dx) =

∫
f(x)ν̃(dx)

By definition of νn, this implies that

lim
n→∞

1

tn
E
[
f(Xtn)

]
=

∫
f(x)ν̃(dx).

The uniqueness of ν̃ (see [34], p. 43) joint with the fact that νn converges weakly to ν (since
the law of Xn

1 converges weakly to the law of X1), allow us to conclude that ν̃ ≡ ν. 2

6.2 Proof of Lemma 3

Using the definition (22) we derive that

p∆,ε − hε = hε

(e−λε∆λε∆

1 − e−λε∆
− 1

)
+

∞∑

k=2

e−λε∆(λε∆)k

k!(1 − e−λε∆)
h⋆kε

=
(e−λε∆λε∆

1− e−λε∆
− 1

)
hε + (λε∆)2

∞∑

k=2

e−λε∆(λε∆)k−2

k!(1 − e−λε∆)
h⋆kε .

Taking the Lp norm and using the Young inequality together with the fact that hε is a density
with respect to the Lebesgue measure, i.e. ‖hε‖L1,ε ≤ 1, we get

∥∥p∆,ε − hε
∥∥
Lp,ε

≤
(∣∣∣e

−λε∆λε∆

1 − e−λε∆
− 1

∣∣∣+ (λε∆)2

1− e−λε∆

)
‖hε‖Lp,ε .

32



Under the regime λε∆ → 0 we obtain
∥∥p∆,ε − hε

∥∥
Lp,ε

≤ Cλε∆‖hε‖Lp,ε ,

where C > 2 and λεhε = fε, which completes the proof. 2

6.3 Proof of Lemma 4

We have

n(ε) =

n∑

i=1

1(ε,∞)(|Xi∆ −X(i−1)∆|) = λ̂n,εn∆.

We introduce the centered i.i.d. random variables Vi = 1(ε,∞)(|Xi∆−X(i−1)∆|)−F∆(ε), which
are bounded by 2 and such that E[V 2

i ] ≤ F∆(ε). Applying the Bernstein inequality we have,

P

(∣∣∣n(ε)
n

− F∆(ε)
∣∣∣ > x

)
≤ 2 exp

(
− nx2

2(F∆(ε) +
2x
3 )

)
, x > 0. (35)

Fix x = F∆(ε)/2, on the set Ax =
{∣∣n(ε)

n − F∆(ε)
∣∣ ≤ x

}
we have

n
F∆(ε)

2
≤ n(ε) ≤ n

3F∆(ε)

2
. (36)

Moreover it holds that

E
(
n(ε)−r

)
= E

(
n(ε)−r

1Ac
x

)
+ E

(
n(ε)−r

1Ax

)
.

Since r ≥ 0 and n(ε) ≥ 1, using (35) and (36) we get the following upper bound

E
(
n(ε)−r

)
≤ 2 exp

(
− 3

32nF∆(ε)
)
+

(nF∆(ε)

2

)−r

and the lower bound

E
(
n(ε)−r

)
≥ E

(
n(ε)−r

1Ax

)
≥

(3nF∆(ε)

2

)−r
.

This completes the proof. 2

6.4 Proof of Lemma 5

For the first inequality, the proof is similar to the proof of Lemma 4. Using the definition of
ñ(ε) we have

ñ(ε) =
∑

i∈Iε

IZi∆(ε)6=Z(i−1)∆(ε).

For i ∈ Iε, we set Wi := IZi∆(ε)6=Z(i−1)∆(ε). We have

E(Wi|i ∈ Iε) = P
(
Zi∆(ε) 6= Z(i−1)∆(ε)

∣∣|Xi∆ −X(i−1)∆| > ε
)
= 1− v∆(ε)e

−λε∆

F∆(ε)
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using the independence of M(ε) and Z(ε). The variables Wi − E(Wi|i ∈ Iε) are centered
i.i.d., bounded by 2 and such that the following bound on the variance holds: V(Wi|Iε) ≤
v∆(ε)e−λε∆

F∆(ε) . Applying the Bernstein inequality we have,

P

(∣∣∣ ñ(ε)
n(ε)

−
(
1− v∆(ε)e

−λε∆

F∆(ε)

)∣∣∣ > x
∣∣Iε

)
≤ 2 exp

(
− n(ε)x2

2
( v∆(ε)e−λε∆

F∆(ε) + 2x
3 )

)
)
, x > 0. (37)

Fix x = 1
2 , on the set Ax =

{∣∣ ñ(ε)
n(ε) − (1− v∆(ε)e−λε∆

F∆(ε) )
∣∣ ≤ 1

2

}
we have

n(ε)

6
<

(1
2
− v∆(ε)e

−λε∆

F∆(ε)

)
n(ε) ≤ ñ(ε), (38)

if v∆(ε)
F∆(ε) ≤ 1

3 . It follows from (37), (38) and ñ(ε) ≥ 1 that for r ≥ 0

E
(
ñ(ε)−r

∣∣Iε

)
≤ 2 exp

(
− 3

16n(ε)
)
+

(
n(ε)

6

)−r
.

Finally, using that for all x > 0 we have xre−x ≤ Cr := rre−r we derive

E
(
ñ(ε)−r

∣∣Iε

)
≤ Crn(ε)

−r +
(
n(ε)

6

)−r
,

which leads to the first part of the result.
The second part of the result can be obtained by means of Rosenthal’s inequality. For

r ≥ 0, we have, using that n(ε) ≥ ñ(ε),

E
(
(n(ε) − ñ(ε))r

∣∣Iε

)
≤ Cr

{
E

(∣∣∣n(ε)
(
1− v∆(ε)e−λε∆

F∆(ε)

)
− ñ(ε)

∣∣∣
r∣∣∣Iε

)
+
(
n(ε)v∆(ε)e−λε∆

F∆(ε)

)r}
.

The Rosenthal inequality leads to, for r ≥ 2,

E
(∣∣∣n(ε)

(
1− v∆(ε)e−λε∆

F∆(ε)

)
− ñ(ε)

∣∣∣
r∣∣∣Iε

)
≤ Cr

(
n(ε)v∆(ε)e−λε∆

F∆(ε)

)r/2
.

Thanks to Jensen’s inequality we can also treat the case 0 < r < 2 recovering the same
inequality. Therefore, it follows that for all r > 0

E
(
(n(ε)− ñ(ε))r

∣∣Iε

)
≤ C

{(
n(ε)

v∆(ε)e
−λε∆

F∆(ε)

)r/2
+

(
n(ε)

v∆(ε)e
−λε∆

F∆(ε)

)r}
.

This completes the proof. 2
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