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Abstract

“Yet another paper on” the implementation of read/write registers in crash-prone asynchronous message-

passing systems! Yes..., but, differently from its predecessors, this paper looks for a communication ab-

straction which captures the essence of such an implementation in the same sense that total order broadcast

can be associated with consensus, or message causal delivery can be associated with causal read/write reg-

isters. To this end, the paper introduces a new communication abstraction, named SCD-broadcast (SCD

standing for “Set Constrained Delivery”), which, instead of a single message, delivers to processes sets

of messages (whose size can be arbitrary), such that the sequences of message sets delivered to any two

processes satisfies some constraints. The paper then shows that: (a) SCD-broadcast allows for a very

simple implementation of a snapshot object (and consequently also of atomic read/write registers) in crash-

prone asynchronous message-passing systems; (b) SCD-broadcast can be built from snapshot objects (hence

SCD-broadcast and snapshot objects –or read/write registers– are “computationally equivalent”); (c) SCD-

broadcast can be built in message-passing systems where any minority of processes may crash (which is the

weakest assumption on the number of possible process crashes needed to implement a read/write register).

Keywords: Asynchronous system, Atomicity, Communication abstraction, Linearizability, Message-passing

system, Process crash, Read/write atomic register, Snapshot object.



1 Introduction

The “one-shot” terracotta tablets introduced and used at Sumer about 3030 BC [23], and the “multi-shot”

palimpsests used in the middle-age, can be considered as ancestors of the read/write register abstraction. Such

an object provides its users with a write operation which defines a new value of the register, and a read operation

which returns its value. When considering sequential computing, read/write registers are universal in the sense

that they are assumed to allow solving any problem that can be solved [37].

On the variety of read/write registers and their distributed implementation In a shared read/write mem-

ory system, the registers are given for free. The situation is different in a message-passing system, where the

computing entities (processes) communicate by sending and receiving messages transmitted through a com-

munication network. Hence, in such a distributed context, a register is not given for free, but constitutes a

communication abstraction which must be built by a distributed algorithm with the help of the local memories

of the processes and the communication network.

Several types of registers have been proposed. They differ according to (a) their size (from binary registers

which contain a single bit, to bounded and unbounded registers); (b) their behavior in the presence of concur-

rency (safe, regular, atomic [25]); (c) the number of processes which are allowed to read them (Single-Reader

-SR- vs Multi-Reader -MR- register); and (d) the number of processes which are allowed to write them (Single-

Writer -SR- vs Multi-Writer -MR- register), which gives four possible combinations from SWSR to MWMR.

There are algorithms building MWMR atomic (bounded and unbounded) registers from SWSR binary safe

registers [25] (see [8, 26, 34] for surveys of such algorithms).

As far as a read/write register is concerned, atomicity means that (a) each read or write operation appears

as if it had been executed instantaneously at a single point of the time line, (b) this point appears between its

start event and its end event, (c) no two operations appear at the same point of the time line, and (d) a read

returns the value written by the closest preceding write operation (or the initial value of the register if there

is no preceding write) [25, 27]. Linearizability is atomicity extended to any object defined from a sequential

specification on total operations [18]. In the following, we consider the terms atomicity and linearizability as

synonyms. Hence, a sequence of read and write operations satisfying atomicity is said to be linearizable, and is

called a linearization. The point of the time line at which an operation appears to have been executed is called

its linearization point.

Many distributed algorithms have been proposed, which build a read/write register on top of a message-

passing system, be it failure-free or failure-prone. In the failure-prone case, the addressed failure models

are the process crash failure model, and the Byzantine process failure model (see textbooks, e.g., [8, 26,

32, 33]). When considering process crash failures (the one considered in this paper1), the most famous of

these algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [5]. This algorithm, usually called

ABD according to the names of its authors, considers an n-process asynchronous system in which up to

t < n/2 processes may crash. As t < n/2 is an upper bound of the number of process crashes which can be

tolerated (see [5]), this algorithm is t-resilient optimal. Its instances implementing SWMR or MWMR atomic

read/write registers rely on (a) quorums [38], and (b) a classical broadcast/reply communication pattern. This

communication pattern is used twice in a read operation, and once (twice) in a write operation for an SWMR

(MWMR) atomic read/write register.

Other algorithms –each with its own properties– implementing atomic read/write registers on top of crash-

prone asynchronous message-passing systems can be found in the literature ([4, 12, 17, 29] to cite a few; see

also the analytic presentation given in [36]).

From registers to snapshot objects The snapshot object was introduced in [1, 3]. A snapshot object is an

array REG [1..m] of atomic read/write registers which provides the processes with two operations, denoted

write() and snapshot(). If the base registers are SWMR the snapshot is called SWMR snapshot (and we

have then m = n). In this case, the invocation of write(v) by a process pi assigns v to REG [i], and the

invocation of snapshot() by a process pi returns the value of the full array as if the operation had been executed

instantaneously. If the base registers are MWMR, the snapshot is called MWMR snapshot. The invocation of

write(r, v), where 1 ≤ r ≤ m, by a process pi assigns v to REG [r], and snapshot() is defined as before.

Said another way, the operations write() and snapshot() are atomic, i.e., in any execution of an SWMR (or

MWMR) snapshot object, its operations write() and snapshot() are linearizable.

Implementations of both SWMR and MWMR snapshot objects on top of read/write atomic registers have

1For Byzantine failures, see for example [28].
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been proposed (e.g., [1, 3, 19, 20]). The “hardness” to build snapshot objects in read/write systems and as-

sociated lower bounds are presented in the survey [13]. The best algorithm known to implement an SWMR

snapshot requires O(n log n) read/write on the base SWMR registers for both the write() and snapshot() oper-

ations [6]. As far as MWMR snapshot objects are concerned, there are implementations where each operation

has an O(n) cost2.

As far as the construction of an SWMR (or MWMR) snapshot object in crash-prone asynchronous message-

passing systems where t < n/2 is concerned, it is possible to stack two constructions: first an algorithm im-

plementing SWMR (or MWMR) atomic read/write registers (such as ABD), and, on top of it, an algorithm

implementing an SWMR (or MWMR) snapshot object. This stacking approach provides objects whose op-

eration cost is O(n2 log n) messages for SWMR snapshot, and O(n2) messages for MWMR snapshot. An

algorithm based on the same communication pattern as ABD, which builds an atomic SWMR snapshot object

“directly” (i.e., without stacking algorithms) was recently presented in [11] (the aim of this algorithm is to

perform better that the stacking approach in concurrency-free executions).

Another look at the implementation of read/write registers and snapshot objects In sequential computing,

there are “natural” pairings linking data structures and control structures. The most simple examples are the

pair “array and for loop”, and the pair “tree and recursion”.

When we look at the implementation of a causal read/write register [2] on top of a (crash-free or crash-

prone) message-passing system, the causal message delivery broadcast abstraction [9, 35] is the appropriate

communication abstraction. Namely, given this abstraction for free, the algorithms implementing the read and

write operations build on top of it, become very simple, need only a few lines, and are easy to understand and

to prove correct. Of course, this is due to the fact that the causal broadcast abstraction captures and abstracts

the causality relation needed to implement a causal read/write register. Similarly, total order broadcast is the

communication abstraction associated with the consensus object [10]. This is summarized in Table 1.

Concurrent object Communication abstraction

Causal read/write registers Causal message delivery [9, 35]

Consensus Total order broadcast [10]

Snapshot object (and R/W register) SCD-broadcast (This paper)

Table 1: Associating objects and communication abstractions in a wait-free model

As already said, all the algorithms we know which implement atomic read/write registers, and (by stacking

transitivity or directly) SWMR or MWMR snapshots objects, on top of crash-prone asynchronous message-

passing systems, are based on a broadcast/reply pattern plus the use of intersecting quorums. Hence, the

following question naturally arises: Is this approach the “only” way to implement a snapshot object (or an

atomic register), or is there a specific communication abstraction which captures the essence and simplifies the

implementation of snapshot objects (and atomic read/write registers)?

Content of the paper Informatics in general (and distributed computing in particular) is a science of ab-

stractions, and this paper is distributed programming abstraction-oriented. It strives to address a “desired level

of abstraction and generality – one that is broad enough to encompass interesting new situations yet specific

enough to address the crucial issues” as expressed in [16]. More precisely, it answers the previous question in a

positive way. To this end, it presents a simple broadcast abstraction which matches –and therefore captures the

essence of– snapshot objects (and atomic read/write registers). We call it Set-Constrained Delivery Broadcast

(in short SCD-broadcast). Given this communication abstraction, it is possible to quorum-free build snapshot

objects, and vice versa. Hence, similarly to consensus and total order broadcast, SCD-broadcast and snapshot

objects have the same computational power (Table 1).

The SCD-broadcast communication abstraction allows a process to broadcast messages, and to deliver

sets of messages (instead of single messages) in such a way that, if a process pi delivers a message set3 ms
containing a message m, and later delivers a message set ms′ containing a message m′, then no process pj can

deliver first a set containing m′ and later another set containing m. Let us notice that pj is not prevented from

delivering m and m′ in the same set.

2Snapshot objects built in read/write models enriched with operations such as Compare&Swap, or LL/SC, have also been consid-

ered, e.g.,[21, 19]. Here we are interested in pure read/write models.
3In the rest of the paper, the identifiers starting with”ms” denote message sets.
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The implementation of an instance of SCD-broadcast costs O(n2) messages. It follows that the cost of

a snapshot operation (or a read/write register operation) on top of a message-passing asynchronous system,

where any minority of processes may crash, is also O(n2) for both SWMR and MWMR snapshot objects (i.e.,

better than the stacking approach for SWMR snapshot objects). Additionally, be the snapshot objects that are

built SWMR or MWMR, their implementation differ only in the fact that their underling read/write registers

are SWMR or MWMR. This provides us with a noteworthy genericity-related design simplicity.

Of course, there is rarely something for free. The algorithms implementing the snapshot and write opera-

tions are simple because the SCD-broadcast abstraction hides enough “implementation details” and provides

consequently a high level abstraction (much higher than the simple broadcast used in ABD-like algorithms).

Its main interest lies in its capture of the high level message communication abstraction that, despite asyn-

chrony and process failures, allows simple message-passing implementations of shared memory objects such

as snapshot objects and atomic read/write registers.

Roadmap The paper is composed of 7 sections. Section 2 presents the two base computation models con-

cerned in this paper, (read/write and message-passing). Section 3 presents the SCD-broadcast communication

abstraction. Then, Section 4 presents a simple algorithm which implements a snapshot object on top of an

asynchronous system enriched with SCD-broadcast, in which any number of processes may crash. Section 6

addresses the other direction, namely, it presents an algorithm building the SCD-broadcast abstraction on top

of an asynchronous system enriched with snapshot objects and where any number of processes may crash. Sec-

tion 7 concludes the paper. A noteworthy feature of the algorithms that are presented lies in their simplicity,

which is a first class property.

Appendix A describes an implementation of SCD-broadcast suited to asynchronous message-passing sys-

tems where any minority of processes may crash. Hence, being implementable in the weakest4 message-

passing system model in which a read/write register can be built, SCD-broadcast is not “yet another oracle”

which makes things simpler to understand but cannot be implemented. Appendix B presents simplified SCD-

based algorithms which build atomic and sequentially consistent read/write registers.

2 Basic Computation Models

This section presents two basic computation models. In both cases, the process model is the same.

2.1 Processes

The computing model is composed of a set of n asynchronous sequential processes, denoted p1, ..., pn. “Asyn-

chronous” means that each process proceeds at its own speed, which can be arbitrary and always remains

unknown to the other processes.

A process may halt prematurely (crash failure), but it executes its local algorithm correctly until its possible

crash. The model parameter t denotes the maximal number of processes that may crash in a run. A process that

crashes in a run is said to be faulty. Otherwise, it is non-faulty. Hence a faulty process behaves as a non-faulty

process until it crashes.

2.2 Basic crash-prone asynchronous shared memory model

Atomic read/write register The notion of an atomic read/write register has been formalized in [25, 27].

An MWMR atomic register (say REG) is a concurrent object which provides each process with an operation

denoted REG .write(), and an operation denoted REG .read(). When a process invokes REG .write(v) it

defines v as being the new value of REG . An MWMR atomic register is defined by the following set of

properties.

• Liveness. An invocation of an operation by a non-faulty process terminates.

• Consistency (safety). All the operations invoked by the processes, except possibly –for each faulty

process– the last operation it invoked, appear as if they have been executed sequentially and this sequence

of operations is such that:

– each read returns the value written by the closest write that precedes it (or the initial value of REG

if there is no preceding write),

4 From the point of view of the maximal number of process crashes that can be tolerated, assuming failures are independent.
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– if an operation op1 terminates before an operation op2 starts, then op1 appears before op2 in the

sequence.

This set of properties states that, from an external observer point of view, the read/write register appears as if

it is accessed sequentially by the processes, and this sequence (a) respects the real-time access order, and (b)

belongs to the sequential specification of a register.

Notation The previous computation model is denoted CARWn,t[∅] (Crash Asynchronous Read-Write).

This basic read/write model is also called wait-free read/write model. The symbol ∅ means there is no specific

constraint on t, which is equivalent to t < n, as it is always assumed that not all processes crash.

Snapshot object This object was defined in the introduction. As we have seen, snapshot objects can be built in

CARWn,t[∅]. As we have seen there are two types of snapshot objects. SWMR snapshot objects (whose base

registers are SWMR), and MWMR snapshot objects (whose base registers are MWMR). In the following we

consider MWMR snapshot objects, but the algorithms can be trivially adapted to work with SWMR snapshot

objects.

CARWn,t[∅] enriched with snapshot objects is denoted CARWn,t[snapshot]. As a snapshot object can be

built in CARWn,t[∅] this model has the same computational power as CARWn,t[∅]. It only offers a higher

abstraction level.

2.3 Basic crash-prone asynchronous message-passing model

Communication Each pair of processes communicate by sending and receiving messages through two uni-

directional channels, one in each direction. Hence, the communication network is a complete network: any

process pi can directly send a message to any process pj (including itself). A process pi invokes the operation

“send TYPE(m) to pj” to send to pj the message m, whose type is TYPE. The operation “receive TYPE() from

pj” allows pi to receive from pj a message whose type is TYPE.

Each channel is reliable (no loss, corruption, nor creation of messages), not necessarily first-in/first-out,

and asynchronous (while the transit time of each message is finite, there is no upper bound on message transit

times).

Let us notice that, due to process and message asynchrony, no process can know if another process crashed

or is only very slow.

Notation and necessary and sufficient condition This computation model is denoted CAMPn,t[∅] (Crash

AsynchronousMessage-Passing).

The constraint (t < n/2) is a necessary and sufficient condition to implement an atomic read/write register

in CAMPn,t[∅] [5]. Hence, the model CAMPn,t[∅] whose runs are constrained by t < n/2 is denoted

CAMPn,t[t < n/2].

3 A Broadcast Abstraction: Set-Constrained Message Delivery

Definition The set-constrained broadcast abstraction (SCD-broadcast) provides the processes with two oper-

ations, denoted scd_broadcast() and scd_deliver(). The first operation takes a message to broadcast as input

parameter. The second one returns a non-empty set of messages to the process that invoked it. Using a clas-

sical terminology, when a process invokes scd_broadcast(m), we say that it “scd-broadcasts a message m”.

Similarly, when it invokes scd_deliver() and obtains a set of messages ms, we say that it “scd-delivers a set of

messages ms”. By a slight abuse of language, we also say that a process “scd-delivers a message m” when it

delivers a message m ∈ ms.

SCD-broadcast is defined by the following set of properties, where we assume –without loss of generality–

that all the messages that are scd-broadcast are different.

• Validity. If a process scd-delivers a set containing a message m, then m was scd-broadcast by some

process.

• Integrity. A message is scd-delivered at most once by each process.

• MS-Ordering. If a process pi scd-delivers first a message m belonging to a set msi and later a message

m′ belonging to a set ms′i 6= msi, then no process scd-delivers first the message m′ in some scd-

delivered set ms′j and later the message m in some scd-delivered set msj 6= ms′j .
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• Termination-1. If a non-faulty process scd-broadcasts a message m, it terminates its scd-broadcast

invocation and scd-delivers a message set containing m.

• Termination-2. If a non-faulty process scd-delivers a message m, every non-faulty process scd-delivers

a message set containing m.

Termination-1 and Termination-2 are classical liveness properties (found for example in Uniform Reliable

Broadcast). The other ones are safety properties. Validity and Integrity are classical communication-related

properties. The first states that there is neither message creation nor message corruption, while the second

states that there is no message duplication.

The MS-Ordering property is new, and characterizes SCD-broadcast. It states that the contents of the sets

of messages scd-delivered at any two processes are not totally independent: the sequence of sets scd-delivered

at a process pi and the sequence of sets scd-delivered at a process pj must be mutually consistent in the sense

that a process pi cannot scd-deliver first m ∈ msi and later m′ ∈ ms′i 6= msi, while another process pj
scd-delivers first m′ ∈ ms′j and later m ∈ msj 6= ms′j . Let us nevertheless observe that if pi scd-delivers first

m ∈ msi and later m′ ∈ ms′i, pj may scd-deliver m and m′ in the same set of messages.

An example Let m1, m2, m3, m4, m5, m6, m7, m8, ... be messages that have been scd-broadcast by

different processes. The following scd-deliveries of message sets by p1, p2 and p3 respect the definition of

SCD-broadcast:

• at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}.

• at p2: {m1}, {m3,m2}, {m6,m4,m5}, {m7}, {m8}.

• at p3: {m3,m1,m2}, {m6,m4,m5}, {m7}, {m8}.

Differently, due to the scd-deliveries of the sets including m2 and m3, the following scd-deliveries by p1 and

p2 do not satisfy the MS-broadcast property:

• at p1: {m1,m2}, {m3,m4,m5}, ...

• at p2: {m1,m3}, {m2}, ...

A containment property Let msℓi be the ℓ-th message set scd-delivered by pi. Hence, at some time, pi
scd-delivered the sequence of message sets ms1i , · · · ,msxi . Let MSx

i = ms1i ∪ · · · ∪ msxi . The following

property follows directly from the MS-Ordering and Termination-2 properties:

• Containment. ∀ i, j, x, y: (MSx
i ⊆ MS

y
j ) ∨ (MS

y
j ⊆ MSx

i ).

Remark 1: Weakening SCD-broadcast If the messages in a message set are delivered one at a time, and the

MS-Ordering property is suppressed, SCD-broadcast boils down to Reliable Broadcast.

Remark 2: On the partial order created by the message sets The MS-Ordering and Integrity properties

establish a partial order on the set of all the messages, defined as follows. Let 7→i be the local message delivery

order at a process pi defined as follows: m 7→i m′ if pi scd-delivers the set containing m before the set

containing m′. As no message is scd-delivered twice, it is easy to see that 7→i is a partial order (locally know

by pi). The reader can check that there is a total order (which remains unknown to the processes) on the whole

set of messages, that complies with the partial order ∪1≤i≤n 7→i. This is where SCD-broadcast can be seen as

a weakening of total order broadcast.

4 From SCD-broadcast to an MWMR Snapshot Object

Let CAMPn,t[SCD-broadcast] denote CAMPn,t[∅] enriched with the SCD-broadcast abstraction. Hence,

this abstraction is given for free. This section presents and proves correct a simple algorithm building an

MWMR snapshot object on top of CAMPn,t[SCD-broadcast]. The same algorithm with very few simple

modifications can be used to build SWMR or MWMR atomic registers in CAMPn,t[SCD-broadcast] (see

Appendix B).
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4.1 Building an MWMR snapshot object on top of CAMPn,t[SCD-broadcast]
Let REG [1..m] denote the MWMR snapshot object that is built.

Local representation of REG at a process pi At each register pi, REG [1..m] is represented by three local

variables regi[1..m] (data part), plus tsai[1..m] and donei (control part).

• done i is a Boolean variable.

• reg i[1..m] contains the current value of REG [1..m], as known by pi.

• tsai[1..m] is an array of timestamps associated with the values stored in reg i[1..m]. A timestamp is a

pair made of a local clock value and a process identity. Its initial value is 〈0,−〉. The fields associated

with tsai[r] are denoted 〈tsai[r].date, tsai[r].proc〉.

Timestamp-based order relation We consider the classical lexicographical total order relation on times-

tamps, denoted <ts. Let ts1 = 〈h1, i1〉 and ts2 = 〈h2, i2〉. We have ts1 <ts ts2
def
= (h1 < h2) ∨ ((h1 =

h2) ∧ (i1 < i2)).

Algorithm 1: snapshot operation (Lines 1-4) When pi invokes REG .snapshot(), it first sets done i to

false, and invokes scd_broadcast SYNC(i). SYNC() is a synchronization message, whose aim is to entail the

refreshment of the value of reg i[1..m] (lines 11-17) which occurs before the setting of donei to true (line 18).

When this happens, pi returns the value of its local variable reg i[1..m] and terminates its snapshot invocation.

operation snapshot() is

(1) donei ← false;

(2) scd_broadcast SYNC(i);
(3) wait(done i);
(4) return(reg i[1..m]).

operation write(r, v) is

(5) donei ← false;

(6) scd_broadcast SYNC(i);
(7) wait(done i);
(8) donei ← false;

(9) scd_broadcast WRITE(r,v, 〈tsa i[r].date+ 1, i〉);
(10) wait(done i).

when the message set { WRITE(rj1, vj1 , 〈datej1 , j1〉), · · · , WRITE(rjx, vjx , 〈datejx , jx〉),
SYNC(jx+1), · · · , SYNC(jy) } is scd-delivered do

(11) for each r such that WRITE(r,−,−) ∈ scd-delivered message set do

(12) let 〈date,writer〉 be the greatest timestamp in the messages WRITE(r,−,−);
(13) if (tsa i[r] <ts 〈date,writer〉)
(14) then let v the value in WRITE(r,−, 〈date,writer〉);
(15) regi[r]← v; tsa i[r]← 〈date,writer〉
(16) end if

(17) end for;

(18) if ∃ℓ : jℓ = i then donei ← true end if.

Algorithm 1: Construction of an MWMR snapshot object CAMPn,t[SCD-broadcast] (code for pi)

Algorithm 1: write operation (Lines 5-10) When a process pi wants to assign a value v to REG [r], it

invokes REG .write(r, v). This operation is made up of two parts. First pi executes a re-synchronization

(lines 5-7, exactly as in the snapshot operation) whose side effect is here to provide pi with an up-to-date

value of tsai[r].date. In the second part, pi associates the timestamp 〈tsa i[r].date+ 1, i〉 with v, and invokes

scd_broadcast WRITE(r, v, 〈tsa i[r].date + 1, i〉) (line 9). In addition to informing the other processes on its

write of REG [r], this message WRITE() acts as a re-synchronization message, exactly as a message SYNC(i).
When this synchronization terminates (i.e., when the Boolean done i is set to true), pi returns from the write

operation (line 10).

Algorithm 1: scd-delivery of a set of messages When pi scd-delivers a message set, namely,

{ WRITE(rj1 , vj1 , 〈datej1 , j1〉), · · · , WRITE(rjx , vjx , 〈datejx , jx〉), SYNC(jx+1), · · · , SYNC(jy) }
it first looks if there are messages WRITE(). If it is the case, for each register REG [r] for which there are
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messages WRITE(r,−,−) (line 11), pi computes the maximal timestamp carried by these messages (line 12),

and updates accordingly its local representation of REG [r] (lines 13-15). Finally, if pi is the sender of one of

these messages (WRITE() or SYNC()), donei is set to true, which terminates pi’s re-synchronization (line 18).

Message cost An invocation of snapshot() involves one invocation of scd_broadcast(), and an invocation

of write() involves two such invocations. It is shown in Appendix A that, in a message-passing system,

scd_broadcast() costs O(n2) protocol messages. It follows that, in such systems, the message cost of both

operations of a snapshot object is O(n2). (This remains true for SWMR snapshot objects, see Appendix B.)

4.2 Proof of Algorithm 1

As they are implicitly used in the proofs that follow, let us recall the properties of the SCD-broadcast ab-

straction. The non-faulty processes scd-deliver the same messages (exactly one each), and each of them was

scd-broadcast. As a faulty process behaves correctly until it crashes, it scd-delivers a subset of the messages

scd-delivered by the non-faulty processes.

Without loss of generality, we assume that there is an initial write operation issued by a non-faulty process.

Moreover, if a process crashes in a snapshot operation, its snapshot is not considered; if a process crashes in a

write operation, its write is considered only if the message WRITE() it sent at line 9 is scd-delivered to at least

one non-faulty process (and by the Termination-2 property, at least to all non-faulty processes). Let us notice

that a message SYNC() scd-broadcast by a process pi does not modify the local variables of the other processes.

5 Proof of Lemmas for Theorem 1

Lemma 1 If a non-faulty process invokes an operation, it returns from its invocation.

Proof Let pi be a non-faulty process that invokes a read or write operation. By the Termination-1 property

of SCD-broadcast, it eventually receives a message set containing the message SYNC() or WRITE() it sends at

line 2, 6 or 9. As all the statements associated with the scd-delivery of a message set (lines 11-18) terminate,

it follows that the synchronization Boolean donei is eventually set to true. Consequently, pi returns from the

invocation of its operation. 2Lemma 1

Extension of the relation <ts The relation <ts is extended to a partial order on arrays of timestamps, de-

noted≤tsa , defined as follows: tsa1[1..m] ≤tsa tsa2[1..m]
def
= ∀r : (tsa1[r] = tsa2[r]∨tsa1[r] <ts tsa2[r]).

Moreover, tsa1[1..m] <tsa tsa2[1..m]
def
= (tsa1[1..m] ≤tsa tsa2[1..m]) ∧ (tsa1[1..m] 6= tsa2[1..m]). Defi-

nition Let TSAi be the set of the array values taken by tsi[1..m] at line 18 (end of the processing of a message

set by process pi). Let TSA = ∪1≤i≤nTSAi.

Lemma 2 The order ≤tsa is total on TSA.

Proof Let us first observe that, for any i, all values in TSAi are totally ordered (this comes from tsi[1..m]
whose entries can only increase, lines 13 and 15). Hence, let tsa1[1..m] be an array value of TSAi, and

tsa2[1..m] an array value of TSAj , where i 6= j.

Let us assume, by contradiction, that ¬(tsa1 ≤tsa tsa2) and ¬(tsa2 ≤tsa tsa1). As ¬(tsa1 ≤tsa

tsa2), there is a registers r such that tsa2[r] < tsa1[r]. According to lines 13 and 15, there is a message

WRITE(r,−, tsa1[r]) received by pi when tsa i = tsa1 and not received by pj when tsaj = tsa2 (because

tsa2[r] < tsa1[r]). Similarly, there is a message WRITE(r′,−, tsa2[r′]) received by pj when tsaj = tsa2 and

not received by pi when tsai = tsa1. This situation contradicts the MS-Ordering property, from which we

conclude that either tsa1 ≤tsa tsa2 or tsa2 ≤tsa tsa1. 2Lemma 2

Definitions Let us associate a timestamp ts(write(r, v)) with each write operation as follows. Let pi be the

invoking process; ts(write(r, v)) is the timestamp of v as defined by pi at line 9, i.e., 〈tsa i[r].date+ 1, i〉.
Let op1 and op2 be any two operations. The relation ≺ on the whole set of operations is defined as follows:

op1 ≺ op2 if op1 terminated before op2 started. It is easy to see that ≺ is a real-time-compliant partial order

on all the operations.

Lemma 3 No two distinct write operations on the same register write1(r, v) and write2(r, w) have the same

timestamp, and (write1(r, v) ≺ write2(r, w))⇒ (ts(write1) <ts ts(write2)).
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Proof Let 〈date1, i〉 and 〈date2, j〉 be the timestamp of write1(r, v) and write2(r, w), respectively. If i 6= j,

write1(r, v) and write2(r, w) have been produced by different processes, and their timestamp differ at least in

their process identity.

So, let us consider that the operations have been issued by the same process pi, with write1(r, v) first.

As write1(r, v) precedes write2(r, w), pi first invoked scd_broadcast WRITE(r, v, 〈date1, i〉) (line 9) and

later WRITE(r, w, 〈date2, i〉). It follows that these SCD-broadcast invocations are separated by a local re-

set of the Boolean donei at line 16. Moreover, before the reset of donei due to the scd-delivery of the

message {· · · ,WRITE(r, v, 〈date1, i〉), · · · }, we have tsai[r].datei ≥ date1 (lines 12-16). Hence, we have

tsa i[r].date ≥ date1 before the reset of done i (line 18). Then, due to the “+1” at line 9, WRITE(r, w, 〈date2, i〉)
is such that date2 > date1, which concludes the proof of the first part of the lemma.

Let us now consider that write1(r, v) ≺ write2(r, w). If write1(r, v) and write2(r, w) have been produced

by the same process we have date1 < date2 from the previous reasoning. So let us assume that they have

been produced by different processes pi and pj . Before terminating write1(r, v) (when the Boolean donei is

set true at line 18), pi received a message set ms1i containing the message WRITE(r, v, 〈date1, i〉). When

pj executes write2(r, w), it first invokes scd_broadcast SYNC(j) at line 6. Because write1(r, v) terminated

before write2(r, w) started, this message SYNC(j) cannot belong to ms1i.
Due to Integrity and Termination-2 of SCD-broadcast, pj eventually scd-delivers exactly one message

set ms1j containing WRITE(r, v, 〈date1, i〉). Moreover, it also scd-delivers exactly one message set ms2j
containing its own message SYNC(j). On the the other side, pi scd-delivers exactly one message set ms2i
containing the message SYNC(j). It follows from the MS-Ordering property that, if ms2j 6= ms1j , pj cannot

scd-deliver ms2j before ms1j . Then, whatever the case (ms1j = ms2j or ms1j is scd-delivered at pj before

ms2j), it follows from the fact that the messages WRITE() are processed (lines 11-17) before the messages

SYNC(j) (line 18), that we have tsaj [r] ≥ 〈date1, i〉 when donej is set to true. It then follows from line 9

that date2 > date1, which concludes the proof of the lemma. 2Lemma 3

Associating timestamp arrays with operations Let us associate a timestamp array tsa(op)[1..m] with each

operation op() as follows.

• Case op() = snapshot(). Let pi be the invoking process; tsa(op) is the value of tsa i[1..m] when pi
returns from the snapshot operation (line 4).

• Case op() = write(r, v). Let mintsa({A}), where A is a set of array values, denote the smallest array

value of A according to <tsa . Let tsa(op)
def
= mintsa({tsa [1..m] ∈ TSA such that ts(op) ≤ts tsa[r]}).

Hence, tsa(op) is the first tsa[1..m] of TSA, that reports the operation op() = write(r, v).

Lemma 4 Let op and op′ be two distinct operations such that op ≺ op′. We have tsa(op) ≤tsa tsa(op′).
Moreover, if op′ is a write operation, we have tsa(op) <tsa tsa(op′).

Proof Let pi and pj be the processes that performed op and op′, respectively. Let SYNCj be the SYNC(j)
message sent by pj (at line 2 or 6) during the execution of op′. Let term_tsai be the value of tsa i[1..m] when

op terminates (line 4 or 10), and sync_tsaj the value of tsaj [1..m] when donej becomes true for the first time

after pj sent SYNCj (line 3 or 7). Let us notice that term_tsa i and sync_tsaj are elements of the set TSA.

According to lines 13 and 15, for all r, tsa i[r] is the largest timestamp carried by a message WRITE(r, v,−)
received by pi in a message set before op terminates. Let m be a message such that there is a set sm scd-

delivered by pi before it terminated op. As pj sent SYNCj after pi terminated, pi did not receive any set

containing SYNCj before it terminated op. By the properties Termination-2 and MS-Ordering, pj received

message m in the same set as SYNCj or in a message set sm′ received before the set containing SYNCj .

Therefore, we have term_tsa i ≤tsa sync_tsa j .

If op is a snapshot operation, then tsa(op) = term_tsa i . Otherwise, op() = write(r, v). As pi has

to wait until it processes a set of messages including its WRITE() message (and executes line 18), we have

ts(op) <ts term_tsa i [r]. Finally, due to the fact that term_tsa i ∈ TSA and Lemma 2, we have tsa(op) ≤tsa

term_tsa i .

If op′ is a snapshot operation, then sync_tsa j = tsa(op′) (line 4). Otherwise, op() = write(r, v) and

thanks to the +1 in line 9, sync_tsa j [r] is strictly smaller than tsa(op′)[r] which, due to Lemma 2, implies

sync_tsa j <tsa tsa(op′).

8



It follows that, in all cases, we have tsa(op) ≤tsa term_tsa i ≤tsa sync_tsa j ≤tsa tsa(op′) and if op′ is a

write operation, we have tsa(op) ≤tsa term_tsa i ≤tsa sync_tsa j <tsa tsa(op′), which concludes the proof

of the lemma. 2Lemma 4

The previous lemmas allow the operations to be linearized (i.e., totally ordered in an order compliant with

both the sequential specification of a register, and their real-time occurrence order) according to a total order

extension of the reflexive and transitive closure of the→lin relation defined thereafter.

Definition 1 Let op, op′ be two operations. We define the→lin relation by op→lin op′ if one of the following

properties holds:

• op ≺ op′,

• tsa(op) <tsa tsa(op′),

• tsa(op) = tsa(op′), op is a write operation and op′ is a snapshot operation,

• tsa(op) = tsa(op′), op and op′ are two write operations on the same register and ts(op) <ts ts(op
′),

Lemma 5 The snapshot object built by Algorithm 1 is linearizable.

Proof We recall the definition of the→lin relation: op→lin op′ if one of the following properties holds:

• op ≺ op′,

• tsa(op) <tsa tsa(op′),

• tsa(op) = tsa(op′), op is a write operation and op′ is a snapshot operation,

• tsa(op) = tsa(op′), op and op′ are two write operations on the same register and ts(op) <ts ts(op
′),

We define the→⋆
lin relation as the reflexive and transitive closure of the→lin relation.

Let us prove that the →⋆
lin relation is a partial order on all operations. Transitivity and reflexivity are

given by construction. Let us prove antisymmetry. Suppose there are op0, op2, ..., opm such that op0 = opm
and opi →lin opi+1 for all i < m. By Lemma 4, for all i < m, we have tsa(opi) ≤tsa tsa(opi+1), and

tsa(opm) = tsa(op0), so the timestamp array of all operations are the same. Moreover, if opi is a snapshot

operation, then opi ≺ op(i+1)%m is the only possible case (% stands for “modulo”) , and by Lemma 4 again,

op(i+1)%m is a snapshot operation. Therefore, only two cases are possible.

• Let us suppose that all the opi are snapshot operations and for all i, opi ≺ op(i+1)%m. As ≺ is a partial

order relation, it is antisymmetric, so all the opi are the same operation.

• Otherwise, all the opi are write operations. By Lemma 4, for all opi 6≺ op(i+1)%m. The operations

opi and opi+1%m are ordered by the fourth point, so they are write operations on the same register and

ts(opi) <ts ts(opi+1%m). By antisymmetry of the <ts relation, all the opi have the same timestamp,

so by Lemma 3, they are the same operation, which proves antisymmetry.

Let ≤lin be a total order extension of→⋆
lin. Relation ≤lin is real-time compliant because→⋆

lin contains ≺.

Let us consider a snapshot operation op and a register r such that tsa(op)[r] = 〈date1, i〉. According to

line 10, it is associated to the value v that is returned by read1() for r, and comes from a WRITE(r, v, 〈date1, i〉)
message sent by a write operation opr = write(r, v). By definition of tsa(opr), we have tsa(opr) ≤tsa

tsa(op) (Lemma 4), and therefore opr ≤lin op. Moreover, for any different write operation op′r on r, by

Lemma 3, ts(op′r) 6= ts(opr). If ts(op′r) <ts ts(opr), then op′r ≤lin opr. Otherwise, tsa(op) <tsa tsa(op′r),
and (due to the first item of the definition of→lin) we have op ≤lin op′r. In both cases, the value written by

opr is the last value written on r before op, according to ≤lin. 2Lemma 5

Theorem 1 Algorithm 1 builds an MWMR snapshot object in the system model CAMPn,t[SCD-broadcast].

Proof The proof follows from Lemmas 1-5. 2Theorem 1
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6 From SWMR Snapshot to SCD-broadcast

This section presents an algorithm which builds the SCD-broadcast abstraction in CARWn,t[snapshot]. This

algorithm completes the computational equivalence of snapshot and SCD-broadcast. (SWMR snapshot objects

can be easily implemented in CAMPn,t[SCD-broadcast] by instantiating Algorithm 1 with m = n, and only

allowing pi to invoke REG .write(r,−).)

6.1 Algorithm 2

Shared objects The shared memory is composed of two SWMR snapshot objects (as defined above). Let ǫ
denote the empty sequence.

• SENT [1..n]: is a snapshot object, initialized to [∅, · · · , ∅], such that SENT [i] contains the messages

scd-broadcast by pi.

• SETS_SEQ [1..n]: is a snapshot object, initialized to [ǫ, · · · , ǫ], such that SETS_SEQ [i] contains the

sequence of the sets of messages scd-delivered by pi.

The notation ⊕ is used for the concatenation of a message set at the end of a sequence of message sets.

Local objects Each process pimanages the following local objects.

• sent i is a local copy of the snapshot object SENT .

• sets_seq i is a local copy of the snapshot object SETS_SEQ .

• to_deliveri is an auxiliary variable whose aim is to contain the next message set that pi has to scd-deliver.

The function members(set_seq) returns the set of all the messages contained in set_seq.

Description of Algorithm 2 When a process pi invokes scd_broadcast(m), it adds m to sent i[i] and SENT [i]
to inform all the processes on the scd-broadcast of m. It then invokes the internal procedure progress() from

which it exits once it has a set containing m (line 1).

A background task T ensures that all messages will be scd-delivered (line 2). This task invokes repeatedly

the internal procedure progress(). As, locally, both the application process and the underlying task T can

invoke progress(), which accesses the local variables of pi, those variables are protected by a local fair mutual

exclusion algorithm providing the operations enter_mutex() and exit_mutex() (lines 3 and 11).

operation scd_broadcast(m) is

(1) sent i[i]← sent i[i] ∪ {m}; SENT .write(sent i[i]); progress().

(2) background task T is repeat forever progress() end repeat.

procedure progress() is

(3) enter_mutex();
(4) catch_up();
(5) sent i ← SENT .snapshot();
(6) to_deliveri ← (∪1≤j≤n sent i[j]) \members(sets_seq i[i]);
(7) if (to_deliveri 6= ∅) then sets_seq i[i]← sets_seq i[i]⊕ to_deliveri ;

(8) SETS_SEQ [i]← sets_seq i[i];
(9) scd_deliver(to_deliveri)
(10) end if;

(11) exit_mutex().

procedure catch_up() is

(12) sets_seq i ← SETS_SEQ.snapshot();
(13) while (∃j, set : set is the first set in sets_seq i[j] : set 6⊆ members(sets_seq i[i]) do

(14) to_deliveri ← set \members(sets_seq i[i]);
(15) sets_seq i[i]← sets_seq i[i]⊕ to_deliveri ; SETS_SEQ [i]← sets_seq i[i];
(16) scd_deliver(to_deliveri )
(17) end while.

Algorithm 2: An implementation of SCD-broadcast in CARWn,t[snapshot] (code for pi)
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The procedure progress() first invokes the internal procedure catch_up(), whose aim is to allow pi to

scd-deliver sets of messages which have been scd-broadcast and not yet locally scd-delivered.

To this end, catch_up() works as follows (lines 12-17). Process pi first obtains a snapshot of SETS_SEQ ,

and saves it in sets_seq i (line 12). This allows pi to know which message sets have been scd-delivered by

all the processes; pi then enters a “while” loop to scd-deliver as many message sets as possible according to

what was scd-delivered by the other processes. For each process pj that has scd-delivered a message set set
containing messages not yet scd-delivered by pi (predicate of line 13), pi builds a set to_deliver i containing

the messages in set that it has not yet scd-delivered (line 14), and locally scd-delivers it (line 16). This local

scd-delivery needs to update accordingly both sets_seq i[i] (local update) and SETS_SEQ [i] (global update).

When it returns from catch_up(), pi strives to scd-deliver messages not yet scd-delivered by the other

processes. To this end, it first obtains a snapshot of SENT , which it stores in sent i (line 5). If there are

messages that can be scd-delivered (computation of to_deliver i at line 6, and predicate at line 7), pi scd-

delivers them and updates sets_seq i[i] and SETS_SEQ [i] (lines 7-9) accordingly.

6.2 Proof of Algorithm 2

Lemma 6 If a process scd-delivers a set containing a message m, some process invoked scd_broadcast(m).

Proof The proof follows directly from the text of the algorithm, which copies messages from SENT to

SETS_SEQ , without creating new messages. 2Lemma 6

Lemma 7 No process scd-delivers the same message twice.

Proof Let us first observe that, due to lines 7 and 15, all messages that are scd-delivered at a process pi have

been added to sets_seq i[i]. The proof then follows directly from (a) this observation, (b) the fact that (due

to the local mutual exclusion at each process) sets_seq i[i] is updated consistently, and (c) lines 6 and 14,

which state that a message already scd-delivered (i.e., a message belonging to sets_seq i[i]) cannot be added to

to_deliver i. 2Lemma 7

Lemma 8 Any invocation of scd_broadcast() by a non-faulty process pi terminates.

Proof The proof consists in showing that the internal procedure progress() terminates. As the mutex algorithm

is assumed to be fair, process pi cannot block forever at line 3. Hence, pi invokes the internal procedure

catch_up(). It then issues first a snapshot invocation on SETS_SEQ and stores the value it obtains the value

of sets_seq i. There is consequently a finite number of message sets in sets_seq i. Hence, the “while” of

lines 13-17 can be executed only a finite number of times, and it follows that any invocation of catch_up() by

a non-faulty process terminates. The same reasoning (replacing SETS_SEQ by SENT ) shows that process

pi cannot block forever when it executes the lines 5-10 of the procedure progress(). 2Lemma 8

Lemma 9 If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set containing m.

Proof Let pi be a non-faulty process that scd-broadcasts a message m. As it is non-faulty, pi adds m to

SENT [i] and then invokes progress() (line 1). As m ∈ SENT , it is eventually added to to_deliveri if not yet

scd-delivered (line 6), and scd-delivered at line 9, which concludes the proof of the lemma. 2Lemma 9

Lemma 10 If a non-faulty process scd-delivers a message m, every non-faulty process scd-delivers a message

set containing m.

Proof Let us assume that a process scd-delivers a message set containing a message m. It follows that the

process that invoked scd_broadcast(m) added m to SENT (otherwise no process could scd-deliver m). Let pi
be a correct process. It invokes progress() infinitely often (line 2). Hence, there is a first execution of progress()
such that senti contains m (line 5). If then follows from line 6 that m will be added to to_deliver i (if not yet

scd-delivered). If follows that pi will scd-deliver a set of messages containing m at line 9. 2Lemma 10
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Lemma 11 Let pi be a process that scd-delivers a set msi containing a message m and later scd-delivers a

set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′ and later a set msj
containing m.

Proof Let us consider two messages m and m′. Due to total order property on the operations on the snapshot

object SENT , it is possible to order the write operations of m and m′ into SENT . Without loss of generality,

let us assume that m is added to SENT before m′. We show that no process scd-delivers m′ before m.5

Let us consider a process pi that scd-delivers the message m′. There are two cases.

• pi scd-delivers the message m′ at line 9. Hence, pi obtained m′ from the snapshot object SENT (lines 5-

6). As m was written in SENT before m′, we conclude that SENT contains m. It then follows from

line 6 that, if pi has not scd-delivered m before (i.e., m is not in sets_seq i[i]), then pi scd-delivers it in

the same set as m′.

• pi scd-delivers the message m′ at line 16. Due to the predicate used at line 13 to build a set of message

to scd-deliver, this means that there is a process pj that has previously scd-delivered a set of messages

containing m′.

Moreover, let us observe that the first time the message m′ is copied from SENT to some SETS_SEQ [x]
occurs at line 8. As m was written in SENT before m′, the corresponding process px cannot see m′ and

not m. It follows from the previous item that px has scd-delivered m in the same message set (as the one

including m′), or in a previous message set. It then follows from the predicate of line 13 that pi cannot

scd-delivers m′ before m.

To summarize, the scd-deliveries of message sets in the procedure catch_up() cannot violate the MS-

Ordering property, which is established at lines 6-10.

2Lemma 11

Theorem 2 Algorithm 2 implements the SCD-Broadcast abstraction in the system model CARWn,t[t < n].

Proof The proof follows from Lemma 6 (Validity), Lemma 7 (Integrity), Lemmas 8 and 9 (Termination-1),

Lemma 10 (Termination-2), and Lemma 11 (MS-Ordering). 2Theorem 2

7 Conclusion

This paper has introduced a new communication abstraction (SCD-broadcast) providing processes with an

abstraction level between reliable broadcast and total order broadcast (which captures the necessary and suf-

ficient constraint on message deliveries which allows consensus objects to be implemented in asynchronous

crash-prone message-passing systems).

More precisely, SCD-broadcast captures the abstraction level which is “necessary and sufficient” to im-

plement read/write registers and snapshot objects on top of asynchronous message-passing systems prone to

process failures. “Sufficient” means here that no other notion or object6 is needed to build a register or a snap-

shot object at the abstraction level provided by SCD-broadcast, while “necessary” means that the objects that

are built (registers and snapshot objects) are the weakest from a shared memory computational point of view.

As announced in the Introduction, an algorithm implementing SCD-broadcast in an asynchronous message-

passing system where any minority of processes may crash is described in Appendix A. This algorithm requires

O(n2) protocol messages per invocation of scd_broadcast(). It follows that the SCD-broadcast-based MWMR

snapshot algorithm presented in the paper requires O(n2) protocol messages per invocation of snapshot() or

write() operation. This is the best read/write snapshot algorithm we know in the context of asynchronous

message-passing systems.

5Let us notice that it is possible that a process scd-delivers them in two different message sets, while another process scd-delivers

them in the same set (which does not contradicts the lemma).
6The notion of intersecting quorums is neither provided by the abstraction level offered by SCD-broadcast, nor required –in ad-

dition to SCD-broadcast– to implement registers or snapshot objects. Actually, it is hidden and majority quorums appear only in the

implementation of SCD-broadcast.
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A An Implementation of SCD-broadcast in Message-Passing Systems

This section shows that the SCD-broadcast communication abstraction is not an oracle-like object which allows

us to extend our understanding of computing, but cannot be implemented. It describes an implementation of

SCD-broadcast in CAMPn,t[t < n/2], which is the weakest assumption on process failures that allows a

read/write register to be built on top of an asynchronous message-passing system [5] (see footnote 4).

To simplify the presentation, and without loss of generality, we consider that the communication channels

are FIFO. The associated communication operations are denoted fifo_broadcast() and fifo_deliver().

A.1 Algorithm 3

Local variables at a process pi Each process pi manages the following local variables.

• bufferi : buffer where are stored the messages not yet scd-delivered in a message set.

• to_deliveri : next set of messages to be scd-delivered.

• sni: local sequence number (initialized to 0), which measures the local progress of pi.

• clocki[1..n]: array of sequence numbers. clocki[j] is the greatest sequence number x such that the

application message identified by 〈x, j〉 was in a message set scd-delivered by pi.

Operation scd_broadcast() When pi invokes scd_broadcast(m), where m is an application message, it sends

the message FORWARD(m, i, sni, i, sni) to itself (this simplifies the writing of the algorithm), and waits until

it has no more message from itself pending in buffer i, which means it has scd-delivered a set containing m.

A protocol message FORWARD() (line 1) is made up of five fields: the associated application message m,

and two pairs, each made up of a sequence number and a process identity. The first pair (sd, sn) is the identity

of the application message, while the second one (f, snf ) is the local progress (snf ) of the forwarder process

pf when it forwards this protocol message.

Reception of FORWARD(m, sd, snsd , f, snf ) When a process pi receives such a protocol message, it first

invokes forward(m, sd, snsd , f, snf ) to participate in the reliable broadcast of this message (line 3), and then

invokes try_deliver() to see if a message set can be scd-delivered (line 4).

Procedure forward() This procedure can be seen as an enrichment (with the fields f and snf ) of the re-

liable broadcast implemented by the messages FORWARD(m, sd, snsd ,−,−). Considering such a message

FORWARD(m, sd, snsd , f, snf ), m was scd-broadcast by psd at its local time snsd , and relayed by the forward-

ing process pf at its local time snf . If snsd ≤ clocki[sd], pi has already scd-delivered a message set containing

m (see lines 18 and 20). If snsd > clocki[sd], there are two cases.

• The message m is not in bufferi . In this case, pi creates a quadruplet msg, and adds it to bufferi
(lines 8-10). This quadruplet 〈msg.m,msg.sd,msg.f,msg.cl〉 is such that

– the field msg.m contains the application message m,

– the field msg.sd contains the id of the sender of this application message,

– the field msg.sn contains the local date associated with m by its sender,

– the field msg.cl is an array of size n, such that msg.cl[x] = sequence number (initially +∞)

associated with m by px when it broadcast FORWARD(msg.m,−,−,−,−). This last field is

crucial in the scd-delivery of a message set containing m.

After the quadruplet msg has been built, pi first adds it to bufferi (line 10), and invokes (line 11)

fifo_broadcast FORWARD(m, sd, snsd , i, sni) to implement the reliable broadcast of m identified by

〈sd, snsd 〉. Finally, pi records its progress by increasing sni (line 12).

• There is a quadruplet msg in bufferi associated with m, i.e., msg = 〈m, sd,−,−〉 ∈ bufferi (predicate

of line 6). In this case, pi assigns snf to msg.cl[f ] (line 7), thereby indicating that m was known and

forwarded by pf at its local time snf .
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operation scd_broadcast(m) is

(1) forward(m, i, sni, i, sni);
(2) wait(∄msg ∈ bufferi : msg.sd = i).

when the message FORWARD(m,sd, snsd , f, snf ) is fifo-delivered do % from pf
(3) forward(m,sd, snsd , f, snf );
(4) try_deliver().

procedure forward(m,sd, snsd , f, snf ) is

(5) if (snsd > clocki[sd])
(6) then if (∃msg ∈ bufferi : msg.sd = sd ∧msg.sn = snsd )
(7) then msg.cl[f ]← snf

(8) else threshold[1..n]← [∞, . . . ,∞]; threshold[f ]← snf ;

(9) let msg ← 〈m,sd, snsd , threshold[1..n]〉;
(10) bufferi ← bufferi ∪ {msg};
(11) fifo_broadcast FORWARD(m,sd, snsd , i, sni);
(12) sni ← sni + 1
(13) end if

(14) end if;

procedure try_deliver() is

(15) let to_deliveri ← {msg ∈ bufferi : |{f : msg.cl[f ] <∞}| > n
2
};

(16) while (∃msg ∈ to_deliveri ,msg′ ∈ bufferi \ to_deliveri : |{f : msg.cl[f ] < msg′.cl[f ]}| ≤ n
2

) do

to_deliveri ← to_deliveri \ {msg}
end while;

(17) if (to_deliveri 6= ∅)
(18) then for each (msg ∈ to_deliveri such that clocki[msg.sd] < msg.sn)

do clocki[msg.sd]← msg.sn end for;

(19) bufferi ← bufferi \ to_deliveri ;

(20) ms← {m : ∃msg ∈ to_deliveri : msg.m = m}; scd_deliver(ms)
(21) end if.

Algorithm 3: An implementation of SCD-broadcast in CAMPn,t[t < n/2] (code for pi)

Procedure try_deliver() When it executes try_deliver(), pi first computes the set to_deliveri of the quadru-

plets msg containing application messages m which have been seen by a majority of processes (line 15). From

pi’s point of view, a message has been seen by a process pf if msg.cl[f ] has been set to a finite value (line 7).

If a majority of processes received first a message FORWARD(m′,−,−,−,−) and later another message

FORWARD(m,−,−,−,−), it might be that some process pj scd-delivered a set containing m′ before scd-

delivering a set containing m. Therefore, pi must avoid scd-delivering a set containing m before scd-delivering

a set containing m′. This is done at line 16, where pi withdraws the quadruplet msg corresponding to m if

it has not enough information to deliver m′ (i.e. the corresponding msg′ is not in to_deliver i) or it does not

have the proof that the situation cannot happen, i.e. no majority of processes saw the message corresponding

to msg before the message corresponding to msg′.
If to_deliveri is not empty after it has been purged (lines 16-17), pi computes a message set to scd-deliver.

This set ms contains all the application messages in the quadruplets of to_deliveri (line 20). These quadruplets

are withdrawn from bufferi (line 18). Moreover, before this scd-delivery, pi needs to updates clocki[x] for all

the entries such that x = msg.sd where msg ∈ to_deliveri (line 18). This update is needed to ensure that the

future uses of the predicate of line 17 are correct.

A.2 Proof of Algorithm 3

Lemma 12 If a process scd-delivers a set containing m, some process invoked scd_broadcast(m).

Proof If process pi scd-delivers a set containing a message m, it has previously added into bufferi a quadruplet

msg such that msg.m = m (line 10), for which it has fifo-received at least n
2 FORWARD(m,−,−,−,−) mes-

sages. The first of these messages ever sent was sent after a process invoked scd_broadcast(m). 2Lemma 12

Lemma 13 No process scd-delivers the same message twice.

Proof After a message m scd-broadcast by psd with a sequence number snsd is scd-delivered by pi, clocki[sd] ≥
snsd thanks to line 18 and there is no msg ∈ buffer i with msg.sd = sd and msg.sn = snsd , as it was re-
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moved on line 19. Thanks to line 5, no such msg′ will be added again in bufferi . As to_deliveri is defined as

a subset of bufferi on line 15, m will never be scd-delivered by pi again. 2Lemma 13

Lemma 14 If a message FORWARD(m, sd, snsd , i, sni) is broadcast by a non-faulty process pi, then each

non-faulty process pj broadcasts a single message FORWARD(m, sd, snsd , j, snj).

Proof First, we prove that pj broadcasts a message FORWARD(m, sd, snsd , j, snj). As pi is non-faulty, pj
will eventually receive the message sent by pi. At that time, if snsd > clockj [sd], after the condition on line 6

and whatever its result, buffer i contains a value msg with msg.sd = sd and msg.snsd = snsd . That msg
was inserted at line 10 (possibly after the reception of a different message), just before pj sent a message

FORWARD(m, sd, snsd , j, snj) at line 11. Otherwise, clockj [sd] was incremented on line 18, when validating

some msg′ added to bufferj after pj received a (first) message FORWARD(msg′.m, sd, snsd , f, clockf [sd])
from pf . Because the messages FORWARD() are fifo-broadcast (hence they are delivered in their sending or-

der), psd sent message FORWARD(msg.m, sd, snsd , sd, snsd ) before FORWARD(msg′.m, sd, clockj [sd], sd, clockj [sd]),
and all other processes only forward messages, pj received a message FORWARD(msg.m, sd, snsd ,−,−) from

pf before the message FORWARD(msg′.m, sd, clockj [sd],−,−). At that time, snsd > clockj [sd], so the pre-

vious case applies.

After pj broadcasts its message FORWARD(m, sd, snsd , j, snj) on line 11, there is a msg ∈ buffer j with

ts(msg) = 〈sd, snsd 〉, until it is removed on line 16 and clockj [sd] ≥ snsd . Therefore, one of the conditions

at lines 5 and 6 will stay false for the stamp ts(msg) and pj will never execute line 11 with the same stamp

〈sd, snsd 〉 later. 2Lemma 14

Lemma 15 Let pi be a process that scd-delivers a set msi containing a message m and later scd-delivers a

set ms′i containing a message m′. No process pj scd-delivers first a set ms′j containing m′ and later a set msj
containing m.

Proof Let us suppose there are two messages m and m′ and two processes pi and pj such that pi scd-delivers

a set msi containing m and later scd-delivers a set ms′i containing m′ and pj scd-delivers a set ms′j containing

m′ and later scd-delivers a set msj containing m.

When m is delivered by pi, there is an element msg ∈ buffer i such that msg.m = m and because of line

15, pi has received a message FORWARD(m,−,−,−,−) from more than n
2 processes.

• If there is no element msg′ ∈ buffer i such that msg′.m = m′, since m′ has not been delivered by

pi yet, pi has not received a message FORWARD(m′,−,−,−,−) from any process (lines 10 and 19).

Therefore, because the communication channels are FIFO, more than n
2 processes have sent a message

FORWARD(m,−,−,−,−) before sending a message FORWARD(m′,−,−,−,−).

• Otherwise, msg′ /∈ to_deliver i after line 16. As the communication channels are FIFO, more than n
2

processes have sent a message FORWARD(m,−,−,−,−) before a message FORWARD(m′,−,−,−,−).

Using the same reasoning, it follows that when m′ is delivered by pj , more than n
2 processes have sent a

message FORWARD(m′,−,−,−,−) before sending a message FORWARD(m,−,−,−,−). There exists a pro-

cess pk in the intersection of the two majorities, that has both sent a message FORWARD(m′,−,−,−,−)
before sending FORWARD(m,−,−,−,−) and sent a message FORWARD(m′,−,−,−,−) before sending

FORWARD(m,−,−,−,−). However, by Lemma 14, pk can only send one message FORWARD(m′,−,−,−,−)
and one message FORWARD(m,−,−,−,−), which leads to a contradiction. 2Lemma 15

Lemma 16 If a message FORWARD(m, sd, snsd , i, sni) is fifo-broadcast by a non-faulty process pi, this pro-

cess scd-delivers a set containing m.

Proof Let pi be a non-faulty process. For any pair of messages msg and msg′ ever inserted in bufferi , let

ts = ts(msg) and ts′ = ts(msg′). Let→i be the dependency relation defined as follows: ts →i ts
′ def= |{j :

msg′.cl[j] < msg.cl[j]}| ≤ n
2 (i.e. the dependency does not exist if pi knows that a majority of processes have

seen the first update –due to msg′– before the second –due to msg–). Let→⋆
i denote the transitive closure of

→i.
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pi

pf

scd_broadcast(mk)

FORWARD(mk, f, snf (k), f, snf (k)) · · ·

• • •

snf (k1) snf (k2)

⋆
i

⋆
i⋆

i

FORWARD(m,sd, snsd ,−,−)
FORWARD(m,sd, snsd ,−,−)

FORWARD(ml+1, sdl+1, snsdl+1
,−,−)

Figure 1: Message pattern introduced in Lemma 16

Let us suppose (by contradiction) that the timestamp 〈sd, snsd 〉 associated with the message m (carried

by the protocol message FORWARD(m, sd, snsd , i, sni) fifo-broadcast by pi), has an infinity of predecessors

according to→⋆
i . As the number of processes is finite, an infinity of these predecessors have been generated

by the same process, let us say pf . Let 〈f, snf(k)〉k∈N be the infinite sequence of the timestamps associated

with the invocations of the scd_broadcast() issued by pf . The situation is depicted by Figure 1.

As pi is non-faulty, pf eventually receives a message FORWARD(m, sd, snsd , i, sni), which means pf
broadcast an infinity of messages FORWARD(m(k), f, snf (k), f, snf (k)) after FORWARD(m, sd, snsd , f, snf ).
Let 〈f, snf (k1)〉 and 〈f, snf (k2)〉 be the timestamps associated with the next two messages sent by pf , with

snf (k1) < snf(k2). By hypothesis, we have 〈f, snf (k2)〉 →
⋆
i 〈sd, snsd 〉. Moreover, all processes received

their first message FORWARD(m, sd, snsd ,−,−) before their first message FORWARD(m(k), f, snf (k),−,−),
so 〈sd, snsd 〉 →

⋆
i 〈f, snf (k1)〉. Let us express the path 〈f, snf(k2)〉 →

⋆
i 〈f, snf(k1)〉:

〈f, snf (k2)〉 = 〈sd
′(1), sn′(1)〉 →i 〈sd

′(2), sn′(2)〉 →i · · · →i 〈sd(m), sn′(m)〉 = 〈f, snf (k1)〉.
In the time interval starting when pf sent the message FORWARD(m(k1), f, snf (k1), f, snf (k1)) and

finishing when it sent the the message FORWARD(m(k2), f, snf (k2), f, snf (k2)), the waiting condition of

line 2 became true, so pf scd-delivered a set containing the message m(k1), and according to Lemma 12,

no set containing the message m(k2). Therefore, there is an index l such that process pf delivered sets con-

taining messages associated with a timestamp 〈sd′(l), sn′(l)〉 for all l′ > l but not for l′ = l. Because the

channels are FIFO and thanks to lines 15 and 16, it means that a majority of processes have sent a message

FORWARD(−, sd′(l + 1), sn′(l + 1),−,−) before a message FORWARD(−, sd′(l), sn′(l),−,−), which con-

tradicts the fact that 〈sd′(l), sn′(l)〉 →i 〈sd
′(l + 1), sn′(l + 1)〉.

Let us suppose a non-faulty process pi has fifo-broadcast a message FORWARD(m, sd, snsd , i, sni) (line 10).

It inserted a quadruplet msg with timestamp 〈sd, snsd 〉 on line 9 and by what precedes, 〈sd, snsd 〉 has a fi-

nite number of predecessors 〈sd1, sn1〉, . . . , 〈sdl, snl〉 according to →⋆
i . As pi is non-faulty, according to

Lemma 14, it eventually receives a message FORWARD(−, sdk, snk,−,−) for all 1 ≤ k ≤ l and from all

non-faulty processes, which are in majority.

Let pred be the set of all quadruplets msg′ such that 〈msg′.sd,msg′.snsd 〉 →
⋆
i 〈sd, snsd 〉. Let us consider

the moment when pi receives the last message FORWARD(−, sdk, snk, f, snf ) sent by a correct process pf .

For all msg′ ∈ pred , either msg′.m has already been delivered or msg′ is inserted to_deliver i on line 15.

Moreover, no msg′ ∈ pred will be removed from to_deliver i, on line 16, as the removal condition is the same

as the definition of→i. In particular for msg′ = msg, either m has already been scd-delivered or m is present

in to_deliver i on line 17 and will be scd-delivered on line 20. 2Lemma 16

Lemma 17 If a non-faulty process scd-broadcasts a message m, it scd-delivers a message set containing m.

Proof If a non-faulty process scd-broadcasts a message m, it sends a message FORWARD(m, i, snsd , i, snsd )
on line 11, so it scd-delivers a message set containing m by lemma 16. 2Lemma 17

Lemma 18 If a non-faulty process scd-delivers a message m, every non-faulty process scd-delivers a message

set containing m.
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Proof Suppose a non-faulty process pi scd-delivers a message m. At line 20, there is msg ∈ to_deliver i
such that msg.m = m. At line 15, msg ∈ buffer i, and msg was inserted in buffer i at line 10, just before

pi sent message FORWARD(m, sd, snsd , i, sni). By Lemma 14, every non-faulty process pj sends a message

FORWARD(m, sd, snsd , j, snj), so by Lemma 16, pj scd-delivers a message set containing m. 2Lemma 18

Theorem 3 Algorithm 3 implements the SCD-broadcast communication abstraction in CAMPn,t[t < n/2].
Moreover, it requires O(n2) messages per invocation of scd_broadcast().

Proof The proof follows from Lemma 12 (Validity), Lemma 13 (Integrity), Lemma 15 (MS-Ordering),

Lemma 17 (Termination-1), and Lemma 18 (Termination-2).

The O(n2) message complexity comes from the fact that, due to the predicates of line 5 and 6, each

application message m is forwarded at most once by each process (line 11). 2Theorem 3

The next corollary follows from (i) Theorems 1 and 3, and (ii) the fact that the constraint (t < n/2) is an

upper bound on the number of faulty processes to build a read/write register (or snapshot object) [5].

Corollary 1 Algorithm 3 is resiliency optimal.

B Building an MWMR atomic register on top of CAMPn,t[SCD-broadcast]

This appendix shows the genericity dimension of Algorithm 1. It presents trivial simplifications of it, which

build MWMR atomic registers and MWMR sequentially consistent registers.

B.1 The algorithm

Let REG denote the MWMR atomic read/write register that is built. The algorithm that builds it is a trivial

simplification of the snapshot Algorithm 1, namely its projection on a single MWMR atomic register.

REG is now locally represented by a local variable regi and the associated timestamp tsi initialized to

〈0,−〉. The message sent at Line 9 is now WRITE(v, 〈tsi.datei + 1, i〉), and the predicate of line 11 simplifies

to “there are messages WRITE())”.

B.2 Proof of the algorithm

The proof is a simplified version of the proof of Theorem 1. For self-completeness, we give here its full proof

even if some parts of it are “cut-and-paste” of parts of proofs given in Section 4.2. As in that section, let us

associate a timestamp ts(op) with each operation op() as follows (this is the place where the proof is simplified

with respect to a snapshot object).

• Case op() = write(v). Let pi be the invoking process; ts(op) is the timestamp of v as defined by pi at

line 9, i.e., 〈tsi.date+ 1, i〉.

• Case op() = read(). Let w be the value returned by the read; ts(op) is then the timestamp associated

with w at line 15 by its writer.

Let op1 and op2 be any two operations. The relation ≺ on the whole set of operations is defined as follows:

op1 ≺ op2 if op1 terminated before op2 started. It is easy to see that ≺ is a real-time-compliant partial order

on all the operations.

The reader can easily check that the statement and the proof of Lemma 1 (applied to the termination of read

and write operations), and Lemma 3 (applied to the total order on the write operations, compliant with both the

sequential specification of a register, and their real-time occurrence order) remain valid for the algorithm suited

to an MWMR atomic read/write register. The next lemma addresses the read operations (which are simpler to

manage than snapshot operations).

Lemma 19 The read/write register REG is linearizable.

Proof Let us now insert each read operation in the previous (real time compliant) total order as follows.

Let read1() be a read operation whose timestamp is 〈date1, i〉. This operation is inserted just after the

write operation write1() that has the same timestamp (this write wrote the value read by read1()). Let us

remark that, as read1() obtained the value timestamped 〈date1, i〉, it did not terminate before write1() started.
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It follows that the insertion of read1() into the total order cannot violate the real-time order between write1()
and read1().

Let us consider the operation write2() that follows write1() in the write total order. If read1() ≺ write2(),
the placement of read1() in the total order is real-time-compliant. If ¬(read1() ≺ write2()), due to the

timestamp obtained by read1(), we cannot have write2() ≺ read1(). It follows that in this case also, the

placement of read1() in the total order is real-time-compliant.

Finally, let us consider two read operations read1() and read2() which have the same timestamp 〈date, i〉
(hence, they read from the same write operation, say write1()). Both are inserted after write1() in the order

of their invocations (if read1() and read2() started simultaneously, they are inserted according to the order on

the identities of the processes that invoked them). Hence, the read and write operations are linearizable, which

concludes the proof of the lemma. 2Lemma 19

Theorem 4 The read/write register REG is an MWMR atomic read/write register.

Proof The proof follows from Lemma 1, Lemma 3, and Lemma 19. 2Theorem 4

B.3 The case of an SWMR atomic register

When the register REG can be written by a single process (say pk), the algorithm simplifies. The timestamps

disappear at all processes, and as only the writer pk can invoke REG .write(), it manages a simple date datek
(which is actually a sequence number). The modifications are:

• Line 9 becomes: datek ← datek + 1; scd_broadcast WRITE(v, datek).

• The lines 11-17 become:

if (there are messages WRITE())

then let date be the maximal date in the messages WRITE() received;

regi ← the value associated with date
end if.

Let us remark that, due to the Boolean donek, the writer pk scd-delivers message sets containing at most one

message WRITE().

B.4 On sequentially consistency

The case of an MWMR sequentially consistent register As indicated in the Introduction, sequential consis-

tency was introduced in [24]. It is atomicity minus the requirement stating that “if an operation op1 terminates

before an operation op2 starts, then op1 must appear before op2 in the sequence of the read and write op-

erations”. As noticed in [31], sequential consistency can be seen as a weakened form of atomicity, namely

lazy linearizability. The composition of sequentially consistent registers is investigated in [30]. The algorithm

for sequential consistency presented in [30] and Algorithm 3 are based on similar principles. The constraint

(t < n/2) is also a necessary and sufficient condition to implement a sequentially consistent read/write register

in CAMPn,t[∅].
The reader can check that an algorithm building a a sequentially consistent MWMR read/write register

can easily be obtained from Algorithm 1 as simplified in Section B.1. One only needs to suppress the syn-

chronization messages SYNC() which ensure the compliance with respect to real-time. The concerned lines

are lines 1-3 (read synchronization), and lines 5-7 (write synchronization). In a simple way, this shows the

versatility dimension of Algorithm 1.

From sequential consistency to atomicity Given a sequentially consistent snapshot object, Algorithm 2

builds the SCD-broadcast communication abstration. (As the reader can check, this follows from the fact that,

when looking at its proof, this algorithm relies only on the fact that the operations on the snapshot object can be

totally ordered.) Hence, using on top of it the SCD-broadcast-based Algorithm 1, we obtain an atomic snapshot

object. It follows that, thanks to SCD-broadcast, the algorithms presented in the paper allow a sequentially

consistent snapshot object to be transformed into an atomic snapshot object (and it is known that –differently

from sequential consistent objects– atomic objects are composable for free [18]).
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