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Abstract— Improving the execution time and the numerical
complexity of the well-known kurtosis-based maximization
method, the RobustICA, is investigated in this paper. A Newton-
based scheme is proposed and compared to the conventional
RobustICA method. A new implementation using the nonlinear
Conjugate Gradient one is investigated also. Regarding the
Newton approach, an exact computation of the Hessian of the
considered cost function is provided. The proposed approaches
and the considered implementations inherit the global plane
search of the initial RobustICA method for which a better
convergence speed for a given direction is still guaranteed.
Numerical results on Magnetic Resonance Spectroscopy (MRS)
source separation show the efficiency of the proposed ap-
proaches notably the quasi-Newton one using the BFGS method.

I. INTRODUCTION

Independent Component Analysis (ICA) consists of esti-
mating statistically independent source signals from a mix-
ture of them. This mixture can be linearly modeled as
follows:

x[m] = As[m] + ν[m] (1)

where m is a natural number and x[m] is a realization of
an N -dimensional random vector process {x[m]} of the
observations, A (N × P ) denotes a tall mixing matrix,
s[m] stands for a realization of a P -dimensional random
process of sources {s[m]} with components assumed to be
statistically independent and ν[m] denotes a realization of an
N -dimensional process of noise assumed to be independent
from the source. Note that all processes considered in this
paper are real-valued. ICA algorithms estimate sources by
maximizing a measure of nongaussianity such as the kurtosis
(i.e. Fourth order cumulants) of the data [3], [4], [6], [7],
[13], [16] to cite a few. Some ICA approaches [3], [13]
recover independent sources in only one single-step, these
are the so-called symmetric approaches. Others, referred to
as deflationary approaches extract one source at a time [4],
[6], [7], [16]. The key advantage of the deflationary scheme
is that contrasts for single-source extraction can easily be
proven to be free from spurious local solutions, so that all
their local optima are associated with valid solutions [5]–[7],
[16]. Besides, deflationary scheme can be stopped early once
the sources of interest has already been extracted. Hence, a
considerable reduction in processing time is guaranteed [15].

RobustICA algorithm is a common deflationary kurtosis-
based ICA algorithm. It performs kurtosis maximization

in an efficient way using a gradient-ascent algorithm with
global plane search scheme [16]. However both the execution
time and the numerical complexity of the RobustICA could
be further improved while maintaining a good estimation
quality especially for situations where both the previous
issues are crucial. For example, in the case of high dimen-
sional problems often encountered in practice such as in
High Resolution-ElectroEncephaloGraphic (HR-EEG) data
[14], in the context of Magnetic Resonance Spectroscopy
(MRS) [9], etc.

The purpose of this paper is to investigate the possible
ways of improving both the numerical complexity and the
execution time of the RobustICA approach by i) comparing
the relative speed of different optimization schemes used in
the RobustICA method and ii) investigating the strategies to
accelerate the optimization process (by assessing the validity
of these strategies). With these aims in mind, a natural
extension of the original RobustICA is first given by resorting
to the first order optimization scheme, namely the nonlinear
Conjugate Gradient (CG) method. Next, beyond this first
order implementation, two second order-based approaches
are proposed. The Newton method wherein the Hessian is
exactly computed and the quasi-Newton using the BFGS
(Named after its inventors, Broyden, Fletcher, Goldfarb, and
Shanno) scheme where an approximation of the Hessian
is considered instead. The efficiency of the proposed ap-
proaches is evaluated in the context of the MRS sources
separation and compared to both the conventional RobustICA
and the deflation-based FastICA [7] methods.

II. ALGORITHMS

Both the first order and the second order-based RobustICA
approaches are considered in this section. Regarding the
Newton-based variant, an exact computation of the Hessian
is also provided.

A. First order-based optimization scheme (beyond the clas-
sical RobustICA implementation)

Basically, the RobustICA algorithm solves the real-valued
ICA problem (1) by maximizing the following contrast
function [16]:

F (w(p)) =
|C4(yp)|
E[y2p]

2
= |

E[y4p]

E[y2p]
2
− 3| (2)



where C4(yp) denotes the fourth-order cumulant (kurtosis) of
the p-th estimated source, yp, such that yp = w(p)Tx where
w(p) is the associated p-the separation vector. Besides, E[.]
stands for the mathematical expectation and |.| denotes the
absolute value of its argument.

Although data pre-whitening is not mandatory for
RobustICA, employing it would improve the convergence
especially with high-dimensional data [8]. Therefore, the
observations x are considered to be pre-whitened in the
sequel. The considered optimization problem is then defined
as:

max
w(p)

F (w(p)) = |E[y4p]− 3|

s. t. ‖w(p)‖ = 1 (3)

Originally, a first-order optimization scheme is adopted to
maximize F (2) with the following update rule [16]:

w
(p)
k+1 ← w

(p)
k + µ

(k)
optg

(p)
k (4)

where g(p)k is typically the gradient direction at the current it-
eration k associated to the p-th source and µ(k)

opt is the optimal
step size associated to the considered direction g(p)k . Note
that from now on and for the sake of clarity, the subscript p
will be omitted in the rest of this paper. It is noteworthy
that an optimal computation of µ showed i) a very low
computational complexity and ii) a robustness to the presence
of spurious local extrema and saddle points in the contrast
F (2) [5], [16]. However, the gradient-ascent algorithm often
finds itself taking steps in the same direction as the earlier
steps. Hence more iterations are needed for convergence and
consequently a considerable numerical complexity. A natural
way to improve the convergence speed of the gradient-ascent
based RobustICA is to use the nonlinear Conjugate Gradient
(CG) instead. Indeed, computing nonlinear CG directions
has the same complexity as the gradient descent/ascent
directions, but in general, they are more effective [12]. The
CG-based RobustICA algorithm, denoted by RobustICACG,
based on the Polak and Ribière scheme, is summarized as
follows:

1) Initialization: random initialization of w0, k ← 0 and
g0 ← ∇w0F , where ∇w0F is the gradient of F with
respect to w evaluated at w = w0.

2) Repeat until convergence or a maximum number of
iterations is reached

a) Calculate the optimal step size µopt in the search
direction gk as in [16].

b) Update wk+1 ← wk + µoptgk.
c) Normalize wk+1 ← wk+1/‖wk+1‖.
d) Calculate ∇wk+1

F as given by [16].

e) Calculate βPR
k+1 =

∇wk+1
FT(∇wk+1

F−∇wk
F )

‖∇wk
F‖2 .

f) Update the search direction:
gk+1 ← ∇wk+1

F + βPR
k+1gk.

g) k ← k + 1.
3) Deflate the observations using the Gram Schmidt ap-

proach [16] and go back tp step (2).

Note that deflation step can be also performed using a
linear regression strategy [16]. For the sake of clarity, only
the Gram Schmidt approach is considered in this paper. CG
method typically converges in few iterations thanks to the
conjugate direction strategy and shows very low numerical
complexity and hence small memory allocation compared
to its gradient ascent counterpart. However, the convergence
speed of the RobustICA is expected to be further improved
when second order information about the objective function
is incorporated. In this respect, a second-order optimization
scheme such as the Newton [2] could be adopted giving rise
to the Newton-based RobustICA.

B. Second order optimization scheme

Newton method exploits further information about the
surface of the objective function such as the second order
derivative (i.e. the Hessian) which is a good way to accelerate
the local convergence [10]. Thanks to the global plane
search combined with the Hessian computation, the proposed
second order implementation of the RobustICA using the
Newton method would provide a faster convergence.

Using the Lagrangian of F (3), denoted by L(w) we
obtain:

L(w) = |E[y4]− 3|+ β

2
(1− ‖w‖2) (5)

First, the gradient of (5) is obtained as follows:

∇wL(w) = 4εE[y3x]− βw (6)

where ε = sign(E[y4]− 3). The Hessian is then obtained as
follows:

H(w) = 12εE[y2xxT]− βI (7)

Subject to ‖w‖ = 1, the constant Lagrange multiplier β is
calculated at the extrema where ∇wL(w) = 0 as follows:

4εE[y3x]− βw = 0⇒ wTwβ = 4εwTE[y3x]

⇒ ‖w‖2β = 4εwTE[xy3]⇒ β = 4εE[wTxy3]

⇒ β = 4εE[y4] (8)

By substituting (8) in (6) and (7), the gradient and the exact
Hessian expressions of L (5) are respectively obtained as
follows:

∇wL(w) = 4ε(E[y3x]− E[y4]w) (9)

H(w) = 4ε(3E[y2xxT]− E[y4]I) (10)

The following pseudo-code summarizes the Newton-based
RobustICA approach, denoted by RobustICAN:

1) Initialization: random initialization of w0, k ← 0,
Hessian initialization H0 = I (where I is the identity
matrix) and calculate ∇w0

L.
2) Repeat until convergence or a maximum number of

iterations is reached
a) Compute the search direction gk =
−H−1k ∇wk

L where Hk is the Hessian of
L (5).

b) Compute the optimal step size µopt in the search
direction gk as in [16]



c) Update wk+1 ← wk + µoptgk.
d) Normalize wk+1 ← wk+1/‖wk+1‖.
e) Compute ∇wk+1

L using (9).
f) Compute Hk+1 using (10).
g) k ← k + 1.

3) Deflate the observations using the Gram Schmidt ap-
proach [16] and go back to step (2).

Despite its high convergence speed (few iterations), the
Newton direction scheme requires an exact computation of
the Hessian which is time consuming and computationally
demanding per iteration. Therefore, quasi-Newton directions
have been proposed wherein the Hessian is rather well
approximated using the gradient of the considered objective
function. The BGFS approach is one of the most popu-
lar quasi-Newton methods. It enjoys the Hessian’s auto-
correction property. That is to say, the approximated Hessian
tends to correct itself in few iterations once an adequate
line search defined by Wolfe conditions [12] is adopted.
It is worth noted that thanks to the global plane search
used in the RobustICA, those conditions are intrinsically
verified when implementing the BFGS-based RobustICA ap-
proach, denoted by RobustICABFGS. The following pseudo-
code summarizes the proposed RobustICABFGS approach:

1) Initialization: random initialization of w0. Set k ← 0,
H−10 = I and calculate ∇ω0

F .
2) Repeat until convergence or a maximum number of

iterations is reached
a) Compute the search direction gk =
−H−1k ∇wk

F .
b) Compute the optimal step size µopt in the search

direction gk as in [16].
c) Update wk+1 ← wk + µoptgk.
d) Normalize wk+1 ← wk+1/‖wk+1‖.
e) Calculate ∇wk+1

F as given by [16].
f) Define sk = wk+1 −wk and yk = ∇wk+1

F −
∇ωk

F .
g) calculate ρk = 1/(yk

Tsk).
if k = 0, H−1k =

yk
Tsk

yk
Tyk

I; end if.
H−1k+1 ← (I − ρkskyk

T)H−1k (I − ρkyksk
T) +

ρksksk
T

h) k ← k + 1.
3) Deflate the observations using the Gram Schmidt ap-

proach [16] and go back to step (2).

III. EXPERIMENTAL ANALYSIS

This section is devoted to compare the performance
of the proposed implementations of the RobustICA,
namely, RobustICACG and the other proposed Newton-
based schemes, the RobustICAN and RobustICABGFS to the
RobustICA method in its typical gradient-based implemen-
tation denoted by RobustICAG [16] and the FastICA algo-
rithm in its deflationary version [7]. The FastICA algorithm
indeed stands for the most popular method for ICA, due
to its simplicity, convergence speed, and satisfactory results
in numerous applications. Experiments are carried out on
synthetic in vivo MRS data acquired using an array of 32

TABLE I
THE NUMERICAL COMPLEXITY PER ITERATION IN FLOPS FOR THE FIVE

CONSIDERED KURTOSIS-BASED METHODS. N IS THE NUMBER OF

OBSERVATIONS, T IS THE SAMPLE SIZE AND Kp IS THE TOTAL NUMBER

OF ITERATIONS NEEDED TO EXTRACT THE P-TH SOURCE.

Numerical complexity per
iteration [flops]

RobustICAG (5N + 12)T
RobustICACG (5N + 12)T
RobustICABFGS (5N + 12)T

RobustICAN ( N3

2Kp
+ N2

2
+ 5N + 12)T

FastICA (2N + 2)T

sensors. Particularly, a realistic MRS of two metabolites
(Creatine and Myo-inositol) is generated using Lorentzian
and Gaussian functions [11]. The performance of the consid-
ered implementations is evaluated in terms of the Normalized
Mean Square Error (NMSE) [1], the execution time, the
global numerical complexity in floating point operations
(flops) and the total number of iterations required to extract
the P sources. Table I shows the numerical complexity per
iteration of the considered methods. The aforementioned
performance criteria are evaluated for different SNR values,
i.e. SNR ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40} dB. Results are
averaged over 40 Monte Carlo realizations wherein the noise
and the mixing matrix were generated randomly.

Figure 1 shows a mixture of the two above metabolites for
SNR equal to 5 dB (Figure 1 (Top)) and the estimated sources
using the considered approaches compared to the original
sources (red line) (Figure 1 (bottom)). For the sake of clarity
i) signals in this figure are slightly vertically shifted with
respect to each other and ii) only the extracted signals using
the RobustICAG, the RobustICACG, the RobustICABFGS are
shown where similar behavior for the rest of the considered
methods was observed. As shown in figure 1 (bottom),
all the proposed RobustICA’s variants show quasi similar
behavior with comparable estimation accuracy. This claim
is justified by the NMSE values shown in figure 2 for
all SNR ones. Furthermore, the latter figure shows the
benefit behind extending the gradient ascent scheme to the
conjugate gradient one in terms of numerical complexity and
execution time. Figure 2 shows also the efficiency of the
proposed RobustICABFGS. Indeed, it provides a competitive
estimation quality, a lower execution time and numerical
complexity (reduction around 50%) compared to the original
RobustICAG. Generally the new RobustICACG implementa-
tion and the proposed RobustICABFGS provide a reduction
of both the execution time and the numerical complexity
over the conventional RobustICAG and the conventional
FastICA algorithms. Note that, although the FastICA has
the lowest numerical complexity per iteration, the entier
numerical complexity of both the RobustICACG and the
RobustICABFGS stands for the lowest as they converge in
much less iterations. Regarding the RobustICAN, it shows the
smallest number of iterations for convergence but the highest
numerical complexity among the all considered methods.
This high numerical complexity is due to the necessary exact
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Fig. 1. Top: 2 observations of the Mixture of two metabolites (Creatine
and Myo-inositol) for SNR = 5 dB. Bottom: Original sources (Red) vs.
estimated sources using RobustICAG (Blue), RobustICACG (Green) and
RobustICABFGS (Black).
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Fig. 2. Global numerical complexity, NMSE, execution time and total
number of iterations vs. SNR for RobustICAG, RobustICAN, RobustICACG,
RobustICABFGS and FastICA.

Hessian computation step.

IV. CONCLUSION

In this paper, two Newton-based deflationary ICA al-
gorithms have been investigated as a variant of the exact
line search kurtosis-based algorithm, namely RobustICA.
They are either based on an exact Hessian computation,
RobustICAN or on an approximation of this latter using the
BFGS scheme giving rise to the RobustICABFGS approach.
Both the second order optimization-based approaches were

also compared to the deflation-based FastICA and the orig-
inal RobustICA methods. Besides, the nonlinear CG-based
implementation, the RobustICACG, was considered in this
study as a natural extension of the gradient ascent-based
implementation initially adopted in the RobustICA method.
All of the considered variants inherit the exact line search
property from the original RobustICA algorithm. Experi-
mental results on MRS data showed around 50% reduction
in both of execution time and numerical complexity using
the proposed quasi-Netwton (i.e. the BGFS method) and the
CG-based schemes compared to the original gradient ascent
procedure for the RobustICA method. This is while maintain-
ing a good estimation accuracy. Regarding the Newton-based
implementations, it showed, despite its fast convergence (i.e.
very small number of iterations), a higher execution time
and numerical complexity compared to the conventional
RobustICA method and the other proposed implementations
notably its quasi-Newton counterpart, the RobustICABFGS.
This behavior was due to the heavy numerical operations
required to compute the exact Hessian.
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