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Abstract
Kinetic theory models involving the Fokker–Planck equation are usually solved
in the framework of stochastic approaches, which allows us to circumvent the
difficulties related to the multidimensional character of that equation. In fact,
the Fokker–Planck equation governs the evolution of the distribution function
that defines the molecular configuration at each point of the physical space
and at each time. As the molecular conformation is usually defined by several
coordinates, the resulting distribution function will depend on the physical
and configuration coordinates and the time. Although different numerical
strategies have recently been proposed for solving that equation with efficiency
and accuracy (Ammar et al 2006 J. Non-Newtonian Fluid Mech. 134 136–
47, Ammar et al 2006 J. Non-Newtonian Fluid Mech. 139 153–76) the
stochastic approach is today the most common for solving general kinetic
theory models. This paper presents some preliminary results that provide
evidence for the potential applicability of model reduction techniques based
on the Karhunen–Loève decomposition or on separated representations for
reducing the computational efforts related to the solution of such models in
the Brownian configuration fields framework.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many natural and synthetic fluids are viscoelastic materials, in the sense that the stress endured
by a macroscopic fluid element depends upon the history of the deformation experienced by
that element.
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Atomistic modeling is the most detailed level of description that can be applied today in
rheological studies, but its simulation requires enormous computer resources, and so they are
currently limited to flow geometries of molecular dimensions.

Kinetic theory models provide a coarse-grained description of molecular configurations.
They are meant to display in a more or less accurate fashion the important features that govern
the flow-induced evolution of configurations.

Micro–macro methods couple the coarse-grained molecular scale of kinetic theory to the
macroscopic scale of continuum mechanics (the reader can refer to the review paper [9] and
the references therein). This approach is much more demanding in computer resources than
more conventional continuum simulations that integrate a constitutive equation to evaluate the
viscoelastic contribution of the stress tensor.

Since the early 1990s the field has developed considerably following the introduction of
the CONNFFESSIT method by Ottinger and Laso [10].

Kinetic theory provides two basic building blocks: the diffusion or Fokker–Planck equation
that governs the evolution of the distribution function (giving the probability distribution of
configurations) and an expression relating the viscoelastic stress to the distribution function.
The Fokker–Planck equation has the general form

dψ

dt
+

∂

∂X
(Aψ) = 1

2

∂

∂X

∂

∂X
: (Dψ), (1)

where vectors are affected by an underline and matrices by a double underline, dψ/dt is the
material derivative, vector X defines the coarse-grained configuration and has dimensions N .
Factor A is an N -dimensional vector that defines the drift or deterministic component of the
molecular model. Finally D is a symmetric, positive definite N × N matrix that embodies
the diffusive or stochastic component of the molecular model. In general both A and D (and
in consequence the distribution function ψ) depend on the physical coordinates x, on the
configuration coordinates X and on the time t .

The second building block of a kinetic theory model is an expression relating the
distribution function and the stress. It takes the form

τ
p

=
∫

C

g(X)ψ dX, (2)

where C represents the configuration space and g is a model-dependent tensorial function

of configuration. In a complex flow, the velocity field is a priori unknown and the stress
field are coupled through the conservation laws. In the isothermal and incompressible case
the conservation of mass and momentum balance are then expressed (neglecting the body
forces) by

Divv = 0,

ρ
dv

dt
= Div(−pI + τ

p
+ 2ηsd),

(3)

where ρ is the fluid density, p the pressure and 2ηsd a purely viscous component (d being the
strain rate tensor). The set of coupled equations (1)–(3), supplemented with suitable initial
and boundary conditions in both physical and configuration spaces, is the generic multiscale
formulation.

Three basic approaches have been adopted for exploiting the generic multiscale model:
the continuum approach; the Fokker–Planck approach and the stochastic approach. This paper
focuses on the last approach.

The stochastic approach is based on the mathematical equivalence between the Fokker–
Planck equation (1) and the following Ito stochastic differential equation:

dX = A dt + B dW, (4)
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where D = B BT and W is a Wiener stochastic process of dimension N . In a complex
flow, the stochastic differential equation (4) applies along individual flow trajectories, the time
derivative is thus a material derivation. Instead of solving the deterministic Fokker–Planck
equation (1), one solves the associated stochastic differential equation (4) for a large ensemble
of realizations of the stochastic process X by means of a suitable numerical technique.

The control of the statistical noise is a major issue in stochastic micro–macro simulations
based on the stochastic approach. Moreover, to reconstruct the distribution one needs to operate
with an extremely large number of particles; however, in general, only the moments of such a
distribution are required, which can be computed as an ensemble average using a much more
reduced population of particles.

The Brownian configuration fields (BCFs) is a technique proposed in [8] allowing us
to reduce the variance as well as to accelerate the numerical simulations. In this paper we
present some preliminary results that seem to reveal that BCF models can be reduced by using
a Karhunen–Loève decomposition which does not run in the context of the original stochastic
approach.

The proposed technique will be illustrated on the kinetic theory model related to a short
fiber suspension in a Newtonian fluid. For this reason, we start by introducing such a model
in the next section.

1.1. Governing equations for a short fiber suspension

In the case of a dilute short fiber suspension, the configuration distribution function (also
known as orientation distribution function) gives the probability of finding the fiber in a given
direction. Obviously, this function depends on the physical coordinates (space and time) as
well as on the configuration coordinates, which taking into account the rigid character of the
fibers, are defined on the surface of the unit sphere. Thus, we can write ψ(x, t, p), where
x defines the position of the fiber center of mass, t the time and p the unit vector defining
the fiber orientation. The evolution of the distribution function is given by the Fokker–Planck
equation:

dψ

dt
= − ∂

∂p
(ψṗ) +

∂

∂p

(
Dr

∂ψ

∂p

)
, (5)

where d/dt represents the material derivative, Dr is a diffusion coefficient and ṗ is the fiber
rotation velocity. The orientation distribution function must verify the normality condition:∮

ψ(p) dp = 1. (6)

When the fibers are assumed ellipsoidal and when the suspension is dilute enough, the rotation
velocity can be obtained from the Jeffery’s equation

ṗ = �p + kD p − k(pTD p)p, (7)

where � and D are the vorticity and the strain rate tensors, respectively, associated with the
fluid flow undisturbed by the presence of the fibers, and k is a scalar which depends on the
fiber aspect ratio λ (ratio between the fiber length and the fiber diameter)

k = λ2 − 1

λ2 + 1
. (8)

In a former work [4] the discretization of the steady-state Fokker–Planck equation was carried
out in steady recirculating flows using a particle technique, where the diffusion term was
modeled from random motions. It was pointed out that the number of fibers required in this
stochastic simulation to describe the fiber distribution increases significantly with the diffusion
coefficient Dr .
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2. Reduced order modeling

The model reduction technique that we propose in this work is based on the use of the Karhunen–
Loève decomposition, which we summarize in the next section.

2.1. The Karhunen–Loève decomposition

We assume that the evolution of a certain field u(x, t) is known (being its evolution governed
by a PDE). In practical applications, this field is expressed in a discrete form, that is, it is
known at the Nn nodes of a spatial mesh and at some times u(x i, t

n) ≡ un
i , ∀n ∈ [1, . . . , P ]

and ∀i ∈ [1, . . . , Nn]. The main idea of the Karhunen–Loève (KL) decomposition is how
to obtain the most typical or characteristic structure φ(x) among these un(x), ∀n. This is
equivalent to obtaining a function φ(x) that maximizes λ defined by

λ =
∑n=P

n=1

[∑i=Nn

i=1 φ(x i)u
n(x i)

]2

∑i=N
i=1 (φ(x i))

2
. (9)

By applying standard variational calculus, the maximization of equation (9) leads to

n=P∑
n=1



(

i=Nn∑
i=1

φ̃(x i)u
n(x i)

)
j=Nn∑

j=1

φ(x j )u
n(x j )




 = λ

i=Nn∑
i=1

φ̃(x i)φ(x i); ∀φ̃ (10)

which can be rewritten in the form

i=Nn∑
i=1




j=Nn∑
j=1

[
n=P∑
n=1

un(x i)u
n(x j )φ(x j )

]
φ̃(x i)


 = λ

i=Nn∑
i=1

φ̃(x i)φ(x i); ∀φ̃ (11)

Defining the vector φ such that its i-component is φ(x i), equation (11) takes the following
matrix form

φ̃
T
C φ = λφ̃

T
φ; ∀φ̃ ⇒ C φ = λφ, (12)

where the two points correlation matrix is given by

Cij =
n=P∑
n=1

un(x i)u
n(x j ) ⇔ C =

n=P∑
n=1

un(un)T, (13)

which is symmetric and positive definite. If we define the matrix Q containing the discrete

field history:

Q =




u1
1 u2

1 · · · uP
1

u1
2 u2

2 · · · uP
2

...
...

. . .
...

u1
Nn

u2
Nn

· · · uP
Nn


 (14)

then, matrix C in equation (12) gives

C = Q QT. (15)

Thus, the functions defining the most characteristic structure of un(x) are the
eigenfunctions φk(x), whose discrete expression is φ

k
, associated with the highest eigenvalues.
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2.2. A posteriori reduced modeling

If some direct simulations have been carried out, we can determine u(x i, t
n) ≡ un

i , ∀i ∈
[1, . . . , Nn], ∀n ∈ [1, . . . , P ], and from that information the r eigenvectors φT

k
=

[φk(x1), . . . , φk(x Nn
)], ∀k ∈ [1, . . . , r] (with r � Nn) related to the r-highest eigenvalues

λ1, . . . , λr (that are assumed ordered, being λ1 the highest eigenvalue). These eigenvalues
verify λk > ελ1, ∀k ∈ [1, . . . , r] (with ε a small enough value that in our simulations is set
to 10−8) and λk < ελ1 ∀k ∈ [r + 1, . . . , Nn].

Now, we can try to use these r eigenfunctions for approximating the solution of a problem
slightly different from the one that has served to define u(x i, t

n). For this purpose we need to
define the matrix

B =




φ1(x1) φ2(x1) · · · φr(x1)

φ1(x 2) φ2(x 2) · · · φr(x 2)

...
...

. . .
...

φ1(x Nn
) φ2(x Nn

) · · · φr(x Nn
)


 . (16)

Now, we consider the linear system of equations resulting from the discretization of a
partial differential equation (PDE) in the form

K Un = Fn−1. (17)

In the case of transient problems Fn−1 contains the contribution of the solution at the previous
time step.

Then, the unknown vector containing the nodal degrees of freedom can be expressed as

Un =
i=r∑
i=1

φ
i
ξn
i = B ξn, (18)

which implies

K Un = Fn−1 ⇒ K B ξn = Fn−1 (19)

and multiplying both terms by BT it gives

BTK B ξn = BTFn−1, (20)

which proves that the resulting linear system has a small size, i.e. the dimensions of BTK B

are r × r , with r � Nn, and the dimensions of both xi and BTF are r × 1.

Remark 2.1. Equation (20) can also be derived introducing the approximation (18) into the
PDE Galerkin form.

See [1] or [11] for more details on the application on model reduction for simulating
kinetic theory models based on the use of the Fokker–Planck formalism.

3. Reduced Brownian configuration fields (R-BCF)

The BCF technique is based on substituting the solution of equation (4) along individual
trajectories by the solution of the evolution of several fields (the so-called Brownian
configuration fields). From now on we consider the kinetic theory model related to the flow of
a short fiber suspension, with both the flow and the fiber orientation assumed in a 2D physical
space (the extension to 3D is straightforward). As we are interested in the orientation solution,
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we consider that the flow kinematics and the fiber orientation are uncoupled, and therefore we
are computing the orientation solution for a given velocity field.

We assume a simple shear flow characterized by the following kinematics

v =
(

u

v

)
=
(

γ̇ y

0

)
. (21)

The fiber orientation can be described from the angle ϕ:

p =
(

px

py

)
=
(

cos ϕ

sin ϕ

)
. (22)

Thus, the Fokker–Planck equation (equation (5)) reduces to

∂ψ

dt
+ u

∂ψ

∂x
= − ∂

∂ϕ
(ψϕ̇) + Dr

∂2ψ

∂ϕ2
, (23)

where the diffusion coefficient Dr is assumed scalar and constant.
The fibers are assumed with an infinite aspect ratio (k = 1 in equation (7)), leading to

ϕ̇ = dϕ

dt
= − sin2 ϕ, (24)

which implies that the flow tends to align the fiber in the flow direction.
The domain in which the Fokker–Planck (FP) equation is defined is defined by � =

]0, L] × [−H, H ], and the time interval ]0, T ]. Due to the advective character of the FP
equation in the physical space only a boundary condition is required on the inflow boundary
x = 0, which we represent by ψinf(y, t). The initial distribution is given by ψ(x, t = 0) = ψ0.

Again, due to the advective character of the FP equation in the physical space, the solution
on a flow trajectory y = cte does not depend on the solution on the neighbor trajectories.
Thus, we will restrict our analysis to the one-dimensional trajectory defined by y = 1.

The simplest (explicit and first order) stochastic simulation consists of the following.

1. Define a number of fibers ϕi initially distributed in the physical domain ]0, L] representing
the initial fiber distribution ψ0.

2. Update the position of each fiber according to the flow kinematics (in our case defined on
y = 1 with γ̇ = 1):{

xn+1
i = xn

i + u(xn
i , yn

i , tn) t = xn
i + t,

yn+1
i = 1

∀i, ∀n � 1 (25)

3. Update the orientation of each fiber according to

ϕn+1
i = ϕn

i + ϕ̇(ϕn
i , tn) t + W

n,n+1
i , ∀i, (26)

where ϕ̇(ϕn
i , tn) = − sin2(ϕn

i ) and W is a random number with zero mean and a variance
of 2Drt .

4. To avoid the loss of fibers we introduce new fibers in the domain through the inflow
boundary x = 0 whose orientation represents the boundary condition ψinf , in order to
keep constant the number of particles into the domain.

Despite the consideration of a first order explicit scheme for the stochastic equation
integration, higher order integration schemes are available.

We prove later that the extraction of representative modes from this kind of analysis is not
evident, a fact that motivates the consideration of the BCF framework.

Because the random term in the stochastic equation is uncorrelated in space, it is possible
to define stochastic fields whose evolutions can be solved by using standard techniques for
PDEs, making use of fixed or moving meshes. In what follows we consider a fixed mesh on
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the physical domain on which the evolution of different fields ϕi(x, t) is computed. For this
purpose we simply substitute the resolution of equations (25) and (26) by the solution of

ϕn+1
i (x) = ϕn

i (x) − u(x)
∂ϕn+θ

i

∂x
t + ϕ̇(ϕn+θ

i (x)) t + W
n,n+1
i , ∀i, (27)

where ∂u/∂x = 0.
Different techniques have been used in the literature for solving this equation, all of

them stabilizing its advection character: SUPG, discontinuous-Galerkin, etc. In the case of
considering an explicit strategy (θ = 0 in equation (27)) no linear system must be solved but
extremely small time steps are needed. In the other case, if one considers implicit (θ = 1) or
semi-implicit (0 < θ < 1) schemes, the solution of a linear system (whose size corresponds
to the number of nodes used in the space discretization, Nn) is required at each time step.

In the semi-implicit case, where the flow-induced orientation term is considered at the
previous time step, we obtain

K ϕn+1
i

= Fn(W
n,n+1
i ). (28)

Obviously, the fully implicit case results in a non-linear system that must be solved using an
appropriate linearization schema.

One possibility for reducing the computing time consists of solving the previous model
for one field, and then extracting from its time evolution the r characteristic modes via the
application of the Karhunen–Loève decomposition, defining the reduced approximation basis.
Now, the remaining fields could be computed after projection on the reduced approximation
basis. Thus, even if one is using an implicit (or semi-implicit) strategy the size of the linear
systems involved is r × r instead of Nn × Nn.

3.1. Numerical results

3.1.1. Evaluating the applicability of reduction techniques in the standard stochastic approach.
First, we consider a population consisting of N fibers located on the streamline y = 0,
isotropically distributed. These fibers are subjected to a unit shear flow (γ̇ = 1) but they
do not move along the streamline because the velocity field vanishes on this streamline.

The initial fibers orientation is defined by

ϕ0
i = 0. (29)

The orientation updating is defined at each time step according to

ϕn+1
i = ϕn

i + ϕ̇(ϕn
i ) t + W

n,n+1
i , ∀i. (30)

Now, we define the matrix Q

Q =




ϕ1
1 ϕ2

1 · · · ϕP
1

ϕ1
2 ϕ2

2 · · · ϕP
2

...
...

. . .
...

ϕ1
N ϕ2

N · · · ϕP
N


 , (31)

which defines the eigenvalue problem

Q QT φ = λφ. (32)

The main difficulty related to the use of the these computed modes is that they are
associated with a specific particles position, the one that served to define Q. As soon as the

particle trajectories differ from the ones that served to compute the characteristic functions,
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the reduced approximation is no more valid. To illustrate this fact, we consider the reduced
approximation basis composed of the r eigenvectors related to the highest eigenvalues (the r

verifying λk > 10−8λ1, being λ1 the highest one). These eigenvectors define the matrix B

according to equation (16).
Now, equation (30) is written in the matrix form

ϕn+1 = ϕn + ϕ̇(ϕn) t + Wn,n+1 (33)

that after projection onto the reduced approximation basis results

BTB ξn+1 = BTB ξn + BTϕ̇(B ξn) t + BTWn,n+1. (34)

In general the initial condition is added to the reduced approximation basis:

B ← [ϕ0 B], (35)

which allows us to properly define the initial condition associated with the reduced unknown
vector ξ 0: (

ξ 0
)T

= (1, 0, · · · , 0). (36)

The integration of equation (34) from the initial condition (36) allows us to compute the
particles orientation at any time:

ϕn = B ξn (37)

and the associated moments of the orientation distribution. In particular the second order
moment results

an =
∫ 2π

0
p ⊗ p ψn(ϕ) dϕ, (38)

where p is defined in equation (22). When one uses the stochastic approach the distribution
function is defined from the Dirac masses according to

ψn(ϕ) =
i=N∑
i=1

1

N
δ(ϕ − ϕn

i ), (39)

which implies

an = 1

N

i=N∑
i=1

(
cos2(ϕn

i ) sin(ϕn
i ) · cos(ϕn

i )

sin(ϕn
i ) · cos(ϕn

i ) sin2(ϕn
i )

)
. (40)

Now, we can compare the evolution of the first component of the second order orientation
tensor a11, computed from the particles position determined by using both a standard stochastic
procedure (equation (30)) and the reduced modeling defined in equation (34). Figure 1
depicts both solutions from which we can conclude the lack of accuracy related to the reduced
modeling. In this simulation we consider Dr = 0.05, N = 300, k = 1, γ̇ = 1, t = 0.1
and T = 30. All the fibers were assumed initially aligned in the x-direction according to
equation (29). The stochastic solution, even if there is a significant noise (which can be reduced
by increasing the number of particles), approaches the steady-state exact solution, whereas the
computed in the reduced approximation basis (in this case composed of 14 eigenfunctions)
evolves towards an isotropic distribution.

In conclusion, the direct reduction of stochastic simulations by applying the Karhunen–
Loève decomposition does not run despite the simplicity of the flows considered in the previous
analysis. In our opinion the reason for this behavior is that the reduced basis is associated with
the particles trajectories involved in the Karhunen–Loève decomposition. Thus, when this
reduced basis is applied for describing other particles trajectories significant deviations are
expected and, in fact, found.
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Figure 1. Comparison between reduced order solution (blue stars) and the standard stochastic one
(red stars).

3.1.2. Numerical results on the reduced BCF. Now, we solve the same problem on the
streamline related to y = 1 using the reduced BCF strategy previously described. On this
streamline the kinematics is defined by u = 1 and v = 0. At present we assume that
all the fibers located on the inflow boundary x = 0 are aligned in the y-direction, i.e.
ϕ(x = 0, t) = π/2. The same fiber orientation was assumed in the flow domain at the
initial time ϕ(x, t = 0) = π/2.

We compute the evolution of a BCF ϕ1(x, t) from its initial value ϕ1(x, t = 0) = π/2
until the maximum simulation time T = π/2, being the physical domain length L = 3. The
diffusion coefficient was set to Dr = 0.05 and an infinite fiber aspect ratio.

The number of Brownian configurations fields was set to 200 and 50 nodes were uniformly
dsitributed on the physical domain (Nn = 50). A semi-implicit backward finite difference
scheme was employed to discretize the transport equation related to the first BCF ϕ1(x, t),
being the time step t = T/300. From this evolution, matrix Q was computed, allowing us to

extract the characteristic solution information, which in this case consists of five eigenfunctions.
Now, the evolution of the remaining BCF (ϕ2(x, t) · · · ϕ200(x, t)) was computed using the
reduced approximation basis consisting of the five eigenfunctions extracted from the complete
evolution analysis of the first BCF ϕ1(x, t). Thus, the size of the linear systems solved at each
time step, for all the BCF (except the first one) was 5 × 5, allowing a significant CPU time
reduction.

Figure 2 depicts the different components of the second order orientation tensor (a22 in
red, a11 in blue and a12 in green). The continuous line represents the solution when all the
BCFs are computed using the global approximation basis (non-reduced model):

K ϕn+1
i

= Fn(W
n,n+1
i ), ∀i. (41)

The evolution of the first BCF served to define the reduced approximation basis (B) via
the Karhunen–Loève decomposition. When this basis is used to span the remaining BCF
evolutions

BTK B ξn+1
i

= BTFn(W
n,n+1
i ), ∀i > 1, (42)
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Figure 2. Comparison between reduced and non-reduced BCF solutions.

the resulting orientation tensor components are illustrated using the star symbols in figure 2.
We notice a slight deviation between both solutions, the non-reduced one and the one just
computed using the reduced approximation basis.

The aforementioned deviation was expected because (i) the reduced simulation defines
the solution on the approximation basis spanned by the five eigenfunctions extracted from
the solution of the first BCF and (ii) the Brownian terms W

n,n+1
i in equations (41) and

(42) are different. One could expect that the random effects being the same, i.e. W
n,n+1
i

in equations (41) and (42) being the same, the accuracy should increase, because in this
case the accuracy only depends on the number of significant eigenfunctions retained from
the Karhunen–Loève decomposition of ϕ1(x, t). In order to prove this, we compute again
the evolution of the different orientation tensor components using the non-reduced approach
(equation (41)) but considering the random term W

n,n+1
i used to integrate equation (42). It can

be noticed in figure 2 (discontinuous curves) that in this case both results are very close, proving
that a very reduced number of approximation functions are enough to accurately represent the
field evolution.

The accuracy can be improved by increasing the number of nodes used in the space
discretization, the number of BCF or by reducing the time step. In any case the results are
very stable, and similar results were obtained by running the simulation code several times,
with deviations that rarely exceed some per cent. As the computed solutions are very accurate
there is no necessity of enrichment of the reduced approximation basis. In any case such an
adaptation could be carried out using some Krylov subspaces as described in [11] or [1].

4. Separated representation of the reduced Brownian configurations fields

In this section we explore the application of a separated representation and the associated
tensor product approximation basis for solving the transport equation governing the evolution
of the BCFs. Thus, coming back to that equation:

ϕn+1
i (x) = ϕn

i (x) − u(x)
∂ϕn+θ

i

∂x
t + ϕ̇(ϕn+θ

i (x))t + W
n,n+1
i , ∀i, (43)
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we can write
∂ϕi(x, t)

∂t
= −u(x)

∂ϕi(x, t)

∂x
+ (ϕ̇(ϕi(x)) + Hi(t)), ∀i, (44)

where Hi(t) is a piecewise constant function defined as

Hi(t) =




W
0,1
i

t
0 < t < t

...
...

W
n,n+1
i

t
nt < t < (n + 1)t

...
...

W
P−1,P
i

t
T − t < t < T,

(45)

where W
n,n+1
i is a random number with zero mean and variance 2Drt , t being the time

step that will be considered for the time discretization of equation (44). In any case, with
Hi(t) computed according to the previous expression, it becomes a deterministic time function
which affects the evolution of the configuration field under consideration.

Now, the separated representation and the associated tensor product approximation basis
could be applied to perform a space–time simultaneous resolution, according to the procedures
proposed in [2, 3] which are based on the following functional approximation:

ϕi(x, t) =
∑

j

αi
j × F i

j (x) × Gi
j (t). (46)

The construction of this solution requires an iteration scheme involving a projection and
an enrichment step at each iteration. The simplest reduction strategy lies in the construction of
the tensor product approximation basis, defined by functions F 1

j (x) and G1
j (t) by solving the

evolution problem related to the first configuration field, and then looking for the solution of
the remaining configuration fields by a simple projection onto the basis F 1

j (x) and G1
j (t) which

allows us to compute the coefficients αi
j , ∀i > 1. Note that due to the non-linear character of

equation (44) this projection stage requires an appropriate iteration scheme.
Figure 3 illustrates the results computed by using the reduced approximation basis obtained

from the separated representation of the first BCF. In this figure we depict the functions F 1
j ,

G1
j , the components of the second order orientation tensor at the final time t = T = π/2 and

finally the orientation ellipsoids (the axes length represents the intensity of the fiber orientation
along the axes direction) in the space–time domain.

Figure 4 compares the just computed components of the second order orientation tensor
and the ones computed by solving the separated representation of the 200 BCF.

The computed solution when one solves the reduced representation of all the BCF is
very close to the one obtained from the reduced modeling based on the use of the Karhunen–
Loève decomposition. For comparison purposes we represent in figure 5 the just computed
solution and the one computed using the Karhunen–Loève reduction technique (also depicted
in figure 2).

From these preliminary results we notice that the separated representation simulations
using the reduced approximation basis computed from a single BCF exhibit lower accuracy
than the ones based on the use of the Karhunen–Loève decomposition previously analyzed.
A more in-depth analysis on the construction of optimal reduced basis constitutes work in
progress.
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Figure 3. Reduced BCF using a separated representation: (top-left) functions F 1
j (x); (top-right)

functions G1
j (t), (bottom-left) components of the second order orientation tensor at t = T = π/2

and (bottom-right) space–time representation of the orientation ellipsoids.
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Figure 4. Separated representation of BCF: (left) components of the second order orientation
tensor at t = T = π/2 computed using the reduced approximation basis related to the first BCF
and (right) results obtained from a separated representation of the 200 BCF.
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Figure 5. Reduced BCF using: (left) a Karhunen–Loève reduction technique and (right) a separated
representation of all the 200 BCF.

5. Conclusions

In this work we have presented some preliminary results revealing the viability of a model
reduction in the context of stochastic simulations. The proposed model reduction is based
on a direct numerical simulation of a BCF (or a reduced number of them), from which the
more relevant information on the solution can be extracted by applying the Karhunen–Loève
decomposition. After that, the evolution of the other BCFs could be computed using the
reduced approximation basis just computed, with the associated benefits in the CPU time
reduction.

This work opens numerous perspectives. One of them consists of the application of a
separated representation and the associated tensor product approximation basis for solving the
transport equation governing the evolution of the BCFs, as illustrated in the last section.

At present, due to the low dimensional configuration space as well as to the very simple
physical domain considered, no conclusions can be extracted concerning the computing cost
and the convergence rate. This work constitutes a first attempt on the reduction of stochastic
approaches, and it only proves that a certain reduction can be carried out (in the framework of
both the Karhunen–Loève decomposition and the tensor product approximation basis).
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