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Abstract  

The dynamic response of a mechanically stabilized earth wall to the passing of a high speed train is 

modelled using the finite element method. A three-dimensional analysis is carried out, using a specific 

framework that allows performing the analysis with a moderate computational effort. In the first place, a 

so-called multiphase approach is used to take into account the reinforcing strips. The moving load is 

taken into account by performing the calculation in a mobile referential using the properties of 

symmetry of the train cars and a simplifying assumption of periodicity for the whole train. We also 

assume a steady state. A partial validation of the approach is obtained by means of a comparison with an 

analytical solution. The quick increase in displacements induced by the train passing when the speed 

comes close to the celerity of Rayleigh wave clearly appears in the results. The vertical displacements, 

vertical stresses in the backfill, tensile forces in the strips and the influence of the stiffness of the soil are 

discussed.  

 

Keywords: FEM, reinforced earth, high speed train, mobile referential, multiphase model 

 

 

1 Introduction 

Reinforced Earth walls, or Mechanically Stabilized Earth Walls (MSE walls), are geotechnical 

structures often used to build retaining walls, bridge abutments, road embankments, etc. They have been 

first developed in France by Henri Vidal in the 1960s (1), and have been introduced in the United States 

some years later (2). They consist in an association (3) of well-chosen backfill material and reinforcing 

strips (generally made of steel, even if synthetic materials are increasingly used) attached to a facing 

wall usually composed of concrete panels (Figure 1). In addition of its cost efficiency and ease of 

implementation, this technique makes it possible to realize “vertical slopes” of backfill, leading to a 

consequent gain in space. These advantages explain the rapid spread of the technique over the last 
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decades. However, such structures are rarely used for high speed railways embankments and their 

response to the dynamic loads associated with the passage of a high speed train is not well known.  

The usual design does not rely on FEM methods ( (4), (5), (6)), however, a number of researchers have 

used FEM modelling, first in 2D (e.g. (7)), then 3D calculations. FEM modelling meets a challenge: the 

presence of the reinforcing strips. The number of reinforcing strips implies a lot of work to prepare the 

mesh and a large number of elements with very different sizes. Another particular concern is the 

modelling of the interface between soil and reinforcing strips. Special interface elements have been 

introduced to simulate the interface behaviour ((8), (9)). Homogenization methods have also been 

introduced for limit analysis (10) or for elastic behaviour modelling (11) (12) (13). The introduction of 

multiphase model allows to combine homogenization and the modelling of the interface (14) (15). This 

model has been successfully used for the simulation of various types of geotechnical structures under 

static loadings, such as piled raft foundations (16) (17), MSE walls (18) (19), etc. More recently, the 

possibilities of the approach under dynamic loadings have been investigated by Nguyen et al. (20). 

The FEM modelling of the effect of dynamic loads on soils implies that specific procedures must be 

used to avoid unrealistic reflections of waves on the boundaries of the analyzed domain. This may be 

done by taking into account a numerical domain much larger than the height of the embankment and the 

length of the train or by the use of more advanced techniques, such as infinite elements (21), absorbing 

boundaries (22) or coupling of finite elements and boundary elements (23) (24) but such approaches 

remain difficult to use.  

In a former paper (25), we have investigated the dynamic behaviour of such a structure subjected to a 

harmonic load applied on a fixed place, and compared the results of dynamic finite element simulations 

with the results obtained on an experimental wall (26).  

However, a train is a moving load. The use of a referential attached to a mobile load in motion over a 

railway is well described in the literature (27) (28). From a geotechnical point of view, such approaches 

are mainly aiming at the evaluation of the ground surface settlement under the load, even if the approach 

is also used to investigate the ground/carriage interaction by means of mass/spring models. The velocity 

of the load is generally constant (28) (29) and its amplitude can be constant or harmonic (30) (31). The 

ground layer is represented by a semi-infinite domain, with a behavior either elastic (32),  visco-elastic 
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(32) (33), or poroelastic (34). It is generally accepted that this approach makes it possible to take into 

account the influence of the load velocity on the ground surface displacements, which becomes large as 

the train velocity gets close to the velocity of Rayleigh waves (see for instance (31)).  

The FEM or BEM-FEM direct simulation in the time domain is possible (35) but it needs to model a 

large volume of soil. Assuming that the geometry and the mechanical properties of the system are 

invariant along the direction of the track makes it possible to use the so-called 2.5 D simulations which 

uses a Fourier transform in the direction of the track (36) (37).  

The aim of the present paper is to evaluate the behaviour under the vertical load generated by a moving 

train in the specific case of reinforced earth. Our approach aims at combining the use of a mobile 

referential, the use of multiphase modelling and the use of specific boundary conditions taking into 

account of the periodicity of the load, under some simplifying assumptions, like steady-state and spatial 

periodicity of the load.  

 

2 Modelling assumptions  

2.1 Outline 

Let us consider a train moving on a railway built over a Mechanically Stabilized Earth wall. As the train 

moves along the railway, the load associated to a train axle induces displacements and strains in the 

structure beneath the railway, while stresses in the embankment and forces in the strips vary. Our aim is 

to investigate these variations of stresses and strains in the reinforced structure, for one single passage of 

the train (long term effects due to the possible fatigue of the MSE wall are not taken into account here).  

The complexity of the problem arises from numerous sources: 

- The railway itself is a complex system, due to its geometry – the discrete distribution of the 

sleepers for instance – and to the behavior of its components, the ballast being a highly non-

linear and discontinuous material (see for example (38)) 
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- The MSE wall below the railway has the structure of a heterogeneous composite material made 

of the backfill material and the discontinuously distributed reinforcement strips. Moreover, the 

strips have a cross section of very small transversal dimensions compared with their length and 

the mechanical interaction between the embankment material and the strips involves complex 

friction phenomena.  

- The load coming from the train is applied in a series of points corresponding to the location of 

the wheels, making the problem three-dimensional. 

- The displacement of the load at a high speed induces dynamic effects in the reinforced 

structure: from a numerical point of view it is necessary to pay attention to boundary conditions 

specially to avoid unrealistic wave reflections.   

For all these reasons, it is advisable to adopt a set of simplifying assumptions in order to discuss the 

behavior of MSE walls used as support for a high speed railway. 

 

2.2 Assumption of steady-state regime and use of a mobile referential 

We assume the railway is rectilinear and horizontal, parallel to direction x, and the train velocity v is 

constant. Under these assumptions, we postulate that it is possible to reach a steady state regime and to 

study the response of the wall in a mobile referential attached to the train. This requires that the 

geometry and the material properties of the railway and the MSE wall are invariant along the direction 

of the train motion: this assumption is obviously valid for the rails, and can be sustained for the wall 

facing, but it is clearly not correct for the sleepers, for instance, nor for the steel strips constituting the 

MSE wall, because they are discontinuous in the direction of the motion. 

 

2.3 Load and the strip reinforced backfill modeling 

The sleepers are not taken into account in the model, but instead, the loads transmitted by the rails and 

the sleepers to the ballast layer are represented by equivalent distributions of pressures applied directly 

at the top of the ballast layer (Figure 2). 
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The steel strips of the MSE wall are parallel to the direction y. To overcome the difficulty induced by 

the discontinuous distribution of the strips, we replace the reinforced bulk of ground by a homogeneous 

“equivalent” material. Since it is generally acknowledged that the strip-backfill interaction is of crucial 

importance to account for the behaviour of MSE walls under static loading, special attention is paid in 

section 4 hereafter to the choice of this homogeneous material. 

 

3 Analysis of the problem in the referential attached to the train 

Within this framework, the basic assumption we formulate is that the value of all quantities, at a given 

point x and at time t, are equal to the value taken at point �’ = � − �� at time 0, � denoting the velocity 

of the train: 

 �	�, �, �, � =  �	�’ = � − ��, �, �, 0. 	1 
In other words, time can be seen as a parameter and (1) can be rewritten as: 

 �	�, �, �, � =  �	�’, �, �. 	2 
with the convention that capital letters refer to fields defined in the referential attached to the train (and 

therefore independent on time). This approach is similar to that adopted for instance by Zhai and Song 

(33) who introduce the notion of “moving coordinates” and of finite element method in moving 

coordinates (MFEM). Note however that the problem discussed here is simpler, because of the 

assumption of steady-state regime. 

We introduce a reference configuration, in which displacements, velocities and accelerations are zero. In 

this configuration, the stress tensor in the ground is denoted by σ°. During the passage of a train, the 

stress field shows variations with respect to the reference situation, denoted by δσ. In a fixed referential, 

at a given point x, the momentum balance equation reads: 

 ��� δσ −  ργ =  0 	3 
where γ denotes the ground acceleration. According to the assumptions above, the loads brought by the 

train are represented by distributions of pressure applied at the top the embankment. Denoting by n the 
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outward normal unit vector on the upper surface of the domain, the surface force density � = δ�. n is 

given by: 

 � = − �	�, �, �, �� , 	4 
where �	�, �, �, � describes both the distribution of the loads transmitted from the axles to the ground 

through the ballast layer and its variations as the train passes. The boundary conditions will be discussed 

later. 

It is readily seen from Eq. (1) that  

 ��� δσ	�, �, �, � =  ��� δσ	�’ = � − ��, �, �, 0 =  ��� δΣ	�’, �, �. 	5 
where δΣ denotes the stress tensor written with the variables of the mobile referential.  

It follows from Eq. (1) that the displacement field �	�, �, �, � and its derivatives can be deduced from 

their counterpart in 	�’, �, � at time 0: 

 �	�, �, �, �  =  �	�’ = � − ��, �, �  →γ	�, �, �, �   =  � ∂
!"

∂#$! 	�’, �, �. 	6 
Introducing (6) in (5) yields: 

 ��� δΣ 	�’, �, �  −  ρ� ∂
!"

∂#$! 	�’, �, �  =  0. 	7 
Assuming the ground behavior is linear elastic with no damping, the stress variation is related to the 

strain ε by: 

 δσ	�, �, �, �  =  '	�, �, � ε	�, �, �, �, 	8 
where ' is the elastic moduli tensor and ε the symmetric part of the gradient of the displacement. 

Eventually, we introduce the assumption that the material properties of all parts of the system are 

invariant along the direction of motion: 

 '	�, �, �  =  '	�, �; ρ	�, �, �  =  ρ	�, �. 	9 
This condition does not require that the domain is isotropic or homogeneous (variations of the elastic 

moduli with depth for instance are allowed). 
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3.1 Variational formulation 

Multiplying Eq. (7) by a virtual displacement field �’, and integrating over the domain Ω taken into 

account in the analysis (which remains to be defined precisely at that stage, but does not depend on 

time), we obtain: 

 + [ �′. ��� ./ −  0� �′. 1!"1#!  ]  =   0.3  	10 
where the dot denotes the inner product of two vectors, and the differential element has been omitted for 

the sake of simplicity. Using the constitutive law and a classical integration by parts, one gets 

 + 4 5 ∶  ' ∶  5′ −  0� 1"7
1# . 1"1#8 =   + 49 .  �$ −  0� 11# :�$. 1"1#;813  ,3  	11 

where n is the outward normal unit vector on the boundary ∂Ω of the domain Ω and    P = δ/. n is the 

surface density of force acting on ∂Ω (that is the force acting per unit area). It must be emphasized that 

the above equation is valid only if the first derivative of the displacement field 
?@?A is continuous, which 

excludes the case of a shock wave. 

 

3.2 Boundary conditions and loads 

This section is devoted to the discussion of the boundary integral  

− 0� + 4 1?# :�$. 1"1#;81B      	12 
that has been introduced by the integration by parts above. In what follows, we introduce a new set of 

assumptions, under which this term vanishes. We assume that the train is of infinite length, and made of 

a succession of similar train cars, so that its action on the embankment can be represented by a set of 

forces applied on its upper boundary and periodically distributed along the direction of the motion. The 

spatial period of the applied loads is typically equal to the length of each car. 

Under these assumptions, the domain taken into account in the analysis can be limited to the half-length 

of a train car, and the vertical planes Π1 and Π2 of Figure 3 are clearly planes of symmetry, one 

corresponding to the middle of each bogie, and the other to the middle of each car. Thus, we limit the 

domain taken into account in the study to the interval between the planes Π1 and Π2 of the figure, and 
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we denote by Stop and Sbottom its upper and lower boundaries. The loads brought by the train are taken 

into account through surface densities of vertical forces applied on specific areas of Stop, denoted by P 

and represented by arrows in Figure 3. 

The following holds for each point of Π1 and Π2: 

 �# = 0    	13 
  σC# = σD# = 0.          (14) 

It is natural to choose U’ among the virtual displacement fields that satisfy the first condition, i.e 
such that  
 �′# = 0  on Π1 and Π2 	15 
Besides, if all the materials constituting the structure are isotropic, the shear strains are zero: 
  5C# = 5D# = 0,  	16 
and then 

 1"\1# =  1"]1# = 0 . 	17 
Using Eq. (15) and Eq. (17), the integral Eq.(12) vanishes and the weak form of the problem reduces to 

 +   5 ∶  ' ∶  5$ − +13 0� 1"7
1# . 1"1# =   +      9 .  �$13   .3  	18 

In other words, the train velocity introduces a bilinear form in the left hand side, which has a structure 

very similar to the first part of the left hand side: both involve products of the spatial derivatives of U 

and U’. 

4 Case of a multiphase model 

4.1 Application of the multiphase modelling method 

The discontinuous distribution of the strips in the MSE wall along the direction of the motion does not 

normally allow formulating the problem in the mobile referential, because Eq. (9) is not satisfied. TO 

overcome this difficulty, we resort to the so-called multiphase model, described in (14)  and (15). 
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According to this model, the reinforced soil is schematized as a two-phase system, which represents the 

superposition of two continuous media, called matrix and reinforcement phases. In the case of MSE 

walls, the matrix phase represents the backfill material and the reinforcement phase represents, in a 

global manner, the steel strips. Each phase is associated with a displacement field denoted by u
m
 for the 

matrix and u
r 

for the reinforcement. The momentum balance equations, expressed for each phase 

separately, may be written as: 

 ��� δσ^ +  ` =  ρ^ ∂
!ab
∂c!   , 	19 

 ��� dδ�efC⊗fCg −   ` =  ρe ∂
!ah

∂ c! ,  	20 
where gravity forces are neglected, and ρ^and ρe denote the volume densities of the phases. In the 

above equations �e denotes the density of axial force in the reinforcement phase (i.e. the axial force per 

unit area) in a plane perpendicular to the reinforcement orientation eC. This density is equal to the 

normal effort N in one reinforcing strip divided by the area A of facing wall associated with each strip:  

 �e = ij  . 	21 
In terms of variations with respect to the reference configuration (corresponding to the end of the wall 

construction) Eq. (21) can be written as: 

 .�e = kij  . 	22 
Besides, in the above Eqs (19) and (20), I is the (volume density of) interaction force exerted by the 

reinforcement phase on the matrix phase. Following (20), we neglect the inertia term of the second 

dynamic equilibrium equation, so that the interaction force density I is oriented along the reinforcement 

direction: ` = ` eC. 

The constitutive laws of the phases are expressed as: 

 δσ^ = '^ ∶ ε^ for the matrix phase 	23 
 δ�e   =   αeεe for the reinforcement phase, 	24 
where the strain variables εm and εr are defined from the displacement fields as: 
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 ε^ =  m dnop� �^ + nop�c �^g  p�� εe = ∂a\h
∂C .      	25 

'^ stands for the tensor of elastic moduli of the matrix phase and αr is the axial stiffness of the 

reinforcement phase. 

The interaction force may be chosen by adopting a constitutive law which linearly links the interaction 

force density I to the difference between the displacements of the two phases along the reinforcement 

orientation: 

 ` = std�Ĉ − �Ce g.              	26 
In a similar way to (20), the parameters of the model are chosen as follows: the elastic moduli of the 

matrix phase are assumed to be equal to those of the original (unreinforced) backfill material, while the 

axial stiffness of the reinforcement phase is calculated as: 

 ue = vw 	27 
where η is the volume fraction of the strips and E the steel Young’s modulus . Similarly, we assume the 

matrix phase volume density can be taken equal to the backfill material volume density and the 

reinforcement phase volume density is equal to η times the volume density of steel. 

The identification of the interaction stiffness parameter c
I 
appearing in Eq  (26) is discussed, in the case 

of piled raft foundations in (16), (39). We adopt here the value proposed for a MSE wall in (18), 

assuming the stiffness interaction parameter c
I 
does not depend on the frequency, which can be backed 

up by (20). 

We summarize here the assumptions:  

• The reference configuration of the model corresponds to the end of the MSE wall 

construction; it includes gravity loads. Our dynamical calculations consider only the 

changes with respect to this reference configuration under the moving load. 

• We consider a multiphase model with two phases: matrix (soil) and reinforcement (steel 

strip). 

• We assume a linear behavior of matrix, reinforcement and matrix/reinforcement 

interaction. 
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• We neglect the inertia term associated with the reinforcement phase. 

4.2 Boundary conditions 

This section presents the generalization of the discussion about the boundary conditions when the MSE 

wall is modeled using the multiphase approach, under the same set of assumptions as before: train of 

infinite length, applying pressures on the ground periodically distributed along the direction of the 

motion, domain limited to the half-length of a car.  

The equations (19) and (20) now read: 

 ��� δσ^  +  ` fC� −  ργ =  0, 	28 
 ∂δxh

∂C  − ` = 0, 	29 
with the constitutive relations Eq.(23) and Eq.(24). Writing (28) in the mobile referential, we obtain the 

relation similar to (7): 

 ��� δσ^  +  ` fC  −  ρ� ∂
!"

∂#!  	�’, �, �  + `yfC = 0 	30 
where Is is a surface density of force that can be exerted, in the y direction, by the strips on the boundary 

of the reinforced zone (the equation being understood in the sense of distributions, see (20) ). This 

makes it possible to take into account for instance the mechanical connection of the strips on the wall 

facing panels; on the contrary, we assume that the density of axial force in the reinforcement phase is 

zero at the free end of the strips. Multiplying Eq.(27) by a virtual displacement field �′^, we get: 

 + 4�$. ��� ./^ −  0� �$^. 1!"b
1#! 8 + + [ �C$^ ` ]  3 + + [ �C$^`y ]  z{|}x~  =   0 3  	31 

Performing an integration by parts and introducing the constitutive law of the matrix phase leads to 

transform the previous equation into: 

+ 45^ ∶  '^ ∶  5′ −  0� 1"7b
1# . 1"b

1# 8 = + [ �C$^ ` ]  3 + + ��C$^`y� + +    9 .  �$^13z{|}x~  =   0 .3  	32 
Multiplying the momentum balance equation for the reinforcement phase Eq. (29) by a virtual field �′Ce  

and integrating over the area in which the reinforced ground is modeled as a multiphase material Ωr, one 

gets: 
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 + �′Ce [ 1xh1C − ` ] 3h = 0. 	33 
An integration by parts and the constitutive equation of the reinforcement phase lead to: 

 + �′Ce [ 1xh1C  ] 3h =   + 1 	"$\h   xh1C3h − + 1"\7h
1C ue 1"\h1C   .3h  	34 

Assuming the stress in the reinforcement phase (i.e. the traction forces in the strips) is zero at the 

boundary corresponding to the free end of the strips (y=Ls in Figure 2), and taking advantage of the fact 

that the displacement of the matrix and the reinforcement phase are equal for y=0 (where the strips are 

connected to the facing), we get: 

 + �′Ce [ 1xh1C  ] 3h =   + �′Ce �yz{|}x~ −  + 1"\7h
1C ue 1"\h1C   ,3h  	35 

where Ts is the surface density of force acting on the reinforcement phase. Combining Eqs (32), (33) 

and (35), and introducing (23), we eventually obtain: 

+ �^ ∶ '^ ∶ �′3 −  0� + 41"7b
1# . 1"b

1# 8 + + 1"\7h
1C ue 1"\h1C3h + + d�Ce − �Ĉ gstd�C$e − �C$^g =3h3

+ 9. �$^13  	36 
With respect to the classical monophasic situation, the variational formulation above introduces two 

additional bilinear symmetric forms, corresponding to the last two terms of the left hand side. Their 

numerical treatment does not rise specific difficulties and has been carried out before, for instance in 

(16), (17), (18) or (19). 

 

5 Numerical implementation 

5.1 Modification of the stiffness matrix 

As pointed out before, the additional term that depends on the velocity has the same structure as the 

terms associated with the elastic moduli. From a numerical point of view, the additional term has the 

same structure as the stiffness matrix, and results from the integration of products of shape functions 

derivatives. Consequently, its computation in the framework of a finite element code is relatively 



 14

straightforward. We denote by k the number of nodes of an element, and by 

��� = ��#m , �# , … �#� , �Cm , �C , …  �C� , �Dm, �D , …  �D�� the nodal displacements vector of the element, by Ni 

the shape function equal to 1 on node i and 0 on the other nodes.  

We define the usual matrices L and N
e
 by: 

 � =    

��
��
��
��
��    11# 0 0

0 11C 0   
   0 0 11D11C 11# 0    
   0 11D 11C11D 0 11#

   ��
��
��
��
��

   	37 

 �� = ��m � …0 0 …0 0 …     �� 0 00 �m � 0 0 0       … 0 0… �� 0… 0 �m
    0 … 00 … 0� … ��   � 	38 

The strains can be computed by: 

 �5� = ����� with �� = �. ��  	39 

�� =

��
��
��
��
��

1i�1#    1i!1#    …    1i�1#              0            0      …        0           0           0     …      0
 0         0      …       0             1i�1C        1i!1C    …    1i�1C           0             0    …      0

  0         0      …       0               0         0       …       0            1i�1D       1i!1D     …   1i�1D  
1i�1C    1i!1C    …    1i�1C              1i�1#       1i!1#    …    1i�1#             0              0     …      0

   0       0      …      0                 1i�1D      1i!1D    …    1i�1D             1i�1#        1i!1#    …    1i�1#  
 1i�1D       1i!1D     …   1i�1D                0          0       …       0          1i�1#        1i!1#    …    1i�1#  

 

��
��
��
��
��

 	40 

 

The elementary stiffness matrix is given by: 

 + �� . w c . ���  	41 
where E denotes the usual (local) elastic matrix. To compute the additional term introduced by the use 

of mobile referential, we introduce the differential operator L’:  
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 �$ =
��
��
� 11# 0 0

0 11# 0
0 0 11#��

��
� 	42 

And we now set G� = L$. N�: 

 �� =
��
��
� 1i�1#    1i!1#    …    1i�1#              0            0      …        0           0           0     …      0

 0         0      …       0             1i�1#        1i!1#    …    1i�1#           0             0    …      0
  0         0      …       0               0         0       …       0            1i�1#       1i!1#     …   1i�1#  ��

��
� 	43 

The correction of the stiffness matrix is then given by − 0� + G�� G�� . In the framework of the 

multiphase model, it only concerns the matrix phase, since we have assumed that inertia terms in the 

reinforcement phase are negligible. 

From a global point of view, the apparent stiffness is modified, and, if the velocity of the train becomes 

large enough, the stiffness matrix may no longer be definite and positive (in this case, discontinuities 

may appear in the velocity stress field and the above equations no longer hold). This is the explanation 

of the changes which appear in the results when the speed of the load approaches the velocity of 

Rayleigh wave (see results of section 5.2: the analytical and the numerical results become large when 

the speed approaches the velocity of Rayleigh waves, and both the analytical and the numerical 

computations are no longer possible for this speed).  

 

5.2 Elements of validation 

It is possible to validate partially the numerical implementation of the mobile referential approach, on 

the basis of analytical solutions provided, for a unique point load acting on an elastic half space, moving 

at velocity v along the x-direction. The load being applied at point 0 (40) (a slightly earlier reference is 

(41)) gives the possibility to compute the vertical displacement wo (z) of a point located just below the 

x-axis, at a depth z 

 ��	�, � = 0, � = m� ! ¡D¢ + £¤ � 	¥m + ¥ �¦  	44 
Where: 
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 § = − ^!
m¨ :©c̈ sª«¨¦ − 8©c�sª«�¦ + 8©c sª« ¦ :3 −  ̂!; − 16 + m¨̂!; 	45 

 ¬ = 	1 − m ©c sª« ¦ + 	1 − m̂! ©c�sª«�¦m/  	46 
 ¥m = D!	m® �b! °̄±|²y±³�/!	^!®m

´#!|²y!³µD!:m® �b! °̄!|²y!³;¶:#!|²y!³µD!dm® °̄!|²y!³g; 	47 

 ¥ = 	m® �b! °̄!|²y!³�/!´m® °̄!|²y!³´mµb!± ¶µ�± °̄±|²y±³¶
´#!|²y!³µD!:m® �b! °̄!|²y!³;¶·:m® �b! °̄!|²y!³;�!:m®�! °̄!|²y!³;µdm® °̄!|²y!³g�!¸ 	48 

 ©c = ¹
º»¼

 ; ½ = º¾µ ¢¢  	49 
Georgidis and Lykotrafitis (42) give the vertical displacement ws(d) of a point located at the surface, 

with polar coordinates (d, ϕ) from the applied load, ϕ=0 corresponding to the y=0 plane. Note that the 

result can also be found in (43) (44): 

 �y	� = − ¡ ¢¿ 	m® �b! °̄!y}x!ϕ�/!:	 ® °̄!y}x!ϕ!µ�	m® �b! °̄±y}x±ϕ�/!;
°̄Ày}xÀϕ®Á °̄±y}xÀϕµÁ °̄!y}x!ϕ:Â® !b!;®m¨µ �Àb!  	50 

If the point is on the x-axis, ϕ=0 and the above formula gets much simpler:  

 �y	� = ¡  ¢¿ ¾µ ¢¾µ¢  	51 
The simulation in the mobile referential, with the boundary conditions considered here, corresponds to 

the response of the ground to an infinite series of point loads, periodically distributed along the x-

direction. The vertical displacement resulting from this periodic distribution of loads is then 

theoretically infinite. However, it is possible by superposition of the solutions given above, to evaluate 

the relative vertical displacement between two points within the considered domain (see for instance 

(45)). A superposition can be carried out numerically as the result of the computation of a series, in 

order to estimate the equivalent vertical displacement. In practice, the first twenty terms of the series are 

sufficient to get an estimate of the result.  

We recall here the different wave velocities (see for example (43)), Cm being the velocity of longitudinal 

waves and C  the velocity of transversal waves: 
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'm = º¾µ ¢
ρ

; ' = º¾¢
ρ

. 	52 
The Rayleigh velocity 'Â is the root of �	Ä such that 0 < 'Â < '  with G defined by: 

�	Ä = ´2 − : ÆÇ!; ¶ − 4º´1 − : ÆÇ�; ¶ ´1 − : ÆÇ!; ¶. 	53 
To validate the numerical implementation presented above, a three-dimensional finite element 

simulation was performed, using the code CESAR-LCPC (see section 6) with a mesh of dimensions 

Lw/2 x 5Lw x 5Lw. The boundary conditions set to zero : 

- the displacement along x on the planes x = 0 and x = Lw/2   

- the displacement along y on the plane y = 5 Lw   

- all components of the displacement on the plane z = -5Lw   

Computations are performed for the following values of the numerical parameters: 

E = 75 MPa, ν = 0.25, (or equivalently λ  = 30 MPa µ = 30 MPa), ρ=1800 kg.m
-3

, Lw=20 m, 

z=1m, P=100kN 

For these parameters we have: 'm = 223.6 ½/«; ' = 129.1 ½/«; 'Â = 118.7 ½/«.  

The mesh is shown in Figure 4: it comprises 41000 nodes and 15000 quadratic (pentahedra) elements. 

The size of the elements varies between 50 cm and 10 m. 

Figure 5 compares the relative vertical displacements of points A and B for various values of the train 

speed v, given by the analytical approach briefly presented above and by the finite element simulation. 

The very good agreement between the theoretical and numerical values validates the implementation of 

the simulation in a mobile referential in the numerical code. 

6 Application to a high speed railway MSE wall 

This section presents the results of the proposed approach application to a high speed railway. The 

effect of a high speed train passing on a MSE wall has been simulated with two sets of mechanical 

properties for the backfill material: one corresponding to typical materials used in practice, and the 
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second corresponding to a less stiff material, in which the shear wave velocity is smaller. Simulations 

have been performed using the finite element software code CESAR-LCPC (46), in which the 

appropriate modification have been implemented to take into account the mobile referential. 

6.1 Geometry 

We first define the geometry of the wall. The cross section is described in Figure 6. As explained 

earlier, the extent of the domain taken into account, along the motion direction, is equal to one half of 

the distance L between two bogies. In practice, we adopt the value Lw = 18.7 m, which corresponds to a 

Thalys train (between Paris and Amsterdam or Brussels for instance). 

The mesh used for the simulations is also presented in Figure 6. It comprises 35000 nodes and 10000 

quadratic elements (20-node hexahedra and 15-node pentahedra).The facing is made of 14-cm thick 

concrete panels. 

 

6.2 Steps of the simulation 

The simulation is carried out in two steps: 

- The first step is a static computation, in which the construction of the wall is simulated by activating 

successively five layers of backfill (in the reinforced and in the unreinforced zones) and the 

corresponding parts of the facing, then the sub-ballast and ballast layers (the activation consists of 

taking into account the contribution of the elements to the overall stiffness matrix, and in applying their 

self-weight). The contact between the facing and the backfill is taken into account by means of a thin 

layer of elements with an elastic behaviour, making it possible to account for the slippage of the backfill 

material behind the facing during the construction process; this first step is used to define the initial 

stress field for the second step, which simulates the passing of a train (in the mobile referential). 

- In the second step, we apply the pressure distribution corresponding to the load brought by the axles 

on the ballast layer, taking into account the modified stiffness matrix which depends on the train speed, 

according to Eq. (10) and Eq. (40). 
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6.3 Loads and boundary conditions 

The boundary conditions are given by Eq. (15) on the symmetry planes, and the displacement is set to 

zero on the basis of the mesh.  

Two wheels of the same axle apply a 90 kN load on the structure. This load is applied at a distance of 

1.5 m of the bogie plane of symmetry, and is spread over a certain area. According to (47), this load is 

distributed over seven sleepers located on either side of the wheels, with coefficients that account for the 

rail vibrations and the railway structure damping. In practice, we take into account the effect of both 

axles of the bogie, and apply non uniform pressures at the top of the embankment, on an area 

corresponding to 7 sleepers. Since the aim of our study is to discuss the influence of the train speed, we 

have not undertaken to discuss precisely the influence of the assumptions made to assess these non-

uniform pressures. 

 

6.4 Material parameters 

As the aim of the simulation is to discuss the influence of the train speed, we have chosen to adopt 

simple constitutive laws for all constituents of the structure. Especially, the ballast is treated as a 

continuous isotropic material, which is a strong approximation, with a Mohr-Coulomb plastic law (38). 

The same choice is made for the sub-ballast layer and the backfill material. 

For the ballast (see Table 1), we have adopted values derived from the results of the European research 

project Innotrack, carried out between 2006 and 2009 (48). 

For the backfill material, we have tested two values of the Young’s modulus. The first one corresponds 

to “typical” values of the modulus of a railway backfill, obtained on a full-scale experimental MSE wall 

(38) (49). The second value corresponds to a less stiff material, in which the shear wave velocity is 

lower, which is why it is referred to as a “slow backfill material” in the following.  
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6.5 Results and discussion 

We only discuss the results of the second step of the simulation, the results of the first step being similar 

to those already presented in (18).  

In the mobile referential, the variations of all quantities along the direction of the motion are directly 

related with the time variations before, during and after the train passing.  

Displacements 

We first present the vertical displacements, at mid-distance between the rails (i.e. at a distance of 3 m 

from the facing), and at the level of the limit between the ballast and the sub-ballast layer, along the 

direction of the rails. Figure 8 shows the results obtained, for a static load and for a train passing at 

different speeds, for the typical backfill stiffness and for the slow embankment. 

 

For the typical backfill material, the maximum vertical deflection is in the order of 0.4 mm for a static 

load (i.e. a train at a speed equal to 0), and is increased by 11 % for a speed of 350 km/h. 

For the slow backfill material, the maximum deflection for a static load is larger, around  

1.2 mm. The relative increase in maximum deflection computed for a speed of 350 km/h is now of 

44 %. It is worth noting that the deflection at the plane of symmetry (x=0) is reduced with respect to the 

static case, showing that the mobile load induces a concentration of the deformation under the wheel, 

which reflects the fact that the train speed gets close to the velocity of Rayleigh waves in the backfill.  

Note also that there is a zone, ahead of the wheel position, where the embankment exhibits an uplift of 

approximately 0.2 mm. For ν=0.5 (incompressibility) the sinking under the load must be compensated 

by an uplift. This uplift appears to depend largely on the speed. Some observations confirm this 

phenomenon (50).   

In the last place, it can be noted that, even if the relative increase in the maximum deflection may seem 

large, the absolute values of the deflection remain small, a few tenths of millimeters in the case of the 

typical backfill material, and a little less than 2 mm for the slow backfill material. Such displacements 

are not likely to have a significant influence on the stability of the wall.  
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Tensile forces in the strips 

The multiphase approach makes it possible to evaluate the tensile forces in the strips (this is done by 

multiplying the uniaxial stress in the reinforcement phase �e by the area associated with each strip, i.e. 

the total area of the facing divided by the total number of strips). In the case of the typical backfill 

material, there is practically no influence of the train speed on the results. The results obtained for the 

slow backfill material are shown in Figure 9, for a strip that would be located in the upper part of the 

wall (z=3.75 m). For a static load (train speed equal to zero), the value of the tensile force is minimal at 

mid-length of a train car. For a train speed of 350 km/h, the minimum value of the tensile forces is also 

attained at mid-length of the train car, but the minimum value is larger, showing that the train speed is 

too large to let the tensile forces get back to their initial value.  

It can be noticed that the variations in the tensile forces induced by the load (static or in motion) are not 

negligible with respect to the initial tensile forces obtained at the end of the wall construction. 

Vertical stresses in the backfill material 

For the typical backfill material, the vertical stresses variations induced by the load are not influenced 

by the train speed (in the range 0-350 km/h). For a slow embankment, the distribution of the vertical 

stress along the train is different for a static load and for a train moving at 350 km/h. Figure 10 shows 

the variations of the vertical stress in the backfill computed at the level of the upper row of strips 

(z=3.75 m). The maximum vertical stress below the wheel is 30% larger for a speed of 350 km/h than 

for a static load. Note that this increase in vertical stress on the backfill-strip interface results in an 

increase in the shear strain that can be mobilized at this interface, and is therefore not necessarily 

adverse to the internal stability of the MSE wall. 

 

Relative displacement between the matrix and the reinforcement phases 

As mentioned before, the multiphase model involves the relative displacement between the backfill 

material (matrix phase) and the strips (reinforcement phase), along the direction of the strips, denoted 

above by �Ĉ − �Ce. The simulation gives access to the variations of this relative displacement. The 
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relative displacement is, in all cases, less than 30 µm. Even if no experimental data are available to 

validate this result, the order of magnitude does not seem unrealistic. The small value obtained makes it 

unlikely that significant fatigue phenomena occur as a result of numerous passing trains, but this 

assertion remains to be discussed, on the basis of the relative displacement obtained here and from a 

model, that remains to be elaborated, able to describe the effect of the accumulation of cycles in which 

the relative displacement varies.  

 

7 Conclusion 

We have proposed a three dimensional finite element analysis of the effects of a high speed train 

passing on a MSE wall. The approach presents two original features: the computation is carried out in a 

referential attached to the mobile load, and the reinforced backfill material is modeled using the 

multiphase model.  

It is worth noting that the approach is extremely efficient from a numerical point of view, for two main 

reasons:  

- in the first place, the computational effort required is the same as for a single static analysis. 

Since no time discretization is performed, the computation time is roughly divided by the 

number of time steps that would have been needed if we had used a direct time integration 

scheme.  

- also the assumptions made on the periodicity of the loads brought by the axles and the 

symmetries reduce the domain taken into account in the analysis, and make it possible to use a 

relatively small mesh, the total number of degrees of freedom being around 120000.  

Results show that, for a backfill material with typical mechanical properties, the speed of the load has a 

relatively small influence on the various parameters we have analyzed: vertical displacements, vertical 

stresses in the backfill, tensile forces in the strips, etc. The maximum vertical deflection is increased, at 

the bottom of the ballast layer, by approximately 11%, but the stresses in the reinforced backfill and the 

tensile forces in the strips are almost the same as those obtained for a static load. For a “slow” backfill 

material, the influence of speed is clearer. When the train speed gets close to the shear wave velocity, 
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the simulation shows an amplification of the vertical displacements and of the vertical stresses in the 

backfill which is concentrated below the wheel. The strips of the upper part of the wall are submitted to 

a tensile force larger than the initial one over the whole length of the train and not only below the bogie. 

This type of result is consistent with those of Paolucci and Spinelli (51) or Hall (52) for instance, when 

the train speeds is close to the velocity of Rayleigh waves.  

Such dynamic effects tend to modify the ratio between the shear stress and the normal stress along the 

strips, which remains nevertheless similar to that obtained for a static load. 

In the last place, the model could be improved in at least two points: the first one consists in taking into 

account the role of material damping, in a way consistent with the mobile referential approach. The 

second one is relative to the choice of the parameter describing the mechanical interaction between the 

phases of the multiphase model.  
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Table 1 Values of material parameters 

 γ 

(kN/m³) 

E (MPa) ν(-) c (kPa) ϕ (°) 

Ballast 17 60 0.2 10 36 

Sub-ballast layer 23.3 90 0.3 10 36 

« Slow» backfill material 21 70 0.3 10 36 

Typical backfill material 21 150 0.3 10 36 

Backfill / facing contact 20 0.1 0.49 - - 

Concrete facing panels 25 25 000 0.2 - - 
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 Figure 1– Picture taken during the 

construction of a MSE wall  
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Figure 2 a) Schematic of a railway resting on a MSE wall   b) Proposed model 
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Figure 3 – Use of symmetries for an infinite and periodic train 

 

 

 

Π1 Π2 

Domain Ω taken into account in the study 

z        
       y          
 
             x’ 
 

 

Sbottom 

S
top

 

Lw/2 

Ω 



 33

 

 

          

 

 

Figure 4 – Mesh used for the three-dimensional finite element simulation (left : general view ; right : close-up on the 
zone where the load is applied and definition of points A and B). 
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Figure 5 Evaluation of the relative vertical displacements between points A and B 
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Figure 6 – Geometry and mesh used for the three-dimensional finite element simulation 
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Figure 7 Vertical displacements at the bottom of the ballast layer according to the position x 
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Figure 8– Maximal vertical displacements at the backfill-subballast Interface 
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Figure 9Tensile forces in the strips along the train (z = 3.75 m) 
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Figure 10 – Vertical stress below the train (at z = 3.75 m and 2.5 m away from the facing) 
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