

Determinants of On-road Driving in Multiple Sclerosis

Hannes Devos, Maud Ranchet, Deborah Backus, Matt Abisamra, John Anschutz, Allison Jr. C. Dan, Mathur Sunil, Abiodun E. Akinwuntan

▶ To cite this version:

Hannes Devos, Maud Ranchet, Deborah Backus, Matt Abisamra, John Anschutz, et al.. Determinants of On-road Driving in Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2016, 32 p. 10.1016/j.apmr.2016.10.008 . hal-01475850v1

HAL Id: hal-01475850 https://hal.science/hal-01475850v1

Submitted on 24 Feb 2017 (v1), last revised 21 Jun 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/309879155

Determinants of On-road Driving in Multiple Sclerosis

Article in Archives of physical medicine and rehabilitation · November 2016

DOI: 10.1016/j.apmr.2016.10.008

CITATIONS	READS
0	18

8 authors, including:

Project

Hannes Devos University of Kansas

60 PUBLICATIONS 470 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Driving After a Concussion: Is it Safe to Drive After Symptoms Resolve? View project

All content following this page was uploaded by Hannes Devos on 15 November 2016.

The user has requested enhancement of the downloaded file. All in-text references <u>underlined in blue</u> are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.

Accepted Manuscript

Determinants of On-road Driving in Multiple Sclerosis

Hannes Devos, PhD, Maud Ranchet, PhD, Deborah Backus, PT, PhD, Matt Abisamra, OTR/L, CDRS, John Anschutz, ATP, RET, C. Dan Allison, Jr., MS, OTR/L, ATP, CDRS, Sunil Mathur, PhD, Abiodun E. Akinwuntan, PhD, MPH, MBA

PII: S0003-9993(16)31226-6

DOI: 10.1016/j.apmr.2016.10.008

Reference: YAPMR 56715

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 12 September 2016

Accepted Date: 18 October 2016

Please cite this article as: Devos H, Ranchet M, Backus D, Abisamra M, Anschutz J, Allison Jr. CD, Mathur S, Akinwuntan AE, Determinants of On-road Driving in Multiple Sclerosis, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2016), doi: 10.1016/j.apmr.2016.10.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Manuscript title. Determinants of On-road Driving in Multiple Sclerosis

Names and institutional affiliations of the authors.

Hannes Devos, PhD,^{1,2} Maud Ranchet, PhD,^{2,3} Deborah Backus, PT, PhD,⁴ Matt Abisamra,

OTR/L, CDRS,⁴ John Anschutz, ATP, RET,⁴ C. Dan Allison, Jr., MS, OTR/L, ATP, CDRS,⁴

Sunil Mathur, PhD,⁵ Abiodun E. Akinwuntan, PhD, MPH, MBA^{2,6}

¹ Department of Physical Therapy and Rehabilitation Science, School of Health Professions,

University of Kansas Medical Center, KS

² Department of Physical Therapy, College of Allied Health Sciences, Augusta University,

Augusta, GA

³ French Institute of Science and Technology for Transport, Development and Networks

(IFSTTAR), Laboratory of Ergonomic and Cognitive Sciences for Transports (TS2-LESCOT),

Bron, France

⁴ Shepherd Center, Atlanta, GA

⁵ Biostatistics Department, Medical College of Georgia, Augusta University, Augusta, GA

⁶ Dean's Office, School of Health Professions, University of Kansas Medical Center, Kansas

City, KS

Name and address for corresponding author

Hannes Devos, University of Kansas Medical Center, School of Health Professions, Department of Physical Therapy and Rehabilitation Science, 3901 Rainbow Boulevard, Mailstop 2002, Kansas City, KS 66160

 Tel 913-588-2840
 Fax 913-588-6910
 E-mail: <u>hdevos@kumc.edu</u>

Running head (21 characters): On-road driving in MS

Acknowledgments: The authors thank all participants for their time and effort. We also thank Erin Neal, B.S. for technical assistance with data collection and Li Fang Zhang, M.S., for assistance with data analysis.

Funding: This work was supported by the National Multiple Sclerosis Society [grant number AG4674A1/1]. The Authors declare that there is no conflict of interest.

1 Abstract

- 2 *Objective:* To investigate the cognitive, visual, and motor deficits underlying poor performance
- 3 on different dimensions of on-road driving in individuals with multiple sclerosis (MS).
- 4 Design: Prospective cross-sectional study
- 5 Setting: MS Clinic and Driving Simulator Lab
- 6 Participants: A total of 102 active drivers with various types of MS.
- 7 Interventions: Not applicable
- 8 Main outcome measure: Off-road cognitive, visual and motor functions, as well as 13 specific
- 9 driving skills. These skills were categorized into hierarchic clusters of operational, tactical,
- 10 visuo-integrative, and mixed driving. Stepwise regression analysis was employed to determine
- 11 the off-road functions influencing performance on the on-road test and each cluster.
- 12 *Results:* Visuospatial function (p=0.002), inhibition (p=0.008), binocular acuity (p=0.04),
- 13 vertical visual field (p=0.02), and stereopsis (p=0.03) best determined variance in total on-road
- 14 score (unadjusted $R^2=0.37$). Attentional shift (p=0.0004), stereopsis (p=0.007), glare recovery
- 15 (p=0.047), and use of assistive devices (p=0.03) best predicted the operational cluster
- 16 (unadjusted $R^2=0.28$). Visuospatial function (p=0.002), inhibition (p=0.002), reasoning
- 17 (p=0.003), binocular acuity (p=0.04), and stereopsis (p=0.005) best determined the tactical
- 18 cluster (unadjusted $R^2=0.41$). The visuo-integrative model (unadjusted $R^2=0.12$) comprised
- 19 binocular acuity (p=0.007) and stereopsis (p=0.045). Inhibition (p=0.0001) and binocular acuity
- 20 (p=0.001) provided the best model of the mixed cluster (unadjusted $R^2=0.25$).

- 2
- 21 Conclusions: Our results provide more insights into the specific impairments that influence
- 22 different dimensions of on-road driving and may be used as a framework for targeted driving
- 23 intervention programs in MS.
- 24 Key words: multiple sclerosis; vision; neuropsychology; rehabilitation; driving
- 25
- 26 Abbreviations:
- 27 DA, divided attention
- 28 EDSS, Expanded Disability Status Scale
- 29 MS, multiple sclerosis
- 30 MMSE, Mini-Mental State Examination
- 31 RA, risk assessment
- 32 ROCF, Rey Osterrieth Complex Figure
- 33 PASAT, paced auditory serial addition test
- 34 SA, selective attention
- 35 SDSA, stroke drivers screening assessment
- 36 SDMT, symbol digit modalities Test
- 37 SOP, speed of processing
- 38 TMT, trail making test
- 39 TRIP, test ride for investigating practical fitness-to-drive
- 40 UFOV, Useful Field of View
- 41 VIF, variance inflation factor
- 42

43 Introduction

44

45 The cognitive, visual, motor, and behavioral impairments associated with multiple sclerosis (MS) 46 eventually affect the ability to drive safely.¹ Nevertheless, about 77% of individuals with MS 47 continue driving after diagnosis.² Those who continue to drive do so less frequently than drivers 48 with no neurological conditions,² and are at an increased risk for car crashes.³

49

Between 6% and 38% of drivers with MS fail a formal road test.^{1,4-7} Yet, these studies used a 50 dichotomous decision of fitness-to-drive as the main outcome measure which does not reflect the 51 different skill set needed to safely drive a car in a highly interactive traffic situation.^{1,4-6} The road 52 test consists of different sections assessing distinct driving skills.⁸ Previous studies in drivers 53 54 with other neurological conditions found that distinct cognitive, visual, and motor functions impact different dimensions of on-road driving performance.⁹⁻¹³ In Parkinson's disease, severity 55 of motor symptoms and slow reaction time correlated with operational driving skills such as 56 maintaining lane position, whereas cognitive functions related to more complex driving skills 57 including turning left.¹¹ 58

59

60 Understanding which cognitive, motor, and visual functions affect specific domains of on-road 61 driving can inform the design of off-road screening tests for evaluation of fitness-to-drive and 62 interventions for specific driving difficulties in MS. Therefore, the aim of this study was to 63 determine the critical impairments in cognitive, visual, and motor functions that lead to poor on-

road driving performance in MS. Similar to our work in other neurological conditions,^{9,11,13,14} we
hypothesized that visual functions will impact all aspects of on-road driving, motor and
cognitive functions will influence basic on-road driving skills, whereas cognitive functions will
determine complex on-road driving skills in MS.

- 68
- 69 Methods
- 70
- 71 Subjects
- 72

73 Participants were recruited from the Andrew C. Carlos MS Institute at Shepherd Center in 74 Atlanta, GA and Augusta University MS Center in Augusta, GA from August 2013 to October 2015. Inclusion criteria were (1) diagnosis of MS; (2) scores on the Expanded Disability Status 75 Scale (EDSS) between 1 and 7;¹⁵ (3) age between 25-75 years; (4) valid driver's license; (5) ≥ 5 76 77 years driving experience; (6) drive at least once a month in the previous year; and (7) meet the minimum visual requirements to drive in accordance with GA laws (binocular acuity $\geq 20/60$ and 78 79 peripheral vision \geq 140 degrees). Exclusion criteria were (1) score <24 on Mini Mental State Examination (MMSE;¹⁶(2) fluctuations in medication and dosage in the month preceding the 80 study; (3) exacerbation of symptoms within a month preceding the study; and (4) any other 81 neurological condition, acute psychiatric disorder, or drug and alcohol abuse as determined by 82 the referring neurologist. 83

All study protocols were approved by the Institutions' Review Boards. Written informed consentwas obtained.

87

88 *Off-road test battery*

89

<u>Demographic, clinical, and driving characteristics.</u> Age, gender, education, disease duration,
disease severity (EDSS), type of MS (relapsing-remitting; primary progressive; secondary
progressive), driving experience, annual mileage, and number of traffic tickets and crashes in the
last 5 years were collected. We also administered the Hospital Anxiety and Depression Scale
(HADS)¹⁷ and the Modified Fatigue Impact Scale (MFIS).¹⁸

95

<u>Cognitive tests.</u> The cognitive tests are widely used in MS research, evaluate different cognitive
 domains, and have been found to predict fitness-to-drive in previous research.^{1,6,10,19-21}

98

- 99 The Useful Field of View (UFOV) consists of three subtests that evaluate speed of processing
- 100 (SOP), divided attention (DA), and selective attention (SA) in milliseconds.^a The risk assessment
- 101 (RA) score for prospective car crashes ranges from 1 (very low) to 5 (very high).²²
- 102
- 103 The Rey Osterrieth Complex Figure (ROCF)-copy test measures visuospatial and
- 104 visuoconstructive abilities on a score ranging from 0 to 36.²³

106	The Symbol Digit Modalities Test (SDMT) evaluates visual search and working memory.
107	Number of correct responses in 90 seconds was the outcome variable. ²⁴
108	
109	The Trail Making Test part A (TMT A) assesses visuomotor tracking and working memory. The
110	TMT B additionally evaluates attentional shift. Time to completion and number of errors were
111	recorded. ²⁵
112	
113	The Stroop test included the color, word, and color-word subtests. The color and word subtests
114	evaluate speed of processing. The color-word subtest assesses response inhibition and cognitive
115	flexibility. The number of errors in a time limit of 45 seconds was the main outcome.
116	
117	The Stroke Driver Screening Assessment (SDSA) for MS ²⁰ consists of four tests. The dot
118	cancellation test measures visual scanning and sustained attention. Time to completion and
119	number of errors were recorded. The directions and compass tests measure reasoning skills.
120	Correct answers were scored on a scale ranging from 2 to 32. The road sign recognition test
121	evaluates visual comprehension and traffic knowledge. The scale ranges from 0 to 12.
122	
123	The Paced Auditory Serial Addition Test (PASAT-3 seconds) evaluates working memory,
124	auditory information processing speed and flexibility, as well as arithmetic ability. Number of
125	correct responses was recorded. ²⁶

127 <u>Visual tests. Scores on binocular acuity (far, mid (26")</u>, and near distance), peripheral vision 128 (horizontal and vertical), color perception (red/green and blue/violet), stereopsis (depth 129 perception), glare recovery, and contrast sensitivity were dichotomized into pass-fail scores 130 according to the Keystone Vision Screener cut-off values.^b

131

Motor tests. The motor assessment included the 25-foot walk test,²⁶ the 9-hole pegtest,²⁶ and the
 Barthel Index.²⁷ The use of assistive devices (yes/no) was also documented.

134

135 Road test

136

137 The main outcome was score on the Test Ride for Investigating Practical fitness-to-drive (TRIP).^{8,28} The TRIP consists of 13 items and 49 sub-items, each scored on a 4-point ordinal 138 scale. The total TRIP score was the sum of all item scores and ranged from 49 to 196. All 13 139 items were mapped onto a theoretical framework of hierarchic driving skills according to 140 Michon²⁹ and adapted by De Raedt and Ponjaert-Kristofferson.²⁸ The operational cluster 141 comprised lateral position on the road at speed (I) below and (II) above 45 m/h, and (III) 142 mechanical operations.^{28,29} The tactical cluster consisted of speed adaptations at speed (IV) 143 144 below and (V) above 45 m/h, headway distance to the lead car at speed below (VI) and (VII) above 45 m/h, and (VIII) lane position change.^{28,29} The visuo-integrative cluster included (IX) 145 anticipation and perception of road signs and traffic signals, (X) visual behavior and 146 communication with other road users, and (XI) traffic insight, understanding, and quality of 147

166 correlations (r) were calculated between on-road scores and normally distributed off-road

- 167 variables. On-road scores were correlated with off-road ordinal variables and not normally
- 168 distributed ratio variables using Spearman rho (ρ). Correlations (r/ ρ) were considered weak
- 169 below 0.10, moderate between 0.10 and 0.49 and strong between 0.50 and 1.00.³⁰ Independent

170	variables were entered into a multivariate stepwise linear regression analyses with a select entry
171	(p<0.15) and retain $(p<0.05)$ level for each of the five on-road models: (1) total TRIP score; (2)
172	operational cluster; (3) tactical cluster; (4) visuo-integrative cluster; and (5) mixed cluster. We
173	verified the collinearity between independent variables by correlation analysis (r/ $\rho > 0.40$) and
174	calculating variance inflation factors (VIF). A VIF score of 10 or higher was considered to
175	indicate substantial collinearity. ³¹ P values < 0.05 were considered significant. All statistical
176	analyses were performed with SAS®, version 9.4. ^c
177	
178	Results
179	
180	Table 1 shows that the majority (86%) of the 102 participants was female and presented with no
181	to limited functional (e.g., Barthel Index) and cognitive disability (e.g., MMSE). Eight (8%)
182	drivers required car modifications (spinner knob or hand controls). Scores on the cognitive tests
183	are presented in Supplementary Table 1.
184	
185	Insert Table 1 here
186	
187	Total on-road score
188	
189	Overall, most drivers with MS achieved submaximal performance on the road test (Table 2).

- 190
- 191
- 192

Insert Table 2 here

193

194 Weak to moderate correlations were found between performance in off-road tests and total TRIP 195 scores (Table 3). The magnitude of correlations of the significant variables ranged between 0.21 196 (UFOV RA and Stroop color-word) and 0.40 (traffic tickets and TMT B time). Among the descriptive variables, education and number of traffic tickets correlated significantly with total 197 198 TRIP scores. In the cognitive domain, all variables were associated with total TRIP scores, 199 except for MMSE, Stroop color and word subtests, and number of errors on TMT A, TMT B, 200 and dot cancellation. In the visual domain, binocular acuity at mid-distance, peripheral visual 201 field, and stereopsis correlated with on-road scores. The 9-hole peg test was the only variable in the motor domain that correlated with total TRIP scores. 202 203 Insert Table 3 here 204 205 Regression analysis showed that total TRIP scores were determined by a combination of five 206 207 cognitive and visual functions: ROCF, Stroop color-word, binocular acuity at mid-distance, 208 vertical visual field, and stereopsis (Table 4).

209

210	Insert Table 4 here		
211			
212	Operational cluster		
213			
214	Table 3 shows that the magnitude of significant correlations between off-road variables and the		
215	operational cluster ranged between 0.21 (TMT B errors and UFOV SA) and 0.37 (TMT B time		
216	and 9-hole peg test).		
217			
218	The regression analysis constituted a multidimensional model of four variables in the cognitive,		
219	visual, and motor domains to determine scores on the operational cluster: TMT B errors,		
220	stereopsis, glare recovery, and use of assistive devices (Table 4).		
221			
222	Tactical cluster		
223			
224	Table 3 shows that the magnitude of significant correlations between off-road variables and the		
225	tactical cluster ranged between 0.20 (ROCF) and 0.32 (digit symbol).		
226	A combination of ROCF, directions, Stroop color-word, mid-distance acuity, and stereopsis		
227	explained 41% of the variance in the tactical driving cluster (Table 4).		

229	Visuo-integrative cluster
230	
231	Table 3 shows that the magnitude of significant correlations between off-road variables and the
232	visuo-integrative cluster ranged between 0.22 (education and road sign recognition) and 0.32
233	(TMT B time and vertical visual field).
234	
235	Only binocular acuity at mid-distance and stereopsis were retained in the model, explaining 12%
236	of the variance in the visuo-integrative cluster (Table 4).
237	
238	Mixed cluster
239	
240	The magnitude of significant correlations between off-road variables and the mixed cluster
241	ranged between 0.22 (road sign recognition) and 0.36 (mid-distance acuity). Compared with the
242	other on-road clusters, fewer off-road variables correlated significantly with the mixed cluster
243	(Table 3).
244	
245	Only binocular acuity at mid-distance and Stroop color-word were retained in the multivariate
246	regression analysis, explaining 25% of the variance in the mixed cluster (Table 4).
247	

248	Supplementary Table 2 shows the correlation matrix between the cognitive, visual, and motor		
249	tests and the 13 on-road items.		
250			
251	Discussion		
252			
253	This study focused on identifying the critical impairments in cognitive, visual, and motor		
254	functions underlying poor on-road driving in MS. To capture the different dimensions of on-road		
255	driving, we mapped the TRIP items onto an existing theoretic framework of hierarchic driving		
256	skill consisting of operational, tactical, visuo-integrative, and mixed clusters. ^{28,29}		
257			
258	This cohort of drivers with MS performed equally well on the same checklist of on-road driving		
259	performance used to investigate driving difficulties in Parkinson's disease, stroke, and		
260	Huntington's disease. ^{13,14,32} Similar to these studies, our results support the notion that visual,		
261	cognitive, and motor impairments differently affect distinct on-road driving skills. ^{10,11,13}		
262			
263	General disease descriptors (e.g., disease duration, EDSS) or demographic information (e.g., age)		
264	were not retained as determinants in any of the on-road driving models once cognitive, visual,		
265	and motor functions were added. This finding extends empirical evidence that disease status and		
266	age alone fail to inform clinical decisions regarding fitness-to-drive in MS.		

267 Visuospatial ability (ROCF), response inhibition (Stroop color-word) and visual functions (mid-

distance binocular acuity, vertical visual field, and stereopsis) constituted the best model to
explain total on-road scores in drivers with MS. Two systematic reviews recommended ROCF as
a valid screening tool for fitness-to-drive after stroke.^{33,34} Akinwuntan et al. found the ROCF to
be univariately correlated with pass-fail driving status in MS.¹ Stroop color-word reflects
executive functions such as response inhibition, which has shown to be impaired in MS.^{35,36}

274 Total on-road scores were also determined by tests assessing mid-distance binocular acuity, vertical visual field, and stereopsis, which highlight the importance of visual functions for 275 276 driving. About 38% of all states rely solely on visual criteria to determine medical clearance, despite lack of evidence of a relationship between visual acuity and car crashes in the general 277 population.³⁷ Yet, Shultheis et al. failed to find significant associations between visual acuity, 278 horizontal visual field and driving outcomes in MS.³⁸ The inclusion of other visual tests and the 279 280 use of a standardized on-road test rather than self-report of driving behavior may be the reason for the inconsistency of our results with previous findings.³⁸ 281

282

Visual functions continued to be important determinants of each on-road driving cluster, emphasizing the importance of intact vision across all hierarchic levels of driving skill. Middistance acuity and peripheral visual field were even sole determinants of the visuo-integrative cluster. By contrast, motor functions, indexed by the use of assistive devices, in combination with shifting of attention, stereopsis, and glare recovery, showed to correlate only with operational driving items in the multivariate model. Operational driving skills require intact motor functions to operate the steering wheel and pedals and keep the car under control.²⁹

291	Finally, ROCF, Stroop color-word, mid-distance acuity, directions tests and stereopsis explained
292	41% of the total variance in the tactical cluster, which was higher than any of the other clusters
293	of driving skill. These findings reveal the major role of cognitive functions, especially
294	visuospatial (ROCF) and executive functions (Stroop color-word, directions) in tactical driving
295	skills, such as speed adaptation or lane changing. Other studies support the use of the directions
296	test to predict fitness-to-drive in MS. ^{6,19,20}
297	
298	Clinically, this research highlights the importance of assessing specific cognitive and visual
299	functions to determine driving abilities in individuals with MS. However, some
300	neuropsychological tests widely used in the clinic (MMSE, PASAT) have limited ability to
301	predict on-road driving. We recommend the use of ROCF and the Stroop test to assess
302	visuospatial functions and response inhibition as well as stereopsis and vertical visual field to
303	assess visual functions in drivers with MS.
304	
305	Detailed study of the factors underlying impaired on-road driving in MS also opens avenues for

Detailed study of the factors underlying impaired on-road driving in MS also opens avenues for rehabilitation. Cognitive rehabilitation shows promising evidence to improve attention, executive functions, and memory in MS.³⁹ Remedial interventions to improve these cognitive functions may translate to improvements in on-road driving. Yet, the few intervention studies that focused on remedial training of driving-related cognitive functions in patients with stroke found limited carry-over to on-road driving.⁴⁰ Our results suggest that targeted training of visuomotor tracking and attentional shift may result in improvements in operational driving skills, whereas training of visuospatial functions and response inhibition may transfer to improvements in tactical drivingskills.

314

315 Visual scanning strategies, extra mirrors, or corrective glasses may compensate for visual field 316 and binocular acuity loss whereas teaching drivers to maintain proper headway distance may 317 help with impairments in stereopsis. These compensational strategies may result in 318 improvements in tactical, visuo-integrative, and mixed driving skills. Physical therapy can help 319 to improve performance on operational driving skills such as applying the emergency brake or 320 controlling the steering wheel. Alternatively, the car may be equipped with a spinner knob, hand 321 brakes, or left sided gas pedal to compensate for muscle weakness or spasticity. None of these proposed interventions have been tested in a controlled experiment. One pilot study found that 322 323 five hours of simulator-based driving training improved working memory, visual scanning, color perception, and fatigue in 36 individuals with relapsing-remitting MS.⁴¹ 324 325

The strength of the current study is that we included a broad off-road assessment battery to
determine performance in hierarchic driving clusters in a large sample of active drivers with MS.
Our findings lend to a theoretic framework for remedial training of targeted driving skills.

329

331

332 The study has several limitations, including the lack of an age- and sex-matched control group.

³³⁰ Study limitations

We therefore cannot determine whether this cohort of drivers with MS showed impaired driving skills compared to controls and whether the determinants of on-road driving are inherent to MS. However, for the clinical purpose of this study, i.e., to provide a framework for driving screening and interventions in individuals with MS, a comparison to a control group was not deemed necessary.

338

Similar to previous studies,^{13,14,19,32} the variance explained by the visual, cognitive, and motor 339 340 tests remained moderate, even though cognitive and visual tests that were underexplored in 341 previous studies were added to this broad off-road assessment battery. One of the reasons for the moderate variance explained by the cognitive functions may be that this cohort of drivers with 342 MS did not show substantial cognitive deficits. They achieved similar scores on the MMSE, 343 PASAT, TMT A and B, and ROCF when compared to norm values.⁴²⁻⁴⁵ Since we included a 344 broad assessment battery, some of the analyses were exploratory. For this purpose, we did not 345 control for multiple comparisons. 346

347

Although the TRIP is a reliable⁸ and valid⁴⁶ questionnaire widely used to assess practical fitnessto-drive, we do not have any quantitative measures from the vehicle (e.g. driving speed, lane
position). Further studies should consider the inclusion of quantitative measures of naturalistic
driving.

352

353 Conclusions

355	Our findings showed that on-road driving performance in MS is affected by a combination of		
356	cognitive, visual, and, to a lesser extent, motor functions. We recommend that screening tests		
357	should broadly assess multiple domains of cognitive and visual sensory functions rather than		
358	narrowly targeting one single domain. A detailed decomposition of the critical cognitive, visual		
359	or motor impairments underlying impaired performance on different hierarchic layers of driving		
360	in MS may provide a framework of targeted rehabilitation interventions. These intervention		
361	strategies should be tested in a randomized controlled trial.		
362			
363	Suppliers		
364	a. Useful Field of View, Visual Awareness Research Group, Inc, Punta Gorda, FL.		
365	b. Keystone Vision Screener, Keystone View, Reno, NV.		
366	c. SAS, version 9.1, SAS Institute, Inc, Cary, NC.		
367			
368	References		
369	1. Akinwuntan AE, Wachtel J, Rosen PN. Driving simulation for evaluation and		
370	rehabilitation of driving after stroke. JStroke Cerebrovasc Dis 2012;21:478-86.		
371	2. Ryan KA, Rapport LJ, Telmet Harper K, Fuerst D, Bieliauskas L, Khan O et al. Fitness to		
372	drive in multiple sclerosis: Awareness of deficit moderates risk. J Clin Exp Neuropsychol		
373	2009;31(1):126-39.		

Dehning M, Kim J, Nguyen CM, Shivapour E, Denburg NL. Neuropsychological

374

3.

1	9
T	/

375	Performance, Brain Imaging, and Driving Violations in Multiple Sclerosis. Arch Phys Med		
376	Rehabil 2014;95(10):1818-23.		
377	4. Devos H, Akinwuntan AE, Gelinas I, George S, Nieuwboer A, Verheyden G. Shifting up		
<u>378</u>	a gear: considerations on assessment and rehabilitation of driving in people with neurological		
379	conditions. An extended editorial. Physiother Res Internat 2012;17(3):125-31.		
380	5.	Schultheis MT, Weisser V, Ang J, Elovic E, Nead R, Sestito N et al. Examining the	
381	Relatio	onship Between Cognition and Driving Performance in Multiple Sclerosis. Arch Phys Med	
382	Rehabil 2010;91(3):465-73.		
<u>383</u>	6.	Lincoln NB, Radford KA. Cognitive abilities as predictors of safety to drive in people	
<u>384</u>	with multiple sclerosis. Mult Scler 2008;14(1):123-8.		
<u>385</u>	<u>7.</u>	Ranchet M, Akinwuntan AE, Tant M, Neal E, Devos H. Agreement between physician's	
386	recommendation and fitness-to-drive decision in multiple sclerosis. Arch Phys Med Rehabil		
387	2015;96(10):1840-4.		
<u>388</u>	8.	Akinwuntan AE, DeWeerdt W, Feys H, Baten G, Arno P, Kiekens C. Reliability of a	
<u>389</u>	road test after stroke. Arch Phys Med Rehabil 2003;84(12):1792-6.		
390	<u>9.</u>	Devos H, Ranchet M, Emmanuel Akinwuntan A, Uc EY. Establishing an evidence-base	
<u>391</u>	framework for driving rehabilitation in Parkinson's disease: A systematic review of on-road		
<u>392</u>	driving studies. NeuroRehabilitation 2015;37(1):35-52.		
393	<u>10.</u>	Aksan N, Anderson SW, Dawson J, Uc E, Rizzo M. Cognitive functioning differentially	
394	predicts different dimensions of older drivers' on-road safety. Accid Anal Prev 2015;75:236-44.		

- 395 11. Devos H, Vandenberghe W, Tant M, Akinwuntan AE, De Weerdt W, Nieuwboer A et al.
- 396 Driving and off-road impairments underlying failure on road testing in Parkinson's disease. Mov
- 397 Disord 2013;28(14):1949-56.
- 398 12. Barco PP, Baum CM, Ott BR, Ice S, Johnson A, Wallendorf M et al. Driving errors in
- 399 persons with dementia. J Am Geriatr Soc 2015;63(7):1373-80.
- 400 13. Devos H, Tant M, Akinwuntan AE. On-road driving impairments and associated
- 401 cognitive deficits after stroke. Cerebrovasc Dis 2014;38(3):226-32.
- 402 14. Devos H, Nieuwboer A, Vandenberghe W, Tant M, De Weerdt W, Uc EY. On-road
- 403 driving impairments in Huntington disease. Neurology 2014;82(11):956-62.
- 404 15. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability
- 405 status scale (EDSS). Neurology 1983;33(11):1444-52.
- 406 <u>16.</u> Folstein MF. The Mini-Mental State Examination. Arch Gen Psychiatry 1983;40(7):812.
- 407 17. Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr
- 408 Scand 1983;67(6):361-70.
- 409 18. Tellez N, Rio J, Tintore M, Nos C, Galan I, Montalban X. Does the Modified Fatigue
- 410 Impact Scale offer a more comprehensive assessment of fatigue in MS? Mult
- 411 Scler2005;11(2):198-202.
- 412 19. Akinwuntan AE, Devos H, Stepleman L, Casillas R, Rahn R, Smith S et al. Predictors of
- 413 driving in individuals with relapsing-remitting multiple sclerosis. Mult Scler 2013;19(3):344-50.
- 414 20. Akinwuntan AE, O'Connor C, McGonegal E, Turchi K, Smith S, Williams M et al.
- 415 Prediction of driving ability in people with relapsing-remitting multiple sclerosis using the stroke
- 416 driver screening assessment. Int J MS Care 2012;14(2):65-70.

417	21.	Shawaryn MA, Schultheis MT, Garay E, Deluca J. Assessing functional status: exploring	
418	the relationship between the multiple sclerosis functional composite and driving. Arch Phys Med		
<u>419</u>	Rehabi	il 2002;83(8):1123-9.	
420	<u>22.</u>	Ball KK, Roenker DL, Bruni JR. Developmental Changes in Attention and Visual Search	
421	throughout Adulthood. The Development of attention - Research and Theory. Elsevier BV; 1990.		
422	p 489-:	508.	
423	23.	Rey A. L'examen psychologique dans les cas d'encephalopathie traumatique. Arch	
424	Psychol 1941;28:215-85.		
425	24.	Wechsler D. Wechsler Adult Intelligence Scale. San Antonio, TX: The Psychological	
426	Corpor	ration; 1997.	
427	25.	Reitan R. Trail Making Test Manual for Administration and Scoring. Tucson, AZ: Reitan	
428	Neuroj	osychology Laboratory; 1986.	
429	26.	Cutter GR, Baier MS, Rudick RA, Cookfair DL, Fischer JS, Petkau J, et al. Development	
430	of a Multiple Sclerosis Functional Composite as a clinical trial outcome measure. Brain		
431	1999;1	22: 101-12.	
432	27.	Mahoney F, Barthel D. Functional evaluation: The Barthel Index. Maryland State Med J	
433	1965;1	4:61-5.	
434	28.	De Raedt R, Ponjaert-Kristoffersen I. Predicting at-fault car accidents of older drivers.	

- 435 Accid Anal Prev 2001;33(6):809-19.
- 436 29. Michon JA. Explanatory pitfalls and rule-based driver models. Accid Anal Prev
 437 1989;21(4):341-53.
- 438 <u>30.</u> Cohen J, Cohen P, West S, Aiken L. Applied multiple regression/correlation analysis for
- 439 the behavioral sciences (3rd ed.). Psychology Press 2002.

- 440 31. Belsley DA, Kuh E, Welsch RE. Regression Diagnostics. Wiley Series in Probability and
 441 Statistics. John Wiley & Sons, Inc.; 1980.
- 442 32. Devos H, Vandenberghe W, Tant M, Akinwuntan AE, De Weerdt W, Nieuwboer A et al.
- 443 Driving and off-road impairments underlying failure on road testing in Parkinson's disease. Mov
- 444 Disord 2013; 28(14):1949-56.
- 445 33. Marshall SC, Molnar F, Man-Son-Hing M, Blair R, Brosseau L, Finestone HM et al.
- 446 Predictors of Driving Ability Following Stroke: A Systematic Review. Topics in Stroke
- 447 Rehabilitation 2007;14(1):98-114.
- 448 34. Hird MA, Vetivelu A, Saposnik G, Schweizer TA. Cognitive, On-road, and Simulator-
- 449 based Driving Assessment after Stroke. J Stroke and Cerebrovasc Dis 2014;23(10):2654-70.
- 450 35. Genova HM, DeLuca J, Chiaravalloti N, Wylie G. The relationship between executive
- 451 functioning, processing speed, and white matter integrity in multiple sclerosis. J Clin Exp
- 452 Neuropsychol 2013;35(6):631-41.
- 453 36. Vitkovitch M, Bishop S, Dancey C, Richards A. Stroop interference and negative priming
- 454 in patients with multiple sclerosis. Neuropsychologia 2002;40(9):1570-6.
- 455 37. Owsley C, Wood JM, McGwin G. A roadmap for interpreting the literature on vision and
- 456 driving. Surv Ophthalmol 2015;60(3):250-62.
- 457 38. Schultheis MT, Manning K, Weisser V, Blasco A, Ang J, Wilkinson ME. Vision and
- 458 Driving in Multiple Sclerosis. Arch Phys Med Rehabil 2010;91(2):315-7.
- 459 39. Rosti-Otajärvi EM, Hämäläinen PI. Neuropsychological rehabilitation for multiple
- 460 sclerosis. Cochrane Database Syst Rev. Wiley-Blackwell; 2014.
- 461 <u>40.</u> George S, Crotty M, Gelinas I, Devos H. Rehabilitation for improving automobile driving
- 462 after stroke. Cochrane Database Syst Rev. Wiley-Blackwell; 2014.

- 463 41. Akinwuntan AE, Devos H, Baker K, Phillips K, Kumar V, Smith S et al. Improvement of
- 464 Driving Skills in Persons With Relapsing-Remitting Multiple Sclerosis: A Pilot Study. Arch
- 465 Phys Med Rehabil 2014;95(3):531-7.
- 466 42. Bravo G, Hebert R. Age- and education-specific reference values for the Mini-Mental
- 467 and modified Mini-Mental State Examinations derived from a non-demented elderly population.
- 468 IntJ Geriatr Psychiatry 1997;12(10):1008-18.
- 469 43. Wiens AN, Fuller KH, Crossen JR. Paced Auditory Serial Addition Test: adult norms and
- 470 moderator variables. J Clin Exper Neuropsychol 1997;19(4):473-83.
- 471 44. Tombaugh TN. Trail Making Test A and B: Normative data stratified by age and
- 472 education. ArchClin Neuropsychol 2004;19(2):203-14.
- 473 45. Fastenau PS, Denburg NL, Hufford BJ. Adult norms for the Rey-Osterrieth complex
- 474 figure test and for supplemental recognition and matching trials from the extended complex
- 475 figure test. Clin Neuropsychol 1999;13(1):30-47.
- 476 46. Akinwuntan AE, De Weerdt W, Feys H, Baten G, Arno P, Kiekens C. The validity of a
- 477 road test after stroke. Arch Phys Med Rehabil 2005;86(3):421-6.
- 478
- 479

Variable	Mean (SD)	Range
Age, years	47.91 (8.71)	25 - 65
Driving experience, years	31.06 (8.87)	10 – 49
	Median (Q1 – Q3)	
Annual mileage, 1000 miles/y	2.80 (1.04 - 10.00)	0.2 - 55
Tickets in last five years, n	0 (0 – 1)	0-4
Crashes in last five years, n	1 (0 – 1)	0-2
EDSS, /10	5 (4 - 7)	2 – 7
Disease duration, y	9 (5 – 14)	0-37
Barthel Index, /100	95 (90 – 100)	65 – 100
MMSE, /30	30 (30 – 30)	24 - 30
HADS depression, / 21	5 (2 – 7)	0 – 18
HADS, anxiety, / 21	7 (4 – 10)	0 – 19
MFIS, /84	39.77 (15.88)	29 - 51
	N (%)	
Sex, female	88 (86)	N/A
Type of MS (RRMS; PPMS; unknown)	91 (89); 10 (10); 1 (1)	N/A

Table 1. Demographic and clinical characteristics (n =102)

Abbreviations: EDSS, Expanded Disability Status Scale; HADS, Hospital Anxiety and Depression Scale; MMSE, Mini-Mental State Examination; N/A, not applicable; RRMS, relapsing remitting multiple sclerosis; PPMS; primary progressive multiple sclerosis.

Table 2.	Performance	in Te	est Ride f	for l	Investigating	Practical	fitness-to-drive	(n =	102)
					0 0			`	

Variable	Mean (SD)	Scale range
Total on-road score	184.15 (13.48)	49 – 196
Operational cluster	24.57 (5.04)	7-28
I. Lateral position on the road at speed < 45 mph	6.39 (2.33)	2 - 8
II. Lateral position on the road at speed > 45 mph	6.76 (2.21)	2 - 8
III. Mechanical operations	11.49 (1.38)	3 – 12
Tactical cluster	49.50 (3.37)	13 – 52
IV. Speed adaptations at speed < 45 mph	7.33 (1.07)	2 - 8
V. Speed adaptations at speed > 45 mph	7.09 (1.28)	2 - 8
VI. Headway distance at speed < 45 mph	7.73 (1.07)	2 - 8
VII. Headway distance at speed > 45 mph	7.81 (0.70)	2 - 8
VIII. Lane position change	19.61 (1.50)	5-20
Visuo-integrative cluster	52.61 (4.92)	14 – 56
IX. Anticipation and perception of road signs and traffic lights	15.14 (2.00)	4 – 16
X. Visual behavior and communication	30.00 (3.20)	8-32
XI. Traffic insight, understanding, and quality of traffic participation	7.47 (1.10)	2-8
Mixed cluster	57.46 (4.06)	15 - 60
XII. Joining the traffic stream	23.00 (2.36)	6-24
XIII. Turning left	34.57 (2.53)	9 – 36

	Total score		Operational		Tactical		Visuo-integrative		Mixed	
	r/p	р	r/p	р	r/p	р	r/p	р	r/p	р
Descriptive										
Age	-0.02	0.82	-0.01	0.92	0.06	0.55	-0.02	0.87	-0.09	0.35
Education	0.26	0.01	0.09	0.35	0.15	0.13	0.22	0.03	0.13	0.19
Disease duration	-0.07	0.50	-0.11	0.28	-0.02	0.85	-0.09	0.39	0.004	1.00
EDSS	-0.14	0.15	-0.14	0.17	-0.07	0.48	-0.03	0.74	-0.17	0.10
Type of MS	-0.04	0.66	0.06	0.58	-0.11	0.25	0.03	0.75	-0.11	0.29
HADS, depression	-0.11	0.16	-0.12	0.15	-0.11	0.16	-0.14	0.12	-0.14	0.12
HADS, anxiety	-0.11	0.19	-0.13	0.15	-0.17	0.10	-0.13	0.12	-0.17	0.10
MFIS	-0.01	0.89	-0.09	0.37	0.004	0.96	-0.02	0.86	0.09	0.40
Driving experience	0.09	0.35	0.07	0.50	0.14	0.17	0.09	0.35	0.004	0.97
Annual mileage	-0.15	0.14	0.05	0.62	-0.26	0.01	-0.14	0.19	-0.07	0.49
Traffic tickets	-0.40	<0.0001	-0.31	0.002	-0.22	0.02	-0.26	0.01	-0.24	0.01
Traffic crashes	0.007	0.94	0.07	0.48	0.03	0.77	-0.08	0.42	-0.01	0.54
Cognitive						\mathcal{I}				
MMSE	0.18	0.08	0.13	0.21	0.11	0.28	0.09	0.39	0.14	0.16
UFOV, SOP	-0.23	0.02	-0.06	0.52	-0.21	0.04	-0.23	0.02	-0.15	0.15
UFOV, DA	-0.33	0.0009	-0.27	0.006	-0.19	0.06	-0.31	0.002	-0.18	0.07
UFOV, SA	-0.27	0.01	-0.21	0.03	-0.17	0.09	-0.25	0.01	-0.14	0.17
UFOV, RA	-0.21	0.03	-0.13	0.19	-0.15	0.13	-0.24	0.02	-0.14	0.16
ROCF	0.24	0.02	0.15	0.13	0.20	0.05	0.18	0.07	0.25	0.01
SDMT	0.28	0.004	0.17	0.10	0.32	0.001	0.16	0.12	0.28	0.005
TMT A, errors	0.07	0.49	0.09	0.38	0.03	0.76	0.02	0.85	0.11	0.25
TMT B, time	-0.40	<0.0001	-0.37	0.0002	-0.29	0.004	-0.32	0.001	-0.17	0.09
TMT B, errors	-0.14	0.16	-0.21	0.03	-0.04	0.72	-0.15	0.14	-0.02	0.81
Dot cancellation time	-0.23	0.02	-0.16	0.11	-0.21	0.03	-0.16	0.09	-0.17	0.09
Dot cancellation errors	-0.01	0.94	-0.005	0.96	0.13	0.21	-0.006	0.95	-0.04	0.74
Stroop color	0.09	0.39	0.12	0.25	0.06	0.57	-0.006	0.96	0.11	0.31
Stroop word	-0.15	0.17	0.11	0.3	-0.17	0.14	-0.11	0.35	-0.23	0.045
Stroop C/W	-0.21	0.04	-0.02	0.83	-0.23	0.02	-0.09	0.39	-0.22	0.03
Directions	0.28	0.004	0.17	0.10	0.31	0.001	0.15	0.12	0.28	0.005
Compass	0.29	0.004	0.30	0.002	0.29	0.003	0.15	0.12	0.17	0.09
Road Sign Recognition	0.29	0.003	0.30	0.002	0.24	0.02	0.22	0.02	0.22	0.03
PASAT	0.14	0.24	0.08	0.48	0.04	0.71	0.18	0.11	0.18	0.11
Visual										
Acuity, far	-0.04	0.70	0.006	0.95	-0.07	0.47	-0.06	0.56	-0.09	0.38
Acuity, mid	-0.30	0.003	-0.08	0.45	-0.22	0.03	-0.29	0.004	-0.36	0.0002
Acuity, near	-0.09	0.37	-0.003	0.97	0.009	0.93	-0.11	0.29	-0.20	0.05
Peripheral, horizontal VF	0.11	0.31	0.08	0.46	0.13	0.20	0.03	0.74	0.02	0.84
Peripheral, vertical VF	-0.24	0.02	-0.20	0.05	-0.15	0.14	-0.32	0.002	-0.09	0.36
Color perception, R/G	-0.14	0.18	-0.04	0.70	-0.10	0.33	-0.16	0.12	-0.17	0.10
Color perception, B/V	-0.19	0.06	-0.22	0.03	-0.07	0.50	-0.12	0.25	-0.10	0.31
Stereopsis	-0.26	0.01	-0.28	0.01	-0.26	0.01	-0.07	0.50	-0.08	0.43

Table 3. Correlation matrix of on-road total TRIP score and clusters with performance on off-road battery^a

Glare recovery	-0.13	0.20	-0.27	0.01	-0.15	0.14	0.04	0.71	0.05	0.62
Contrast sensitivity	-0.07	0.47	-0.16	0.12	0.006	0.96	0.06	0.53	0.006	0.95
Motor										
Barthel	-0.03	0.77	0.08	0.44	0.03	0.74	-0.07	0.50	-0.04	0.70
25-foot walk	-0.11	0.31	-0.16	0.11	-0.02	0.86	0.007	0.94	-0.09	0.33
9-hole peg dominant	-0.32	0.001	-0.37	0.0001	-0.17	0.10	-0.13	0.21	-0.17	0.08
Assistive device	-0.21	0.09	-0.24	0.02	-0.10	0.58	-0.05	0.80	-0.16	0.42

Abbreviations: B/V, blue-violet; DA, divided attention; C/W, color-word; EDSS, Expanded Disability Status Scale; HADS, Hospital Anxiety and Depression Scale; MMSE, Mini-Mental State Examination; MS, multiple sclerosis; PASAT, paced auditory serial addition test; RA, risk assessment; R/G; red/green; ROCF, Rey-Osterrieth Complex Figure; SA, selective attention; SOP; speed of processing; SDMT, symbol digit modalities test; TMT, Trail Making Test; UFOV, Useful Field Of View; VF, visual field.

Dependent variable	Independent variables	beta value	t- value	p- value	
	ROCF	0.92	3.90	0.0002	
	Stroop color-word errors	-8.30	-2.70	0.008	
Total TRIP score	Acuity mid-distance	-5.55	-2.06	0.04	
	Vertical VF	-6.72	-2.43	0.02	
	Stereopsis	-5.25	-2.21	0.03	
			\sim		
	TMT B errors	-0.86	-3.67	0.0004	
On anotional algoritan	Stereopsis	-2.90	-2.76	0.007	
Operational cluster	Glare recovery	-3.30	-2.01	0.047	
	Assistive device (yes/no)	2.65	2.24	0.03	
	ROCF	0.20	3.21	0.002	
	Stroop color-word errors	-2.60	-3.27	0.002	
Tactical cluster	Directions	0.20	3.38	0.001	
	Acuity mid-distance	-1.39	-2.05	0.04	
	Stereopsis	-1.78	-2.89	0.005	
Visuo-integrative	Acuity mid-distance	-3.22	-2.75	0.007	
cluster	Vertical VF	-2.50	-1.82	0.045	
Mixed abustor	Stroop color-word errors	-4.29	-4.06	0.0001	
witzeu cluster	Acuity mid-distance	-2.85	-3.32	0.001	

Table 4. Results of the five multivariate linear regression analysis models

Abbreviations: ROCF, Rey-Osterrieth Figure of Rey; TMT, Trail Making Test; TRIP, Test Ride

for Investigating Practical fitness-to-drive; VF, visual field