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Abstract—An approach to the spectral estimation for some
classes of non-stationary random signals is developed, that ad-
dresses stationary random processes deformed by a stationarity-
breaking transformation. Examples include frequency modula-
tion, time warping, non-stationary filtering and others. Under
suitable smoothness assumptions on the transformation, approx-
imate expressions are obtained in adapted representation spaces.
In the Gaussian case, this leads to approximate maximum like-
lihood estimation algorithms, which are illustrated on synthetic
as well as real signals.

Index Terms—Non-stationary processes, deformation, time-
frequency/scale analysis, local spectrum

I. INTRODUCTION

Classical spectral theory for random processes concerns

classes of stationary processes, i.e. processes that possess some

generic shift invariance properties. As a convolution operator,

the covariance operator of such processes is diagonalized by

the Fourier transform, and the power spectrum thus coincides

with the spectrum of the operator. Classes of non-stationary

processes have also been considered by several authors in the

literature. These include (among many others) works by Priest-

ley and followers who introduced the notion of evolutionary

spectrum [1], by Dahlhaus on locally stationary processes [2],

Mallat et al on adaptive covariance estimation [3], time-

frequency analysis based techniques [4], [5].

We follow here another point of view, initiated by Clerc

and Mallat in [6] and reconsidered recently in [7], [8], which

addresses stationary processes deformed by a stationarity

breaking linear operator T . This approach can be understood

as modeling the covariance operator as the product T C of

a convolution operator C with T . In such a framework,

spectral estimation can be viewed as the joint estimation of

the spectrum of C and the operator T . Written as such, the

problem is still far too general, but can be addressed if one

restricts to semi-parametric classes Tα, where α is a function

to be estimated together with the spectrum of C .

It turns out that under some smoothness assumptions on

the deformation Tα, joint estimation of α and the spectrum

of C can be possible in a suitable representation space,

where an approximate expression for the likelihood can be de-

rived (following [9]). This includes time warpings, frequency

modulations as well as generalized deformation models, for

which adapted representation spaces are proposed. This paper

describes a new maximum likelihood algorithm, and derives

associated Cramér-Rao bounds. The approach is illustrated on

simulations as well as real non-stationary signals.

II. NON-STATIONARY SIGNALS: MODELS AND

APPROXIMATIONS

A. Notations and background

Let us first introduce some notations. Throughout this paper,

S and S ′ denote respectively the Schwartz space and the

space of tempered distributions. By abuse of notations, we

also denote by S ′ the space of generalized stochastic processes

whose trajectories are almost surely tempered distributions. In

what follows, we denote by 〈., .〉 the L2 inner product (or

duality pairing), and reserve the symbol “·” for the finite-

dimensional Hermitian product.

Translation, modulation and rescaling operators are respec-

tively denoted by Tτ , Mν and Ds, with the conventions1

Tτx(t)=x(t−τ), Mνx(t)=e
2iπνtx(t), Dsx(t)=q

−s/2x
(
q−st

)

where q > 0 is a fixed number. With these notations, the short

time Fourier transform and the continuous wavelet transform

associate with any generalized random process X ∈ S ′ the

random fields GX and WX defined respectively by

GX(ν, τ) = 〈X,MνTτψ〉 , WX(s, τ) = 〈X,TτDsψ〉 ,

where ψ ∈ S is the analysis waveform (window, or wavelet

depending on the context).

B. Deformation models

We use here the formalism developed in [9], referring

to [10] and [11] for more details on generalized random

processes and signal processing applications. Let X ∈ S ′ be

a stationary generalized random process, and let CX : S → S ′

and SX ∈ S ′ denote respectively the associated covariance

operator and generalized power spectrum. Assume we are

given observations of the form

X 7−→ Y = T (X)

where T : S ′ → S ′ is a linear operator. We aim at estimating

both T and SX from Y , using solely the assumption of

stationarity of X . To make the problem tractable, we actually

formulate it as a semi-parametric problem, and limit ourselves

to a semi-parametric family of unitary transformations Tα,

whose functional parameter α we want to estimate. Examples

of such families include frequency modulations

Mα : Mαx(t) = e2iπα(t)x(t) , (1)

1Notice our convention for dilation differs from the standard one, as we
use a logarithmic scale variable.



where α ∈ C2 is a smooth function, time warpings

Dγ : Dγx(t) =
√
γ′(t)x(γ(t)) (2)

where γ is a smooth, strictly increasing function, assumed to

fulfill the control condition

0 < cγ ≤ γ′(t) ≤ Cγ <∞ ∀t , (3)

for some constants cγ , Cγ (see [7] for stronger conditions

that ensure continuity of Dγ on S ′). Other models of interest

but not considered here include semi-parametric families of

time-varying filters, i.e. convolution filters whose kernel varies

smoothly as a function of time.

In these cases, approximations rely on vector fields of so-

called tangent operators [9], denoted respectively by M̃ τ
α and

D̃τ
γ ; given a smooth function g, supposed to be localized near

a given location τ , one can write

Mαg(t) ≈ M̃ τ
α g(t) , with M̃ τ

α =e2iπα(τ)TτMα′(τ)T−τ

Dγg(t) ≈ D̃τ
γ g(t) , with D̃τ

γ =TτD− logq(γ
′(τ))T−γ(τ) .

This justifies the use of short time Fourier (resp. wavelet)

transform to carry the estimation of α (resp. γ) in the fre-

quency modulation (resp. time warping) model.

In the following we shall consider combinations of time

warping and frequency modulations, which allow describing

more general transformations, as a generic framework (more

standard cases considered in [8] can be obtained as particular

cases). This naturally leads to the extended transform (intro-

duced in [12]) V : x ∈ S ′ → Vx :

Vx(ν, s, τ) = 〈x, TτMνDsψ〉 , (4)

where ψ ∈ S is a fixed analyzing waveform (examples are

given below).

C. Approximation results

Suppose X is a zero mean, circular complex gaussian

second order stationary generalized random process, with

generalized spectrum SX ∈ S ′ (see e.g. [9] and references

therein for details). The associated variance is denoted by σ2
X .

Suppose one is given observations of the form

Y = MαDγX +W , (5)

where α and γ are smooth functions, and where W is a white

noise generalized process. Assume the analyzing waveform

ψ ∈ S is concentrated around the origin. Then, using the

tangent operators defined above and standard commutation

rules, we obtain the approximate expression

VY (ν, s, τ) ≈
〈
M̃

τ
α D̃

τ
γX,TτMνDsψ

〉
:= ṼY (ν, s, τ)

= e2iπα(τ)VX

(
γ(τ),

ν−α′(τ)

γ′(τ)
, s+logq(γ

′(τ))

)

which indicates that the transformation (5) takes a rather

simple form in the chosen representation domain. The approx-

imation is made more precise by the following result, which

uses simple decay assumption on the analyzing waveform ψ.

Theorem 1: With the above notations, let ǫ = VY − ṼY

denote the approximation error random field. Assume that the

analyzing waveform ψ is localized in such a way that |ψ(t)| ≤
1/(1 + |t|β) for some β > 2, and that for all u, v ∈ R+,

I(u, v) :=

√〈
SX , f

(β)
u,v

〉
<∞ , with f (β)

u,v (ξ)=(uξ+v)2
β−1
β+2 .

Then

E
{
|ǫ(s,ν,τ)|2

}
≤q3s

(
K1‖γ′′‖∞+K2q

s β−4
β+2 I(‖γ′′‖∞, ‖α′′‖∞)

)2

where

K1 =
βσX

2(β − 2)
√
cγ

, K2 =
(π
2

)β−1
β+2√

Cγ
4(β + 2)

3(β − 1)

Remark 1:

1) The proof follows the same arguments as Theorem 2

in [8]: assuming ψ is localized around the origin, Taylor

expand α and γ in the neighborhood of t = τ and

approximate the frequency modulation and time warping

operators by the corresponding tangent operators. The

bound follows from upper bounds in the remainders of

Taylor expansions, and the assumed decay of ψ. Similar

bounds can be obtained as in [9] assuming different

decay properties on ψ.

2) As expected, the bound depends on the smoothness of

α′ and γ′. It also depends on the power spectrum SX in

a fairly simple way, and on the waveform decay rate β;

conditions on β given the decay of the power spectrum

can be deduced.

If ψ is analytic (i.e. Supp(ψ̂) ⊂ R+), and if the analysis is

limited to ν > minα′(τ), then the random field ṼY (ν, s, τ) is

zero-mean, circular gaussian with covariance kernel

E

{
ṼY (ν, s, τ)ṼY (ν

′, s′, τ ′)
}
=

〈
SX , ψ̂

(τ)
ν,s .

̂
ψ
(τ ′)
ν′,s′

〉
, (6)

where we have set

ψ(τ)
ν,s (t) =

[
Tγ(τ)M(ν−α′(τ))/γ′(τ)Ds+logq(γ

′(τ))ψ
]
(t)

=
e2iπα(τ)√
γ′(τ)

e
2iπ

ν−α′(τ))

γ′(τ)
(t−γ(τ))

ψ

(
q−s t−γ(τ)

γ′(τ)

)
.

Therefore, the approximate covariance depends on the trans-

formation functional parameters (α, α′, γ, γ′). The latter are

then amenable to (approximate) maximum likelihood estima-

tion, which we describe in the next section.

III. ESTIMATION PROCEDURE AND ALGORITHMS

A. Estimation procedure

The generic estimation scheme is as follows [7]. We de-

scribe the most general situation, keeping in mind that the

estimation of a single transformation (Mα or Dγ) or a simple

combination of both can be performed in a similar way (as

discussed below). Suppose as before an observation model of

the form (5), and let y = MαDγx+w be a single realization.

Denote by Λ = Λ′ × Λτ , with Λτ = {na, n = n1 . . . n2},

a ∈ R+ and Λ′ ⊂ R2 a finite sampling subset of the



frequency-scale-time space and by Vy = {Vy(λ), λ ∈ Λ}
the corresponding restriction of Vy. Denote also by Θ =
{(α(na), α′(na), γ(na), γ′(na)), n = n1 . . . n2} the time-

sampled functional parameters, and by C(Θ) the restriction

of the approximate covariance kernel (6) to the sampling set

Λ. The latter can easily be evaluated numerically.

Given an estimate α, γ for the deformation functions, we

will generically denote by Z = D−1
γ M−1

α Y ≈ X +
D−1

γ M−1
α W a corresponding estimate for the deformation

compensated signal. It is worth noticing that due to the uni-

tarity of the considered deformation operators, D−1
γ M−1

α W
is also a white noise process.

a) A global scheme. Start from the two following observations:

1) Assume that the power spectrum SZ of Z is known.

Then it follows from the above results that the log

likelihood of the observations can be approximated by

a smooth, generally non-convex function of Θ

L (Θ) = − ln |detC(Θ)| −C(Θ)−1
Vy ·Vy , (7)

that can be maximized numerically using standard tools,

provided C(Θ) is invertible.

2) Assume estimates αe, γe for the functional parameters

Θ are known. Then they can be used to “stationarize”

the observation by computing

ze := D
−1
γe

M
−1
αe
y ≈ x+ D

−1
γe

M
−1
αe
w , (8)

and perform spectral estimation on ze using again stan-

dard tools (for example a Welch estimator).

These two steps can be performed iteratively, to yield a joint

estimate for Θ and SZ , thus SX . This also requires an initial

guess for Θ or SZ , and a stopping criterion. These two aspects

will be discussed in the local approach described below.

Remark 2 (Sampling the representation space): For the

scheme to make sense, the covariance matrix C(Θ) must

be invertible. This places serious restrictions on the size of

the sampling set Λ, which must be coarse enough to allow

invertibility.

Remark 3 (Cramér-Rao bound): The observation being

complex Gaussian, and the maximum likelihood estimator

being asymptotically unbiased and consistent, the Cramér-

Rao lower bound provides relevant informations regarding the

achievable precision of the estimator. Since we are in the com-

plex normal situation, the Slepian-Bangs formula [13] provides

an explicit expression for the bound: for any component θ of

the multivariate parameter Θ,

CRLB(θ) =

[
Trace

{(
C(Θ)−1 ∂C(Θ)

∂θ

)2
}]

−1

. (9)

This quantity can be evaluated numerically from (6).

Remark 4 (Feasibility of the global scheme): When Λ is a

large set, this procedure involves products of large matrices

and optimization in large dimensional spaces, which make the

whole approach computationally intensive. This is why a more

local scheme has to be preferred in such cases.

b) Local scheme To make things simpler, the estimation of

α(τ) and/or γ(τ) can be performed independently for each

value of τ . With the same notations as above, denote by

V
n
y = {Vy[λ

′, na], λ′ ∈ Λ′}. The above strategy simplifies

by observing that for any n, the corresponding restricted

covariance matrix C only depends on Θn = (θn,1, θn,2) :=
(α′(na), logq(γ

′(na))). More precisely, for any λ′i = (νi, si),
we have (in integral form)

(C(Θn))ij = q(si+sj)/2

∫
∞

0

SZ(q
−θn,2u)

ψ̂[qsi(u+θn,1−νi)] ψ̂[qsj (u+θn,1−νj)] du

The estimation scheme is as before:

1) Suppose an estimate for the power spectrum SZ is

available; then for each value of the time index, the

parameters Θn can be estimated by maximizing the

approximate log-likelihood

L (Θn) = − ln |detC(Θn)|−C(Θn)
−1

V
n
y ·Vn

y . (10)

2) Suppose estimates for α′(na), γ′(na) are available for

all n = n1, . . . n2. Estimates for α and γ can be deduced,

from which a “stationarized” signal ze can be computed,

as in (8). Spectral estimation on ze yields an estimate

for the power spectrum SZ .

The estimation procedure is based upon alternate estimations

of the parameters Θ and power spectrum SZ (and covari-

ance matrix) as above, starting from an initial guess for the

spectrum. The initialization is set by computing the Welch

estimator of the spectrum on the original signal y.

The iteration stops when the relative update at iteration k
below passes above a given threshold T .

∥∥Θ(k) −Θ(k−1)
∥∥2
2∥∥Θ(k−1)

∥∥2
2

< T (11)

A similar approach was developed in [8], where the likeli-

hood maximization was performed by exhaustive grid search

in a finite parameter space, which results in undesirable

quantization effects. Here the parameters Θn are treated as

continuous parameters, which allows the evaluation of the

Cramér-Rao bound (9) for assessing the precision of the

estimator.

The generic structure of the algorithm can be summarized

as in Algorithm 1. In our current implementation, the maxi-

mization of L (Θn) is done via simple gradient ascent, and

the interpolation is based upon cubic splines.

Remark 5 (Sampling the transform space): A key ingredient

of this algorithm is the invertibility of the covariance matrix.

In [7] and [8], simple sufficient conditions involving the

analyzing waveform ψ and the frequency (resp scale) sampling

step were given in the case of frequency modulation (resp. time

warping). The situation turns out to be far more complex in

the mixed case and no simple closed form condition seem to

be available. This point is currently under study.



Algorithm 1 Joint covariance and modulation estimation

Initialization: Compute an estimate ŜY of the power

spectrum of Y as an initial guess Ŝ
(0)
Z for SZ .

Compute the transform Vy of y.

while criterion (11) is false and k ≤ kmax do

• For each n, estimate Θ
(k+1)
n by maximizing the ap-

proximate log-likelihood L (Θn) in (10)

• Compute α̂(k) and γ̂(k) by interpolation from Θ(k).

• Construct a “stationarized” signal z
(k)
e from y using

α̂(k) and γ̂(k), and estimate the corresponding power

spectrum Ŝ
(k+1)
Z .

• k := k + 1
end while

B. Numerical examples

We show here examples of joint estimation of transforma-

tion and power spectrum. Generic choices for the analyzing

waveform are (analytic) derivative of gaussian ψk (which has k
vanishing moments), and the sharp wavelet ψ♯ (with infinitely

many vanishing moments), defined in the positive Fourier

domain by

ψ̂k(ν) = νke−kν2/2ν2
0 , ψ̂♯(ν) = ǫ

δ(ν,ν0)

δ(ν1,ν0) , ν > 0 (12)

and which vanish on the negative Fourier half axis. Here ν0
is the mode of ψ̂. In the expression of ψ̂♯, ν1 is chosen so

that ψ̂♯(ν1) = ǫ (a prescribed numerical tolerance), and the

divergence δ is defined by δ(a, b) = 1
2

(
a
b + b

a

)
− 1.

1) Time warping estimation: Consider first the simple case

considered in [8], i.e. the case α = 0. Since no modulation

is present in the deformation model, it is enough to limit to

the wavelet transform (i.e. νi = 0 for all i), and limit the

estimation of parameters θn,2 = logq(γ
′(na)). In the examples

presented below, the signals are uniformly sampled with a

sampling rate denoted by Fs. We used the wavelet ψ♯ given

in (12), where ν1 = 2ν0 = Fs/2 and ǫ = 10−6.

As a first example, we consider a synthetic signal, generated

using a band pass spectrum and a warping function γ whose

derivative is a sinusoidal function of time. The results of

the estimation are also displayed in figure 1, superimposed

with the ground truth. The algorithm was able to estimate the

power spectrum SZ (right plot), as well as the time warping

derivative (left plot). The fluctuations of the latter estimate

γ̂′(t) are consistent with the Cramér-Rao bound CRLB(γ̂(t)),
evaluated at the estimated parameter value (superimposed on

the left plot).

The second example is a real signal, namely an audio

recording of a Formula one racing car engine during an

acceleration stage. Given the underlying physics, time warping

seems to be a sensible deformation model. We display in

figure 2 (top) the wavelet transforms of the original signal and

of the estimated underlying stationary signal (i.e. after time

unwarping). It clearly appears that the speed non-stationarity

has been nicely corrected. A closer look at the right image

also reveals a non-stationary behavior in the amplitude, that
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Figure 1: Joint time warping/spectrum estimation on a syn-

thetic signal. Left: time warping function estimate (full, blue),

ground truth (full, red) and Cramér-Rao bound (dotted, green);

Right: spectrum of the underlying stationary signal (right).

has not been corrected (since it was not present in the model).

Accounting for such amplitude non-stationarities will require

a more sophisticated model, for which one may try to use

time-frequency or time-scale multipliers (as in [14]) for the

estimation. The spectrum estimation (figure 2, bottom) of the

underlying stationary signal shows the harmonic nature of the

sound produced by the engine. The spectrum of the original

is provided with sound files on the companion web site2.
2) Time warping and modulation estimations: We illustrate

here a simple situation in which time-warping and frequency

modulations can be combined, and analyzed in a suitable

representation space. We consider a deformation model in

which a relation between frequency modulation and time

warping is introduced, of the form

α(t) = η(t− γ(t))

where η > 0 is assumed to be known. Thus, considering the

extended transform V , limited to ν = η yields a covariance

matrix of the form

(C(θn,2))ij = qθn,2+
si+sj

2 ×
∫

∞

0

SZ̃(u)ψ̂
(
qsi+θn,2u

)
ψ̂
(
qsj+θn,2u

)
du

2
https://www.i2m.univ-amu.fr/∼torresan/papers/SAMPTA17/MT17.html

https://www.i2m.univ-amu.fr/~torresan/papers/SAMPTA17/MT17.html
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Figure 2: Joint time warping/spectrum estimation on an accel-

erating car engine: wavelet transforms of the original signal

(top left) and the estimated underlying stationary signal (top

right), and its spectrum (bottom).

where Z̃ = M−ηZ is a stationary random process. This

adapted transform allows the estimation of the deformation

parameters θn,2 as a translation on the scale axis, similar to

the wavelet estimation of time warping. This clearly appears

in figure 3, which displays the ordinary wavelet transform and

the transform adapted to this model. The synthetic signal is

constructed using the same warping function γ and spectrum

SZ as the synthetic example of the previous section. Here, the

estimation of the deformation (not shown here due to the lack

of space) can be done along the same lines as before using

from the adapted transform.
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Figure 3: Wavelet transform (left) and adapted transform

(right) superimposed with the function γ′ to be estimated.

This example is nothing more than a toy example, aiming

illustrate the adaptation of the transform to the deformation.

Applications to more complex examples are in progress.

IV. CONCLUSIONS

We have discussed in this paper extensions of the methods

and algorithms described earlier in [7], [9], [8] for the joint

estimation of deformation operator and power spectrum for de-

formed stationary signals. The main improvements described

in this paper concern

1) the formulation of the problem as a continuous parame-

ter estimation problem, which yields both more precise

estimates and a better control through a Cramér-Rao

bound, and

2) the extension to more general and complex deformation

models, by combining frequency modulation and time

warping.

While the standard deformation models (frequency modulation

and time warping) can already address interesting real world

applications (variable speed car engine sounds are prototypical

examples), they are not sufficient to describe many other

situations of practical interest, such as the sound deformation

models discussed in e.g. [15]. Here, we simply illustrated non-

standard deformations on a simple toy model, that shows the

benefit of adapting the representation to the deformation.

The study of combined modulations and warpings is cur-

rently in progress, as well as the integration of amplitude

modulations in the model. The problem of sampling the

extended transform mentioned in Remark 5 is also of great

interest.



ACKNOWLEDGEMENTS

B. Torrésani wishes to thank CNRS and Centre de
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généralisés. application à l’estimation des non stationnarités dans les
signaux audio.” Ph.D. dissertation, Aix-Marseille Université, 2015.
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