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Periodical patterns (bands) developing at the interface of two immiscible fluids under vibration parallel to
interface are observed under zero-gravity conditions. Fluids are slightly below their liquid-vapor critical point
where they behave in a scaled, universal manner. In addition, liquid and vapor densities are close and surface
tension is very low. Linear stability analyses and direct numerical simulation show that this instability, although
comparable to the frozen wave instability observed in a gravity field, is nonetheless noticeably different when
gravity becomes zero. In particular, the neutral curve minimum corresponds to the long-wave perturbations
with k = 0 and zero dimensionless vibrational parameter, corresponding to no instability threshold. The pattern
wavelength thus corresponds to the wavelength of the perturbations with maximal growth rate. This wavelength
differs substantially from the neutral perturbations wavelength at the same vibrational parameter value. The role
of viscosity is highlighted in the pattern formation, with a critical wavelength dependence on vibration parameters
that strongly depends on viscosity. These results compare well with experimental observations performed in the
liquid-vapor phases near the critical point of CO2 (in weightlessness) and H2 (under magnetic levitation).

DOI: 10.1103/PhysRevE.95.013105

I. INTRODUCTION

When subjected to vibration, the interface shape and sta-
bility depend on the relative direction of the vibration and the
interface. Vibration perpendicular to the interface leads to its
parametric excitation (known as the Faraday wave instability
[1,2]). Vibration parallel to the fluid interface can lead to
the formation of quasistationary wave patterns [3] caused by
a shear-driven mechanism similar to the Kelvin-Helmholtz
(KH) instability [4]. This instability was later called frozen
wave instability [5] as the interface deformation is immobile
in the reference frame of oscillating boundaries. The gravity
acceleration g is an important factor in the formation of these
instabilities.

A question arises about how these instabilities can trans-
form when gravity is near zero, as is the case in space.
To answer this question, it is interesting to use fluids near
their critical point. The interesting aspect of the critical
point vicinity is the possibility to vary simply by changing
temperature the important parameters of the instability: liquid-
vapor interfacial tension and density difference (and in a lesser
amount, viscosity) in a universal, scaling way [6–8]. However,
the study of these instabilities close to the critical point
necessitates very fine temperature regulation and establishing
zero-gravity conditions in order to remove inevitable initial
density stratification and strong thermal instabilities.

The cancellation of gravity forces can be achieved by differ-
ent means. We here refer to (i) sounding rockets experiments
performed with a cylindrical cell filled with CO2 near and
below its critical point (critical temperature 304 K) [9–11] and
(ii) magnetic compensation of gravity forces in a cubic cell
filled with H2 (critical temperature 33 K) [10,12,13]. Faraday
instabilities on an interface perpendicular to vibrations have
been observed and studied in H2 under weightlessness [14].

Closer to the critical point another instability develops
where the vapor-liquid interface orders in periodical bands
perpendicular to the vibration direction. This phenomenon
was observed in experiments conducted on CO2 [9–11] and H2

[10,12]. The band pattern appears only within a few mK to Tc,
in a temperature range where Faraday waves do not show up
anymore as a square pattern but as a line pattern [9]. Indeed,
as Tc is approached, the Faraday wavelength decreases, thus
involving increasing viscous dissipation that forces a pattern
transition from square to line due to enhanced dissipation
[9,15]. In Fig. 1 is reported such pattern observed in CO2 and
H2. One notes that, depending on the vibration characteristics,
a Faraday instability can also develop.

In a study of H2 under various gravitational acceleration (g)
of the frozen wave instability [14], it has been observed that the
wave amplitude was increasing as g−0.7 when g was decreased.
It was noted that when this amplitude becomes larger than
the cell height, a band pattern was observed. It can then be
thought that the band pattern is the extrapolation of the frozen
wave pattern when g → 0. Although both instabilities have the
same origin (shear flow at the interface) we will see in the next
sections that its characteristics cannot be simply deduced from
a mere extrapolation at g = 0 of the frozen wave instability.
Development of band patterns in the conditions where gravity
acceleration is negligible in comparison with the vibrational
acceleration was predicted theoretically in [16].

It is the object of this paper to investigate theoretically
and experimentally in detail the band instability that occurs in
weightlessness. Section II A presents the problem formulation;
Secs. II B and II C, the review of theoretical investigations
for the case where viscosity is neglected; and Sec. II D,
the problem formulation, the base flow analysis, and the
formulation of the linear stability problem for viscous fluids.
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FIG. 1. Band pattern under weightlessness. (a–c) CO2 at Tc −
2.4 mK, in cell with diameter 10.00 mm and thickness 2.189 mm.
(a) a = 0.7 mm and f = 10.37 Hz, where a line pattern of Faraday
waves are visible on the interfaces. The window is enlarged in
(b). (c) a = 0.2 mm and f = 25.28 Hz, where no Faraday waves
are visible. (d,e) H2 in 3 × 3 × 2 mm3 cell. (d) Tc − 10 mK, a =
0.83 mm, and f = 20 Hz. Faraday waves (line pattern) are observed.
(e) Tc − 5 mK, a = 0.29 mm, and f = 40 Hz. No Faraday waves are
visible.

Results of a two-dimensional (2D) direct numerical simulation
(DNS) are then reported in Sec. III, taking into account
viscosity. Section IV deals with the comparison of linear
stability theory with DNS. Section V is concerned with
experimental results performed in H2 and CO2 and comparison
is made with linear stability analysis. Concluding remarks are
given in Sec. VI.

II. THEORETICAL BACKGROUND. WAVE NUMBER
SELECTION

A. Problem formulation. Governing equations
and boundary conditions

Let us consider the general case of a fluid interface in two
superposed horizontal layers of immiscible incompressible
viscous fluids of different densities. The fluids are subjected
to a gravity field and to horizontal vibrations at angular
frequency ω (frequency f = ω/2π ) and amplitude a. A
Cartesian coordinate system is chosen in such a way that in
the absence of vibrations the denser fluid occupies the domain
−h < z < 0 and the less dense fluid, the domain 0 < z < h

(for sake of simplicity the layers are assumed to have the same
thickness). In the absence of vibrations the interface is flat and
horizontal and its position corresponds to the plane z = 0. The
governing equations describing the behavior of this system in
the reference frame of oscillating layer boundaries are

∂ �vβ

∂t
+ (�vβ

�∇)�vβ = − 1

ρβ

�∇pβ + νβ��vβ

−g �γ + aω2 cos ωt �j, div �vβ = 0. (1)

The subscript β refers to the fluids: β = 1 corresponds to
the lower and denser fluid and β = 2 to the upper and lighter

fluid; �vβ , pβ are the velocity and pressure in the βth fluid; g is
the gravity acceleration value; �γ is the unit vector in vertical
direction; �j is the unit vector in the direction of vibrations;
ρβ,νβ are the density and kinematic viscosity of the βth fluid.

The boundary conditions on the external rigid boundaries
are the no-slip conditions:

z = −h : �v1 = 0; z = h : �v2 = 0. (2)

The boundary conditions on the fluid interface described
by the equation z = ζ (x,y,t) are the velocity continuity, the
kinematic condition, and the stress balance conditions:

�v1 = �v2,
∂ζ

∂t
+ �v1 · �∇ζ = �v1 · �γ ,

[p]ni = [Tij ]nj + αni div �n. (3)

Here α is the interfacial tension between the fluids, �n is the
unit vector normal to the interface, Tij is the viscous stress
tensor, and square brackets denote the jump of quantity across
the interface [f ] = f1 − f2.

We study the behavior of a two-layer system in the
configuration close to the experimental configuration where
the container with rigid boundaries is of large but finite length.
To model this situation the integral flow closeness (or total
volume conservation) condition is imposed:∫ ζ

−h

�v1 · �j dz +
∫ h

ζ

�v2 · �j dz = 0. (4)

B. Formation of frozen waves

In the experiments [3] concerning two liquid layers under
earth gravity field, it was found that at some values of the
vibration parameters, a quasistationary wave pattern (frozen
waves) forms at the interface. A theoretical description
of the frozen wave formation in a two-layer system of
fluids under earth gravity was originally suggested in [4],
where a theoretical approach describing the dynamics of
fluid interfaces under high-frequency and small-amplitude
vibrations was developed. In this theory all hydrodynamic
fields are decomposed into pulsation (quickly oscillating) and
average (slowly varying) components and the closed system
of equations for average and pulsation fields is obtained by
multiple scale method:

∂ �uβ

∂t
+ (�uβ

�∇)�uβ = −�∇
(

pβ

ρβ

+ a2ω2V 2
β

4

)
+ νβ��uβ − g �γ ,

div �uβ = 0, (5)

curl �Wβ = 0, div �Wβ = 0. (6)

Here �uβ , pβ are the average velocity and pressure; �Vβ is
the pulsation velocity amplitude in the reference frame of
oscillating layers; �Wβ is the pulsation velocity amplitude in
the laboratory reference frame related to �Vβ as �Wβ = �Vβ + �j .

Equations (6) for pulsations do not contain the viscous and
nonlinear terms. It was possible to neglect these terms due
to the assumptions of high frequency (and therefore small
thickness of the viscous boundary layer) and small amplitude
of the vibrations.
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At the rigid boundaries the no-slip condition for average
velocity and impermeability condition for pulsation velocity
are imposed:

�uβ = 0, Wβn = 0. (7)

The conditions at the fluid interface are the continuity
conditions for the pulsation pressure, normal component
(normal is indicated by the subscript n) of pulsation velocity
and average velocity, the kinematic condition, and the stress
balance condition:

ρ1W1τ = ρ2W2τ , W1n = W2n,

�u1 = �u2,
∂ζ

∂t
+ �u1 · �∇ζ = �u1 · �γ , (8)

a2ω2

2
Vn[ρWi] = −[p]ni + [Tij ]nj + α( div �n)ni

Here Tij is the viscous stress tensor defined with the average
velocity field and the subscript τ stands for the tangential
components.

Based on the theoretical model Eqs. (5)–(8), Ref. [4]
considered the development of frozen waves in a system of two
superposed horizontal layers of immiscible incompressible
fluids subjected to gravity field and horizontal high-frequency
small-amplitude vibrations. For sake of simplicity the viscosity
was neglected in the description of average fields, i.e., in the
momentum equation and in the stress balance condition. The
fully inviscid problem was thus considered:

∂ �uβ

∂t
+ (�uβ

�∇)�uβ = −�∇
(

pβ

ρβ

+ a2ω2Vβ
2

4

)
− g �γ ,

div �uβ = 0, (9)

curl �Wβ = 0, div �Wβ = 0, (10)

z = −h : �u1 = 0, W1 n = 0, z = h : �u2 = 0, W2n = 0,

(11)

z = ζ : ρ1W1τ = ρ2W2τ , W1n = W2n,

�u1 = �u2,
∂ζ

∂t
+ �u1 · �∇ζ = �u1 · �γ , (12)

a2ω2

2
Vn[ρWi] = −[p]ni + α( div �n)ni.

In the framework of this approach a complete analytical
solution of the problem Eqs. (9)–(12) was obtained in [4]. It
was shown that the problem Eqs. (9)–(12) gives a solution
which corresponds to the quasiequilibrium state where the
interface is planar, the average flow is absent (�uβ = 0), and
the pulsation flow represents time-periodic parallel flows with
different velocity amplitudes in two fluids satisfying the pulsa-
tion flow closeness conditions (under inviscid approximation
the amplitudes of the pulsation velocities in two fluids do not
depend on the coordinates):

ζ = 0, �W1 =
(

2

ρ + 1
, 0, 0

)
,

�W2 =
(

2ρ

ρ + 1
, 0, 0

)
,

�V1 =
(

1 − ρ

ρ + 1
, 0, 0

)
,

�V2 =
(

ρ − 1

ρ + 1
, 0, 0

)
,

∫ 0

−h

V1x dz +
∫ h

0
V2x dz = 0. (13)

Here ρ = ρ1/ρ2 is the density ratio.
By analyzing the linear stability of the quasiequilibrium

state Eq. (13) an explicit formula for the neutral curve was
obtained [4]:

(aω)2 = (ρ1 + ρ2)3

2ρ1ρ2(ρ1 − ρ2)2

[
αk∗ + (ρ1 − ρ2)

g

k∗
]
tanh(k∗h). (14)

Here k∗ = 2π/λ∗ is the wave number of instability with
wavelength λ∗.

Similarly to the case of the KH instability at the interface
of two stationary parallel flows, it follows from the above
Eq. (14) that the long-wave perturbations are responsible
for a stability loss under zero-gravity conditions (see the
terms inside the brackets). Moreover, under such weightless
conditions the stabilizing effect of gravity is not present any
more and there is no instability threshold. The neutral curve
(14) does not show a minimum, i.e. the instability can develop
at any small values of the vibrational velocity amplitude (aω).
As a consequence, the question of wavelength selection does
arise under zero-gravity conditions.

C. Wavelength selection under zero gravity. Inviscid case

One hypothesis on the wavelength selection was suggested
in [17] where it was assumed that the wavelength selection in
this problem was related to the growth rate of perturbations:
The pattern with the wavelength that corresponds to the
perturbations with maximal growth rate is realized. In [17]
this hypothesis was implemented for the calculation of the
wavelength of periodical patterns arising at the interface of
two incompressible inviscid fluids subjected to tangential
vibrations under zero-gravity conditions, i.e., for the problem
Eqs. (9)–(12) with g = 0.

For two-dimensional perturbations of the base state
[Eq. (13)] not depending on the y coordinate and having
zero y-velocity components, it is convenient to introduce
stream functions for the perturbations of average and pulsation
components of the velocities:

u1x = ∂ψ1

∂z
, u1z = −∂ψ1

∂x
, u2x = ∂ψ2

∂z
, u2z = −∂ψ2

∂x
.

(15)

In terms of stream function the pulsation velocities of two
fluids in the base state are written as

W1x = 2

ρ + 1
+ ∂�1

∂z
, W1z = −∂�1

∂x
,

(16)

W2x = 2ρ

ρ + 1
+ ∂�2

∂z
, W2z = −∂�2

∂x
,

and the dimensionless equations and boundary conditions for
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small perturbations of this base state have the form

∂

∂t

∂ψ1

∂z
= 1 − ρ

ρ

∂p1

∂x
, − ∂

∂t

∂ψ1

∂x
= 1 − ρ

ρ

∂p1

∂z
,

(17)
∂

∂t

∂ψ2

∂z
= (1 − ρ)

∂p2

∂x
, − ∂

∂t

∂ψ2

∂x
= (1 − ρ)

∂p2

∂z
,

�ψj = 0, ��j = 0, (18)

z = −1 :
∂ψ1

∂x
= 0, �1 = 0, (19)

z = 1 :
∂ψ2

∂x
, = 0�2 = 0, (20)

z = 0 :
∂ψ1

∂x
= ∂ψ2

∂x
, ρ

∂�1

∂z
= ∂�2

∂z
,

�1 − �2 = 2
ρ − 1

ρ + 1
ζ, (21)

∂ζ

∂t
= −∂ψ1

∂x
, π1 − π2 + 4B

ρ + 1

∂�2

∂z
+ ∂2ζ

∂x2
= 0.

Here

B = (aω)2h(ρ1 − ρ2)

4α
(22)

is the dimensionless vibrational parameter. Equations (17)–
(21) are written in dimensionless form. The following quan-
tities are chosen for scaling: the thickness of each layer h for
length scale, (ρ1 − ρ2) for density scale,

√
(ρ1 − ρ2)h3/α for

time scale,
√

α/[(ρ1 − ρ2)h] for velocity scale, and α/h for
pressure scale.

For normal-mode perturbations in the form
∼ exp(ikx) exp(σ t), Eqs. (17) and (18) are reduced to a
system of ordinary differential equations (ODEs) depending
only on the z coordinate with constant coefficients for the
amplitudes. The substitution of the solution of this system of
ODE into the boundary conditions gives a linear homogeneous
system of algebraic equations for the coefficients, which leads
to the expression for the exponential growth rate σ or σ ∗ in
dimensional form. With k = k∗h,

σ 2 = 8Bρk2(ρ − 1)2

(ρ + 1)4 − ρ − 1

ρ + 1
k3 tanh (k), (23)

or in dimensional form,

σ ∗2=2a2ω2 ρ1ρ2(ρ1 − ρ2)2

(ρ1 + ρ2)4 k∗2− 1

(ρ1 + ρ2)
αk∗3 tanh (k∗h).

(24)

By setting σ = 0 one obtains the neutral curve

B = (ρ + 1)3

8ρ(ρ − 1)
k tanh (k), (25)

or in dimensional form,

(aω)2 = (ρ1 + ρ2)3

2ρ1ρ2(ρ1 − ρ2)2 αk∗ tanh (k∗h), (26)

which coincides with Eq. (14) when g = 0.
By calculating the coordinates of the maximum of the

curve σ (k) from Eq. (23) one obtains a relation between the
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FIG. 2. Dependence of the dimensionless vibrational parameter
B on the dimensionless wave number k for ρ = 1.07. Interrupted
curve: Neutral perturbations with σ = 0 in an inviscid fluid. Full
curve: Perturbations with maximal growth rate in an inviscid fluid.
Inset: Small k behavior.

dimensionless vibrational parameter and the dimensionless
wave number of perturbations with maximal growth rate:

B = (ρ + 1)3

16ρ(ρ − 1)

(
3k tanh (k) + k2

ch2(k)

)
, (27)

or in dimensional form,

(aω)2 = (ρ1 + ρ2)3

4ρ1ρ2(ρ1 − ρ2)2 αk∗
[

3 tanh (k∗h) + k∗h
cosh2(k∗h)

]
.

(28)

It is seen from (27) that for k > 1 the dependence of B on
the wave number of the perturbations with the maximal growth
rate is close to a linear law.

In Fig. 2 we plot the dependences of B on k for the neutral
perturbations with σ = 0 [Eq. (14)] and for the perturbations
with maximal growth rate obtained in the inviscid approxi-
mation [Eq. (27)] at ρ = 1.07 (this value corresponds to the
parameters of space experiments discussed below in Sec. V).
As one can see, for the same value of B, the wave number of
perturbations with maximal growth rate is substantially smaller
than the wave number of neutral perturbations. Moreover, the
difference grows rapidly with the increase of B.

D. Wavelength selection under zero gravity. Viscous fluids

For viscous fluids it is not possible to obtain analytical
expressions similar to (23). In this case the problem should be
solved numerically by the solution of a linearized problem on
the evolution of small perturbations of the base state.

The governing equations describing the fluid behavior in the
reference frame of the oscillating layers are (in dimensionless
form and at g = 0)

∂ �vβ

∂t
+ A(�vβ

�∇)�vβ = − 1

ρβ

�∇pβ + νβ��vβ − �j cos t,

div �vβ = 0. (29)
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FIG. 3. Base flow velocity profiles for ρ1/ρ2 = 1.07 and two sets of dimensionless viscosities: (a,b) ν1 = ν2 = 0.01; (c,d) ν1 = ν2 =
5 × 10−5 (typical of CO2 experiments in Sec. V). Snapshots are taken at two phases of vibration period (a,c) ϕ = 0 and (b,d) ϕ = π/2.

Here �vβ,pβ are the dimensionless velocity and pressure,
respectively, in the βth fluid; A = a/h is the dimensionless
amplitude of vibrations; ρβ = ρ∗

β/ρ∗
1 , νβ = ν∗

β/h2ω are the
dimensionless density and viscosity of the βth fluid with ρ∗

β,ν∗
β

the dimensional density and viscosity. The following quantities
were used as scales: the thickness of each layer h for length
scale, ω−1 for time scale, aω for velocity scale, ρ∗

1haω2 for
pressure scale.

The boundary conditions on the external rigid boundaries
are the no-slip conditions,

z = −1 : �v1 = 0; z = 1 : �v2 = 0. (30)

The boundary conditions on the fluid interface z = ζ (x,t)
are the continuity of the velocity, the kinematic condition, and
the normal stress balance conditions,

z = ζ (x,t) : �v1 = �v2,
∂ζ

∂t
+ Avx1

∂ζ

∂x
= Avz1, (31)

p1 − p2 = σnn1 − σnn2 − A−1 We −1 ∂2ζ

∂x2
. (32)

Here We = h3ρ∗
1ω2/α is the Weber number. The dimen-

sionless vibrational parameter B introduced earlier is related
to the parameters A and We as B = A2 We (ρ − 1)/4ρ.

The total volume conservation condition is∫ ζ

−1
vx1dz +

∫ 1

ζ

vx2dz = 0. (33)

Similar to the inviscid case, the problem Eqs. (29)–(33)
allows a solution with a flat interface. The only nonzero
velocity component in each fluid in this base state is the
horizontal component; however, now this component depends
not only on time but also on the vertical coordinate: vx0β ≡
Uβ = Uβ(z,t). The problem for this base flow was solved by
using the MAPLE package for analytical calculations. Velocity
profiles at two phases of the vibration period for ρ1/ρ2 = 1.07
and two sets of dimensionless viscosities are presented in
Fig. 3. In the low-viscous case thin boundary layers can be
observed near the rigid boundaries and near the fluid interface.

Linear stability of the base state was studied numerically by
the solution of linearized equations and boundary conditions
for small two-dimensional perturbations periodical in the x

direction (∼ exp(ikx)):

∂uβ

∂t
+ ikAUβuβ + Awβ

∂Uβ

∂z

= − ik

ρβ

pβ + νβ

(
∂2uβ

∂z2
− k2uβ

)
,
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∂wβ

∂t
+ ikAUβwβ

= − 1

ρβ

∂pβ

∂z
+ νβ

(
∂2wβ

∂z2
− k2wβ

)
,

ikuβ + ∂wβ

∂z
= 0, (34)

z = −1 : u1 = w1 = 0; z = 1 : u2 = w2 = 0, (35)

z = 0 : u1 + ∂U1

∂z
ζ = u2 + ∂U2

∂z
ζ,

w1 = w2,
∂ζ

∂t
+ ikAU1ζ = Aw1,

p1 − p2 + 2

(
η2

∂w2

∂z
− η1

∂w1

∂z

)
+A−1 We −1k2ζ = 0,

Aη1

(
∂u1

∂z
+ ikw1 + ζ

∂2U1

∂z2

)

−Aη2

(
∂u2

∂z
+ ikw2 + ζ

∂2U2

∂z2

)
= 0. (36)

Here uβ and wβ are the x and z components of the velocity
perturbations in the βth fluid, pβ is the pressure perturbation,
k is the wave number, and ηβ = νβρβ is the dynamic viscosity.

Numerical solutions of the problem Eqs. (34)–(36) was
carried out by the finite difference method. The perturbation
growth rate was calculated by using numerical data on the
perturbation field variation during a period of vibrations. The
results are discussed in Secs. III–V where they are compared
to the results of a direct numerical simulation (Sec. IV) and
experiment (Sec. V).

III. DIRECT NUMERICAL SIMULATIONS

To verify the applicability of the assumption that the pattern
with the wavelength corresponding to the perturbations with
maximal growth rate is realized we performed direct numerical
simulation (DNS) of the pattern formation on the interface for
a system of incompressible viscous fluids. The simulation was
carried out in the framework of a two-dimensional approach
for a two-layer system of immiscible incompressible viscous
fluids filling a rectangular container with horizontal size much
larger than the vertical size.

The modeling is carried out using the volume of fluid
(VoF) method describing the dynamics of the interface of
immiscible fluids. The method is based on the introduction
of a volume fraction function for each phase. The function is
constant inside a selected phase and exhibits sharp changes
at the interface between phases. A multiphase system can
thus be treated as a single medium with sharply changing
parameters at the interfaces. The physical properties of this
phase are calculated in any point by the values of the volume
fractions. The Navier-Stokes equations describing the system
can be solved over the entire computational domain. The VoF
method is implemented in ANSYS FLUENT used for modeling
the pattern formation.

The influence of vibrations is taken into account by
introducing a periodically varying volumetric force. Temporal
discretization is performed by the first-order scheme. Note

FIG. 4. Quasistationary band patterns in a two-layer system
of silicon oil and Galden HT135 with densities and viscosities
corresponding to experiment [18] (see text). Vibration characteristics
are f = 30 Hz: (a) a = 1.0 mm; (b) a = 1.6 mm; (c) a = 2.6 mm.

that the time step has to be much smaller than the period
of vibrations while the frequency of vibrations is quite high.
The computational error of the first-order scheme is therefore
small. The spatial discretization is performed using the third-
order MUSCL scheme (monotone upstream-centered schemes
for conservation laws).

Figure 4 presents the quasistationary band patterns calcu-
lated for the two-layer system of immiscible liquids used in the
experiments [18] performed under the earth gravity field. The
fluids are silicon oil (dynamic viscosity η2 = 0.202 Pa s and
density ρ2 = 962 kg/m3) and Galden HT135 (dynamic vis-
cosity η1 = 1.96 × 10−3 Pa s and density ρ1 = 1752 kg/m3).
A surface tension of α = 6.8 × 10−3 N/m was reported in [8].
The fluids occupy equal volumes of a container of length
L = 8.5 cm and height h = 2 cm. The vibration frequency is
f = 30 Hz and the amplitude is varied. As one can see, the
wavelength of the band pattern decreases when the vibration
amplitude increases. (In Sec. IV a quantitative comparison
is made among the direct numerical simulation results, the
analytical formula Eq. (27) for inviscid fluids, and the linear
stability results for viscous fluids.)

To analyze the viscosity effect on the band pattern formation
we carried out calculations by considering a system of fluids
having the same parameters as in [18] except for viscosities
whose values were varied. The simplest case, when the
dynamic viscosities of both fluids are equal, η = η1 = η2, was
studied. Figure 5 shows the patterns calculated for the vibration
amplitude a = 1.8 mm. As one can see, the pattern wavelength
grows with η. The dependence of the pattern wavelength on
viscosity η is plotted in Fig. 6.

Taking into account that for the liquid-vapor system, the
surface tension tends to zero when approaching the critical
point, we also performed the calculations for the case of zero
surface tension and varying the fluid viscosity (Fig. 7). As in
the case of nonzero surface tension, the band pattern formation
is observed and the band pattern wavelength grows with the
increase of η . The differences from the case of nonzero surface
tension can be seen in the disruption of the domains near the
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FIG. 5. Evolution of quasistationary band patterns with the
decrease of dynamic viscosity for the vibration characteristics
f = 30 Hz and a = 1.8 mm. Dynamic viscosities of both fluids
are made equal (see text): (a) η = 0.2 Pa s; (b) η = 0.075 Pa s;
(c) η = 0.04 Pa s.

boundaries. Similar patterns were observed in experiments
with miscible fluids in [19].

IV. COMPARISON OF DIRECT NUMERICAL
SIMULATIONS WITH LINEAR STABILITY ANALYSIS

We now compare the results of direct numerical simulations
(Sec. III above) and of numerical solutions of the linearized
problem of evolution of small perturbations (Sec. II D above).
Figure 8 shows the variation of the dimensionless vibrational
parameter B as a function of the dimensionless wave number of
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FIG. 6. Dependence of the pattern wavelength λ∗ (cm) on
dynamic viscosity η (Pa s) for vibration characteristics f = 30 Hz
and a = 1.8 mm. Filled circles are the results of DNS (see Fig. 5);
the solid curve is a smoothing function. The full square is the value
calculated from the analytical formula Eq. (28) obtained for inviscid
fluids.

FIG. 7. Evolution of quasistationary band patterns calculated
for zero surface tension with the decrease of dynamic viscosity
(same for both fluids) (a) η = 0.075 Pa s, (b) η = 0.05 Pa s. Vibration
characteristics are f = 30 Hz, a = 1.8 mm.

the band patterns obtained by direct numerical simulation (see
Fig. 4), by the solution of the linearized problem (34)–(36)
and from the analytical formula (27) obtained for inviscid
fluids, for two different two-layer systems. As one can see
from Fig. 8(a) (silicon oil and Galden HT135), the agreement
between the linear stability results for viscous fluids and the
direct numerical simulation is quite good, while the analytical
solution for inviscid fluids gives the correct prediction only for
small B. All three approaches give the dependence B(k) close
to linear in the considered range of B.

We also performed the comparison of direct numerical sim-
ulations and solution of linear stability problem for viscosities
and surface tension values closer to the experiments performed
with CO2 on board the sounding rockets [see Fig. 8(b)].

The following parameter values were considered: the total
thickness of the layers h = 2 cm; densities of lower and upper
fluids 2000 and 1000 kg/m3, respectively; surface tension
2.5 × 10−7 N/m; vibration frequency 30 Hz; and vibration
amplitude was varied. Dynamic viscosities of both fluids were
taken to be equal to 0.026 Pa s. This value is still substantially
higher than that for CO2; however, DNS cannot be performed
for very low viscosities of fluids used in the experiments
because of very thin dynamic boundary layers.

The calculations show that in this parameter range the
agreement between both approaches is also quite good. As one
can see from Fig. 8(b), in this parameter range the dependence
of B on the dimensionless wave number of the band pattern, k,
is substantially nonlinear.

V. EXPERIMENTAL RESULTS WITH CO2 AND H2

Experiments have been performed with CO2 on board the
sounding rockets MiniTexus5 (initial spinning, 180-s free fall)
[10], Maxus5 (no spinning, 780-s free fall) and Maxus 7 (no
spinning, 780-s free fall) [11]. In sounding rockets the residual
level of gravity is very low, down to 10−5g, with very low
g-jitter [20]. The cell body is made of a block of copper-cobalt-
beryllium alloy in which are drilled one cylinder (Maxus7)
or three (MiniTexus5, Maxus5) with inner diameter about
10 mm diameter. Two sapphire windows (9 mm thickness) are
epoxied at each cylinder ends at distance e varying between
2 and 10 mm. Three successive modules (the first two modules
were unfortunately damaged due to recovery problems in
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FIG. 8. Variation of the dimensionless vibrational parameter B with the dimensionless wave number k of the band pattern. Solid curve:
From the numerical solution of the linearized problem of small perturbation evolution for viscous fluids [Eqs. (34)–(36)]. Circles: From direct
numerical simulation. The interrupted curve is the inviscid solution Eq. (27). (a) Silicon oil and Galden HT135; (b) small surface tension and
viscosity (near critical CO2 [10–12], see text).

MiniTexus5 and Maxus5) are of TEM-FER type [9–11]. Using
CuCoBe alloy ensures good thermal conduction between the
fluid and the thermostat. The latter is an Al cylinder in which
is inserted the CuCoBe block. It is thermally regulated by a
Peltier element within 0.3 mK accuracy. Temperature can be
adjusted within 1-mK steps. As the module has to work under
vacuum during the flight, the thermostat remains pressurized
at 1 bar pressure.

The cylinder is hosted in one of a two-arms symmetric
shaker vibrating device. In order to prevent vibrations of
the rocket, another block (hosting experiments with vibrated
granular materials [21]) with the same mass is vibrated in the
opposite arm, in phase opposition. The couple of the motor
is also compensated to prevent rocket rotation. The shaker
can apply linear harmonic vibrations in a range of amplitude
a = [0.1–2.5]mm and frequency f = [0.5–60]Hz; a and f

can be varied independently step by step.
The critical point data of CO2 are listed in Table I. The

critical temperature (Tc = 304.13 K) was determined within
0.5 mK (not in an absolute temperature scale), which is the
limiting precision that can be achieved on ground due to
the gravity-induced hydrostatic gradients. The fluid is indeed
compressed under its own weight over its 10-mm height. In
addition, the smallest temperature step available is of 1 mK
amplitude.

The sequence of temperature and vibration amplitude and
frequency events are either teleoperated from the ground
(MiniTexus5 and Maxus5) or initially programmed with
possibility of remote control (Maxus7). Video images are
telemetered to the ground (MiniTexus5 and Maxus5) or
recorded on board (Maxus7). Onboard recordings ensure better
quality pictures [see Figs. 1(a)-(c) and 9]. The experiment

parameters, especially cell temperature, vibration amplitude,
and frequency, are telemetered.

A. CO2 in MiniTexus5 and Maxus 5

The three cells (diameter 2R = 10.8 mm and thickness
e = 10.8 mm) are filled with CO2 at different densities. The
same cells, labeled 1, 2, and 3 are used on board MiniTexus5
and Maxus5. The filling density ratios δρ∗ = (ρv − ρc)/ρc

are listed in Table II. Uncertainties are ±1 × 10−3. They
are determined with the variations of meniscus height on
the ground at different temperatures below Tc [22]. The
corresponding coexistence temperatures, Tcx , where fluid
phase separates into gas and liquid phase, are deduced from
the asymptotic coexistence amplitude variation,

�ρ∗ = ρν − ρc

ρc

= B ′
(

Tc − T0

Tc

)β

, (37)

with the universal critical exponent β = 0.325 and critical
amplitude B ′ (see Table I). The values of Tc–Tcx are listed in
Table II. The vapor volume fraction of cells 1 and 2 depends
on temperature, whereas it is always 50% for cell 3 at critical
density. The temperature value at which the sample phase
separates varies with even minute impurities. The values are
listed in Table II. Cells 1 and 3 have nearly the same Tc whereas
cell 2 presents a depletion of 12 mK with respect to 1 and 3.
As all three samples are at the same temperature, they can thus
appear in different, one- or two-phase states.

S-VHS video recording and image digitization are used to
determine the characteristics of the interface. A photodiode
continuously illuminates the interfaces by light transmission
through the cell for vibration frequencies smaller than 30 Hz.

TABLE I. Fluid parameters (from [6]).

Fluid Tc(K) pc(MPa) ρc(kg m−3) B ′ α0(10−2 N m−1) η(10−5 Pa s)

CO2 304.14 7.375 467.8 1.60 6.72 4.21
n − H2 33.19 1.315 30.11 1.61 0.542 0.27
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FIG. 9. Images of CO2 vibrated cells. (a) MiniTexus5
a = 0.1 mm, f = 60 Hz, T –Tc(1, left) = −15.06 mK; T –Tc(+2,

middle) = −1.4 mK; T –Tc(3,right) = −15.2 mK. The central cell
is above Tc and then homogeneous but the density difference
in the thermal boundary layer induces a fingering vibrational
Rayleigh instability on the horizontal walls (see [22] and references
therein). (b) Maxus5 a = 1.5 mm, f =30 Hz, T –Tc(3, left)=
−20 mK; T –Tc(2,middle) = −6.2 mK; T –Tc(1,right)=−19.9 mK.
(c,d) Maxus 7 (see also Fig. 1) T –Tc = −2.4 mK: (c)
a = 0.2 mm, f = 5.57 Hz; (d) a = 2.5 mm, f = 19.8 Hz
corresponding to the smallest band pattern wavelength. (e)
Analysis of window drawn in (d): Gray level variation along
horizontal space ordinate X parallel to vibration direction showing
band periodicity.

For higher vibration frequencies the cell is illuminated by a
stroboscope with a flash duration of 1 ms. The final spatial
resolution is of the order of 30 μm.

In MiniTexus5 experiments, the 180-s free fall timeline
is separated in an initial 20-s relaxation of fluid motion
after rocket despinning, and 20-s observation for different
sets of (a, f ) vibration parameters (Table II). Temperature
is maintained constant at the level T0 before lift-off during
nearly the entire mission duration (except near the end, at
t = 240 s, temperature was increased at a constant (a, f ) by
31.45 mK above all sample Tcx

′s). Temperature T0 corresponds
to different T –Tc and volume fraction values (see Table II),
ranging from 23.7% to 50%. Volume fraction φ is calculated
from the level rule:

φ = ρL − ρ0

ρL − ρV

= 1

2
− δρ∗

2�ρ∗ . (38)

The Maxus5 experiment (Table II) was performed with the
same cells and setup as in MiniTexus5. Vibration is applied
after t = 95 s after lift-off, after more than 20-s relaxation
time under weightlessness. The temperature timeline is the
following. Temperature is firstly maintained constant during
countdown and lift-off at temperature T ′

0 = Tc(3) + 1.6 mK
where cells 1, 2, and 3 are all homogeneous. At t = 120 s,
the temperature is quenched down by 5 mK to T1 = Tc(3) −
1 mK. Cell 2 is at T1–Tcx = 13 mK and cell 3 at T1–Tcx ≈ 0.
Only cell 3 phase separates with 50% volume fraction. At
t = 385 s, temperature is again decreased by 15 mK to T2 =
Tc(3) − 16 mK, where both cells 1 and 2 phase separate with
near-equal volume fractions, 30.6% (1) and 27.3% (2). Cell
3 also phase separates but remains at 50% volume fraction.

TABLE II. Characteristics of the cells and timeline for the weightlessness experiments with CO2. Left, middle, and right cells correspond
to their position in Fig. 9. (Notations: see text).

Cell MET time (s after lift-off) Cell 1 Cell 2 Cell 3

δρ∗(%)(i = 1,2,3) 2.53 1.56 0
Tc–Tcx(mK) 0.86 0.19 0
Tcx–Tcx(3)(mK) −1 −14 0

MiniTexus5 Start 0g: 90 End 0g: 260 Left L Middle M Right R
T0–Tcx(mK) −1200−260 −14.2 −1.2 −15.2
T0 − Tc(mK) −15.06 −1.4 −15.2
φ (%) 30.3 23.7 50

Maxus5 Start 0g: 75 End 0g: 840 Right R Middle M Left L
T ′

0–Tcx (mK) −1200–120 5 18 4
T ′

0 − Tc (mK) 4.14 17.81 4
T1–Tcx(mK) 120–385 0 13 −1
T1–Tc(mK) −0.86 9.81 −1
φ (%) 50

T2–Tcx(mK) 385–510 −15 −2 −16
T2–Tc(mK) −15.86 −2.19 −16
φ (%) 30.6 27.3 50

T3–Tcx(mK) 510–840 −19 −6 −20
T3–Tc(mK) −19.86 −6.19 −20
φ (%) 32.0 33.8 50

Maxus7 Start 0g: 75 End 0g: 840
T0–Tc −1200–150 2
T1–Tc 150–385 −2.4
φ (%) 50
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All three samples are then in the two-phase region. Later,
at t = 510 s, temperature is further decreased by 4 mK to
T3 = Tc(3) − 20 mK. All three cells again phase separate, with
volume fractions 32%, 33.8%, and 50%.

B. CO2 in Maxus 7

Only one cell is concerned, with the body made of a
CuCoBe alloy. The fluid is confined in an inner cylindrical
volume, with radius R = 5.0 mm and e = 2.189 mm thick-
ness, closed at each end by two parallel sapphire windows. The
sample is illuminated by parallel light issued from a LED and
observed in transmission by the cameras. Coherent illumina-
tion is used to enhance the refractive-index gradients and then
the density gradients. The cell is filled at critical density with a
precision of 0.1%, by checking the temperature variation of the
meniscus position according to the method developed in [23].

Although the vibration module is basically the same as
previously used in MiniTexus5 and Maxus5 experiments, the
optics is improved. Images are taken by a high-resolution,
2048 × 2048 pixels, 5 fps frame rate, 125 μs full-frame shutter
times, fixed gain, digital camera (type TM4100 from Pulnix). It
is equipped with a long-working-distance microscope. Images
are stored on the rocket module and recovered after the
flight. With an imaging factor from object to chip of 1:1.12
typically, the final spatial resolution is of the order of 1 pixel
(7.4 μm × 7.4 μm). Image analysis is then used to determine
the characteristics of the pattern. All other scientific data,
including images with low resolution (782 × 582 pixels) from
a 25 Hz CCD camera (type XC 8500 from Sony), temperature
measurements (PT 100 sensors), vibration amplitude and
frequency, and acceleration data, are sent by telemetry to the
ground.

The timeline (Table II) is the following. Equilibration is
ensured until t = 75 s, 2 mK above Tc. Then vibration is
applied. A temperature quench of 4.4 mK is performed at
t = 150 s. The cell is maintained at the same temperature until
the end of the period allocated for the experiment (t = 385 s).
Typical patterns from the three sounding rockets experiments
are reported in Fig. 9 as a complement of Fig. 1.

C. H2 under magnetic levitation

Experiments with H2 are performed in the cryogenic facility
HYLDE (hydrogen levitation device [24,25]). The HYLDE
setup uses a 10-T magnetic field generated by a cylindrical
superconducting coil. Hydrogen can be levitated near the upper
end of the coil where there is a near-constant magnetogravita-
tional potential field. Quettier et al. [26] have shown that the
technique of magnetic levitation using a solenoid of cylindrical
configuration can give total compensation of gravity only at
a single point. A residual gravity field is radially directed
towards the center of the cell. The uniformity of the gravity
field depends on the size of the cell. Using the setup HYLDE
a uniformity better than 1% and 2.5% can be achieved in cells
of side h = 3 mm.

As the setup has been described in detail in several
publications—see, e.g., [24,25]—we only report its main
features. A superconducting coil made of Nb-Ti is dipped
inside liquid helium at a temperature of 2.16 K and a pressure

FIG. 10. Experimental cell of size 3mm × 3mm × 2mm.

of 0.1 MPa inside a cryostat. The experimental cell is mounted
inside another cryostat (called “anticryostat”) maintained
under a vacuum of less than 10−7 mbar. Endoscopes for a light
source and a video camera are mounted inside the anticryostat.
The positions of the endoscopes are independently adjustable.

The experimental cell used (Fig. 10) is a cubical cavity
of size 3 mm × 3 mm × 2 mm with H2 initially at room
temperature. The fluid is thus n–H2, whose critical point data
are listed in Table I. Hydrogen is filled inside the cell using
a capillary tube of inner diameter 0.5 mm. To determine
the critical density, the cell is filled up to half its height at
a temperature very close to the critical point (say 50 mK)
and the meniscus is monitored for small temperature increase
or decrease of the cell (50 mK on either side of the filling
temperature). If the level of the meniscus does not change
with temperature, it means that the cell is filled at its critical
density. This method of filling the cell at the critical density
of the fluid is quite precise and is close to 0.2% of the critical
density ρc. The capillary tube is fitted with a thermal switch,
made of a small block of copper continuously cooled under
the triple point of H2 by a copper wire connected to the helium
bath. It is heated whenever required using a resistive heater.
In the absence of heating, hydrogen inside the capillary tube
freezes, thus closing the cell. The experimental cell is provided
with thermal bridges, strands of copper wires connecting the
bottom flange of the anticryostat—which is maintained at
liquid helium temperature—and the cell. Resistive heaters in
thermal contact with the cell are used to heat and control the
temperature of the cell. Two thermometers are pasted on either
side of the cell to monitor the temperature of the cell. The
temperature control of the cell is achieved by using a standard
Proportional-Integral-Derivative (PID) control system.

The cell is oscillated along a pivot (Fig. 10) with various
frequencies (f = 10–50 Hz) and various amplitudes (a =
0.1–1 mm). It is estimated that for a frequency of 50 Hz
and for a maximum amplitude of 1 mm, the cell experiences
an oscillation in the vertical direction of ±10 µm, which
is negligible compared to the amplitude of the horizontal
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vibration. Also, the resulting centripetal acceleration compares
to the vibrational acceleration as a/R (where a is the amplitude
of vibration and R is the distance of the cell from the pivot),
which comes out to be of the order of 1/60. Thus the centrifugal
force is negligibly small in the experimented frequency and
amplitude ranges and the vibration can be assumed to be in
the horizontal direction.

Typical patterns are reported in Figs. 1(d) and 1(e). Note
that, since the thermometers fixed to the cell vibrate along
with the cell inside an intense magnetic field, eddy currents
are induced inside them and their electric cabling provoking
unwanted oscillations in the temperature electric signal. This
renders the values of the temperature during the vibration
experiments useless. However, temperature can be estimated as
explained in [9] with the measure of the thickness of the bubble
interface, tm, under residual gravity g∗ ≈ 0.01g. This thickness
is proportional to the capillary length lc = (α/g∗δρ∗)1/2 and
the liquid-vapor refractive index difference, itself proportional
to �ρ∗ : tm ∼ �ρ∗lc ∼ (Tc–T )ν+β/2=0.79 from Eqs. (37) and
(40). This method is relatively precise; see the discussion in [9].

D. Comparison with theory and simulation

The number p of bands in each image gives the wavelength
λ∗ = 2R/p and the nondimensional wave vector:

k = 2πR

λ
= πp. (39)

The number of bands was counted manually when it was
easy to do it (high contrast, small band number). For more
difficult cases, image analysis software was used. An example
is given in Figs. 9(d) and 9(e) corresponding to the image and
analysis of the smallest band pattern wavelength. Note that
the bands showing Faraday instability have been counted as
well. Faraday instability is indeed localized at the liquid-vapor
interface only after the band pattern has formed. The value
of the vibration parameter B can be calculated from Eq. (22)
where h = R(= 5.0 mm) for CO2 and h = e/2(= 1.5 mm) for
H2. The density difference is calculated from Eq. (37). The
liquid-vapor surface tension is deduced from the power law
dependence [6,7,8]:

α = α0

(
Tc − T

Tc

)2ν

. (40)

Here ν = 0.63 is the critical exponent. One thus obtains

B = B0(aω)2(Tc − T )β−2ν=−0.935. (41)

The parameter B0 = 5.84 × 103 m−2 s2 for CO2 and B0 =
1.77 m−2 s2 for H2 by using the values of Table I. Note
that experiments with CO2 in sounding rockets and H2

under magnetic levitation are complementary. With CO2 the
vibration parameters (a, ω) are changed at a few rigorously
constant temperatures, making a precise determination of B(k),
but the B(T) variation cannot be precisely determined as only a
few temperatures are available. In contrast, in H2 experiments,
temperature variation at constant (a, ω) is continuous, giving
more accurate B(T) dependence. However, B(k) at constant
temperature, obtained indirectly, is less reliable.

In Fig. 11 are presented the results of space experiments
Maxus 7, Maxus 5, and MiniTexus 5. The two-phase sys-
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FIG. 11. Comparison of space data from Maxus 7 (triangles),

Maxus 5 (open squares), and MiniTexus 5 (open circles) with the
results of the linear stability analysis for viscous fluids [full circles,
(ν1 = ν2 ≈ 5 × 10−5)] which can be approximated by a power law
with exponent 2.

tem used in the experiments (CO2 liquid-vapor phases) is
characterized by low viscosities and very small interfacial
tension. It made it impossible to carry out a direct simulation
for such experimental parameters because too fine mesh is
needed. However, one can perform the numerical solution
of the linearized problem (which is one dimensional). The
calculations were thus performed with the same dimensionless
kinematic viscosities for both phases (ν1 = ν2 ≈ 5 × 10−5)
corresponding to typical experimental values (density ratio
ρ = 1.07, Weber number We = 1 × 107) and various di-
mensionless vibration amplitude A. The results show good
agreement in spite of the scatter of experimental data.

Note that the data approximatively follow a power law B ∼
k2. It is thus possible to extract the k temperature dependence
at constant aω. From Eq. (41), and the assumption B(k) ∼ k2

one gets

k ∼ (T –Tc)−0.5. (42)

In Fig. 12 is reported the temperature dependence of
k for H2. The data approximatively follow a power law
with exponent −0.7 ± 0.14 (two standard deviations). This
value is somewhat larger than the expected value of −0.5
[Eq. (42)]. At least two reasons can be put forward to
explain the difference. First, Eq. (42) is empirical. Second, the
temperature determination in the experiments is only indirect
and uncontrolled bias can occur, especially for the data the
furthest from the critical temperature where the interfacial
thickness is large. As a matter of fact, the data the closest to
Tc fit the power law Eq. (42).

VI. CONCLUDING REMARKS

This study addresses the questioning phenomenon of peri-
odical patterns developing under zero-gravity conditions at the
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FIG. 12. Variation of the pattern reduced wave number k with
respect to temperature Tc–T . Vibration parameters (a, f ) are
indicated in the figure. Full line: Power law with exponent −0.5
[Eq. (38)].

interface of two immiscible fluids under vibrations parallel to
interface. The fluids (CO2, H2) are close to their critical point,
with low viscosity, low surface tension, and small difference
in liquid-vapor densities. The patterns have been identified
by some of us when experiments under vibration were

performed under weightlessness; a systematic study is here
reported. Although the phenomenon is reminiscent of frozen
wave instability observed under a gravity field, the present
theoretical analysis and numerical simulations show they are
not identical. In particular, no threshold is found in the band
instability, in contrast to the frozen wave case under gravity
field. The neutral curve does not present any minimum and
the selection of the critical wavelength arises. Results of the
present linear stability analysis, direct numerical simulation,
and experimental observations corroborate the hypothesis that
the wavelength selection is based on the perturbation growth
rate: The pattern wavelength in experiments corresponds to
the wavelength of the perturbations with maximal growth rate.
Note that this wavelength differs substantially from the neutral
perturbations wavelength at the same vibrational parameter
value. The role of viscosity is highlighted in the pattern
formation, with a critical wavelength dependence on vibration
parameters that strongly depends on viscosity.
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