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ABSTRACT

Person role recognition in video broadcasts consists in clas-
sifying people into roles such as anchor, journalist, guest,
etc. Existing approaches mostly consider one modality, either
audio (speaker role recognition) or image (shot role recog-
nition), firstly because of the non-synchrony between both
modalities, and secondly because of the lack of a video cor-
pus annotated in both modalities. Deep Neural Networks
(DNN) approaches offer the ability to learn simultaneously
feature representations (embeddings) and classification func-
tions. This paper presents a multimodal fusion of audio, text
and image embeddings spaces for speaker role recognition in
asynchronous data. Monomodal embeddings are trained on
exogenous data and fine-tuned using a DNN on 70 hours of
French Broadcasts corpus for the target task. Experiments on
the REPERE corpus show the benefit of the embeddings level
fusion compared to the monomodal embeddings systems and
to the standard late fusion method.

Index Terms— Speaker role recognition, multimodal
speaker embeddings, broadcast News

1. INTRODUCTION

Person role recognition in video broadcasts consists in classi-
fying a person (speaking and/or visible) among a list of pos-
sible roles such as anchor, journalist, guest, etc. In this con-
text, the audio and image modalities are complementary since
role characteristics appear in the audio, speech transcription
and scene analysis features. Most of the approaches proposed
so far for person role recognition only consider one modality
for two reasons: first, the presence of a person is not always
synchronous between modalities. Indeed, a speaker is not al-
ways visible and all visible faces are not talking. In addition,
the lack of labelled multimodal data limits the possibility for
jointly training multimodal systems which generally assume
synchrony between the modalities.

This work has been carried out thanks to the support of the
A*MIDEX project (no ANR-11-IDEX-0001-02) funded by the “Investisse-
ments d’Avenir” French Government program, managed by the French Na-
tional Research Agency (ANR).

Recently approaches based on Deep Neural Networks
(DNN) have achieved state-of-the-art performance on several
tasks for audio and image processing. The main advantage of
such techniques is the ability to learn simultaneously feature
representations and classification functions. The initialization
of feature representations can be performed on a large generic
corpus not necessarily related to the target task, resulting in
embeddings that can be jointly fine-tuned for that task. This
approach has been proposed for synchronous tasks such as
lip/speech activity detection and recognition [1].

In this paper, we want to classify speakers into four roles
using the audio, image and text modalities:

• R1: anchors. These speakers are characterized by their
presence throughout the show, without discontinuity.

• R2: journalists. They are TV professionals appearing
one time or more during the show.

• R3: reporters. Similar to the R2 role, they are corre-
spondents covering events outside the set of the show.

• R4: guests and others. They are invited to discuss the
news, because of their expertize or fame, under the
guidance of the anchor. They are neither part of the or-
ganization committee, nor the leaders of debates. They
can appear in different TV shows, especially during
highly publicized events. Others refers to everyone
else who could appear, like interviewed people in a
report.

We present an alternative to the standard late fusion paradigm
based on multimodal embeddings refined for the Speaker
Role Recognition (SRR) task. The main novelty of our
approach is a fusion at the embedding level that character-
izes multimodal information without assuming a synchrony
between modalities. Experiments on the French REPERE
corpus show the benefit of this approach with respect to
monomodal strategies and standard late fusion methods.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 presents a general descrip-
tion of our approach. Sections 4, 5 and 6 present speaker
role embeddings over the text, audio and visual modalities.



Section 7 focuses on the fusion system. Experiments are pre-
sented in Section 8.

2. RELATED WORK

Automatic Speaker Role Recognition (SRR) assumes that
roles are characterized by specific acoustic, visual and textual
features such as language style or prosody. In the litera-
ture, SRR methods have been studied in purpose of chap-
tering audio-visual documents (talk shows and broadcast
news). Existing methods are divided according to the fea-
tures extracted (audio and/or text), the decision level (for
each speaker turn [2, 3] or globally on all the turns of a
given speaker [4, 5, 6, 7, 8]) and classification techniques
(supervised [4, 5, 2, 3] or unsupervised [6, 7, 8]).

In [4], based on the hypothesis that spontaneous speech
classification is a clue for SRR, authors proposed an applica-
tion of a spontaneous speech detector for the SRR task using
prosodic and linguistic features (local) and a contextual model
(global). Promising results on radio broadcasts are showed for
10 speaker roles classification. However, confusion analysis
shows the difficulty of identifying specific roles. In [6] au-
thors proposed an unsupervised system that clusters speakers
according to their role based on structural and lexical features.
A partition selection algorithm is used on speaker clusters on
Mandarin and English talk shows data. On the same corpus, a
sentence pattern extraction method is proposed in [7]. Then,
spectral clustering is used for unsupervised SRR allowing to
classify hosts, expert guests and soundbites. In [8], authors
described an unsupervised SRR system on English, Arabic
and Mandarin data based on structural, lexical, social network
analysis features and a boosting classifier. A loss of 1.1%
in accuracy is shown when automatic features are extracted
compared to the use of manually labelled linguistic phenom-
ena. In [5], authors used temporal, acoustic and prosodic fea-
tures to classify roles at the speaker cluster level. Authors
distinguish between punctual and non punctual speaker roles
and train Support Vector Machine (SVM) and Gaussian Mix-
ture Model (GMM) classifiers hierarchically. Several fea-
ture selection methods are compared (Principal Component
Analysis/Canonical Discriminant Analysis/Sequential Back-
ward Feature Selection). Experiments on a French broadcast
corpus achieved good results. However, those methods make
decisions on speaker clusters.

[3] classifies speaker roles (anchor/reporter/other) us-
ing HMM and Maximum Entropy classifiers. In the HMM
classifier, speaker roles are states and pronounced sentences
are observations. Maxent classifies speaker roles using the
first and last pronounced sentences during the speaker turn.
Best results on Mandarin broadcast news are achieved by the
Maxent-based system enriched with contextual information
(previous and next sentences). However, ASR and speaker
turns were manually labelled. [2] focuses on speaking style
features to classify speaker roles. Dynamic Bayesian Net-

works (DBN) models have been used to classify speaker turns
role depending on the previous role and recent speaker role.
[9] present a multimodal system based on lexical and acoustic
features for SRR. Authors proposed to classify speaker turns
hierarchically: first anchor, then reporter/other. Two classi-
fiers are used: a boosting-based text classifier (icsiboost) and
MFCC-based GMMs. Two classifier fusion are compared:
one adding the GMMs score to textual features of icsiboost.
A second late fusion based on logistic regression of GMMs
and icsiboost scores.

Considering the visual modality of broadcast videos, to
the best of our knowledge, there are no work based on image
features for SRR. Some work have been done for visual shot
role recognition. For example in [10] authors proposed a gen-
eralized anchor shot detector based on deep neural networks
with a sampling strategy. They obtain interesting results on
large-scale broadcast news videos (30 different TV channels).
However, this method does not characterize speakers.

This study takes advantage of all these previous ap-
proaches by the set of features used (acoustic and linguis-
tic) and the fusion paradigm between modalities. The main
novelties of our approach are firstly to introduce image fea-
tures into speaker characterization; and secondly to propose
a real multimodal fusion framework that goes beyond late
fusion and overcomes most of the problems linked to early
fusion methods (lack of data annotated synchronously in all
modalities and difficulties to define multimodal features).

We applied our model to the speaker turn characteriza-
tion task, independently of all the other turns from the same
speaker in a given show. While this decision level is sub-
optimal, it will allow us to demonstrate the effectiveness of
our multimodal approach independently of any global deci-
sion strategy that could be defined on the top of the local de-
cisions.

3. APPROACH

Our proposed approach consists in creating representations in
each modality tailored for the SRR task.These representations
are used as input of a multimodal classifier which can take
advantage of cross-modal features drawn from the concatena-
tion of the monomodal representations. Figure 1 illustrates
that approach.

Each monomodal representation is trained on a large
monomodal corpus not necessarily linked to the SRR task.
The multimodal annotated corpus is only used when train-
ing the fusion. This method allows us to take advantage of
both early and late fusion at the same time: we can use large
amount of monomodal data for which we do not have syn-
chronous annotations in the other modalities as can be done
with late fusion; we can train multimodal classifiers that can
build multimodal features directly from each modality like in
early fusion.



For the text modality we train Convolutional Neural Net-
works (CNN) that start from word embeddings trained on
a large text corpus. The audio modality uses a representa-
tion extracted from a DNN modeled after a speaker recogni-
tion system, trained on the SRR task. The image modality
relies of a representation extracted from an ImageNet con-
cept recognizing neural network, and repurposed for the tar-
get task. Fusion consists in concatenating hidden layers of
the monomodal systems and adding fully-connected layers,
which create building blocks for merging decisions according
to relevant features from multiple modalities. The following
sections detail the architecture of the monomodal and fusion
components.
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Fig. 1. Illustration of the embedding fusion approach.

4. TEXT EMBEDDINGS

Recent work has shown that CNN are powerful for Natural
Language Processing (NLP) classification problems [11]. A
CNN is a deep model having multiple convolutional and pool-
ing layers followed by a simple classifier (usually a Multilayer
Perceptron). The main advantage of using convolution is the
ability to process variable input dimensions (sentences in our
case). In addition, multiple convolutional filters extract local
N-grams semantics with different granularities while pooling
layers extract global semantics of the input. In our work, we
use speech transcriptions from the current speaker turn for
SRR.

First, each word is represented by a 300 dimension contin-
uous and real-valued vector called word embedding [12]. In
our experiment, word embeddings 1 are trained on Wikipedia
using the skip-gram model (window size = 7, 5 iterations).
This strategy allows to characterize semantic and grammati-
cal associations between words.

Then, word embeddings for the words of the current turn
are passed through three convolutional filters which select the
best 3-grams, 4-grams and 5-grams. They are combined with
a Max-Over-Time pooling layer (400 dimension) and a stan-
dard Soft-Max fully connected layer [13]. We used dropout
to disable randomly 40% of neurons at each iteration, which
acts as regularization.

1We used the Word2vec toolkit

Finally, text embeddings of 1200 dimensions are extracted
from the Max-Over-Time pooling layer and used later for the
multimodal system.

5. AUDIO EMBEDDINGS

In previous work, it was proposed to learn high-level acoustic
features for speaker identification [14] (called Speaker em-
beddings). In the same way, we propose to learn high-level
speaker role features, called “audio embeddings”, using deep
models trained to achieve the SRR task.

The audio embeddings are trained as follows: first, a 60-
dimensional acoustic feature vector is extracted for each turn2

i with a 10ms frame rate (19 MFCCs, log energy and first
and second-order deltas). Then, first-order statistics Centred-
Normalized obtained from a Universal Background Model
(UBM) are generated. Thus for each gaussian component c,
the first-order statistics are extracted as follows:

F (c) =
1∑
t γ

t
c

∑
t

γtc(o
t − µc) (1)

where F c is the first-order statistics for gaussian compo-
nent c, ot is the feature vector at frame t, γtc is the occu-
pation probability of the gaussian c for frame t and µc is
the mean of the gaussian c. The complete first-order statis-
tic is Fi = (F

(1)
i , . . . , F

(c)
i ). The UBM used is a gender-

and channel-independent GMMs of 1024 diagonal gaussians
computed with the Kaldi toolkit [15].

Then, the first-order statistics are used as input of a
DNN having two 2048-dimensional hidden layers. The non-
linearities of the hidden layers is corrected by a Rectified
Linear Unit (ReLU) function. The output layer is a Soft-Max.
Training is performed by optimizing the cross-entropy cri-
terion. In our experiments, we optimized DNN parameters
on the development set. Weights were updated using 512
mini-batches over 8 iterations and the learning rate initialized
at 0.04 is reduced to 0.004 when converging.

Finally, audio embeddings of 2048 dimensions are ex-
tracted from the last hidden layer of the DNN and used later
for multimodal fusion.

6. IMAGE EMBEDDINGS

The visual grammar in talk-shows and news is a true source of
information for speaker role detection. In this section, we de-
scribe image features used in the speaker role recognition sys-
tem. We used image embeddings based on DNN which have
shown to be extremely good for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC).

We fine tuned the AlexNet CNN proposed in [16] trained
on the ILSVRC-2012 [17] corpus for image classification.
The architecture consists of five convolutional layers, three

2Average segment duration is 7.8 seconds in the training corpus.



fully-connected layers, max-pooling and normalization lay-
ers. It uses ReLU as activation function to accelerate learning
and dropout after the first two fully-connected layers to pre-
vent over-fitting. This model takes resized (256 × 256) and
normalized image inputs with a 512 batch size. Weights are
updated following the same rules as described in [16].

We adapted the AlexNet architecture by changing the last
fully-connected layer to predict only four classes and fined-
tuned the already learned weights of the AlexNet model to
obtain a new CNN for SRR. We increased the learning rate
on the last fully-connected layer (10 times the global LR) in
order to regularize fine tuning. We trained the network for
270 epochs on 19k images using Caffe [18] on GPUs.

Finally, image embeddings are extracted from the second
fully-connected layer, providing 4096 dimension vectors for
use in the multimodal fusion system.

7. MULTIMODAL FUSION

There are two approaches commonly used for deep multi-
modal fusion: early and late fusion. Late fusion considers
that the modalities are independent by first applying classi-
fication separately on each modality and then merging the
output using a high-level classifier. Unfortunately, the clas-
sifier cannot model the correlations among modalities. The
early fusion approach tackles this problem by learning fea-
tures and class relationships to model the interaction between
modalities. In [1], authors proposed to learn multimodal fea-
ture representations based on auto-encoders for audio-visual
speech classification. In [19], authors proposed to learn a
common image and text embedding space based on multi-
modal auto-encoders for word similarity and categorization
tasks. In [20], authors proposed to learn visual and linguistic
features jointly for image labelling and retrieval tasks. Two
fusions are presented: one forcing word embeddings to take
into account fixed visual features by maximizing the similar-
ity during training. In the second fusion, the authors proposed
to add a layer in the DNN that merges images and words
representations. While late fusion cannot benefit from mul-
timodal feature correlations, early fusion requires lots of syn-
chronous training data.

We propose an early fusion approach based on DNNs
where the input is task-specific embeddings in all modalities.
First, DNNs are trained independently for each modalities
allowing to extract general monomodal representations (text,
audio and image embeddings). Then, these embeddings are
used as input of a new DNN trained to learn from multi-
modal features to classify speaker roles. Unlike late fusion,
our method can take advantage of relevant feature subspaces
(embeddings) from multiple modalities.

In our experiments, the DNN used for early fusion is
composed of two 1024-dimensional hidden layers. The non-
linearities of the hidden layers are corrected by a ReLU
function. Weights were updated using a mini-batch size of

512, trained over 6 iterations. The learning rate was initial-
ized at 0.01 and reduced till 0.001. Our experiments also
show results of a late-fusion based on the SVM classifier. All
probabilities given by each modalities are grouped in a vec-
tor, and a linear SVM classifier is trained on these probability
vectors to predict speaker roles.

8. EXPERIMENTS

We present experiments performed on the multimodal REPERE
corpus [21]. We compare the results obtained by several base-
lines systems in all modalities with our DNN embeddings
method. The DNN fusion is also compared to a standard
late fusion approach consisting of a combination of decisions
output at each modality.

8.1. Experimental setup

Speaker diarization is carried out using the LIUM open-
source speaker diarization toolkit [22]. First speaker segmen-
tation is used to detect fine-grained speaker changes using
Generalized Likelihood Ratio (GLR). Then hierarchical ag-
glomerative clustering is used to group segments that belong
to the same speaker using the Bayesian Information Crite-
rion (BIC) followed by a Clustering based on Integer Linear
Programming described in [23]. This system performs a
Diarization Error Rate (DER) of 12.03% on the REPERE
corpus.

Then, speech transcripts are generated using the Kaldi
Automatic Speech Recognition tool [15]. The speech tran-
scription process is carried out in two passes: (1) An auto-
matic transcript is generated with a GMM-HMM model of
7000 states and 150000 Gaussians. (2) Word-graphs output
by the first pass are used to compute a fMLLR transform on
each speaker cluster. Then, the second pass is performed us-
ing DNN acoustic model trained on acoustic features normal-
ized with the fMLLR matrix [24].

The acoustic models are trained on 227 hours of wide-
band recordings (167 hours from ESTER 1 and 2 campaign
and 60 hours from EPAC [25, 26]). The language model is
based on trigram LMs on a lexicon of 95k words. Sources for
training the LM are the audio corpus transcript, the French
gigaword [27] and additional data collected from the Web. To
estimate and interpolate these models, the SRILM [28] toolkit
is employed using modified Knser-Ney discounting without
cut-off.

The system is fully described in [29] and obtains a Word
Error Rate (WER) of 19.67% on the REPERE test set.

In TV broadcasts, speakers appear only 60% of the time
and observable speakers talk only 30% of the time [30].
When processing the image modality, due to this asynchrony,
we choose to select one image per turn as follows: for each
speaker turn t, we selected the longest video shot v that



matches t (t ∩ v 6= ∅); then, we choose the frame f as the
center of the intersection t ∩ v.

8.2. Results

Experiments are performed using the REPERE corpus [21]
which consists of about 70 hours of video broadcast from
9 French speaking channels ranging from news with an an-
chor and field reports, to talk shows and tabloid shows. Each
speaker turn in the corpus is manually annotated with tran-
scripts, speaker identities and speaker roles among the four
classes: anchor/host (R1), commentator (R2), reporter (R3),
invited speaker/other (R43).

The corpus is split into train (18951 turns), development
(1402 turns) and test (4627 turns) sets used respectively for
training the systems, validating the structure of the neural net-
works and the hyper-parameters of the classifiers, and evalu-
ating the results. The test set contains shows that occur in the
train and development sets (of course not on the same days),
as well as a new show that is completely unknown from mod-
els trained on the train and development sets, to check the
capacity of generalization of our models. Table 1 describes
the distribution of roles on the test set.

Role % of turns
Host (R1) 23.34
Commentator (R2) 11.28
Reporter (R3) 14.22
Other (R4) 51.16

Table 1. Repartition of roles on the test set.

All results are given using accuracy (number of role cor-
rectly identified) and the Diarization Error Rate (DER). The
DER consists in computing the SRR errors at the frame level,
the same way it is done in the speaker diarization task. The
main advantage of this metric is to allow us to compare two
different SRR output with a different speaker segmentation,
as we consider each frame independently. This is the case
when we compare results obtained using reference transcripts
and speaker segments (DER-Man for manual annotation) ver-
sus ASR and automatic speaker diarization (DER-Auto for
automatic annotation).

First, table 2 compares baseline and monomodal deep
learning approaches. Among the baselines we have:

• Majority: this baseline simply chooses the most fre-
quent role for each speaker frame.

• Adaboost: this is a boosting-based classifier [31] ap-
plied to word n-grams from textual segments to classify
speaker roles.

3R4 and R5 classes from the original corpus are merged as annotator
agreement is low on that pair.

• JFA: this baseline trains Joint-Factor-Analysis models
to characterize speaker roles in the audio modality [?].

• SVM-HOG: this is a SVM-based classifier using full
frame histogram of gradient features to find the best
role for a given image [32].

Results in Table 2 clearly indicate that the DNN ap-
proaches consistently outperform baselines. In addition, the
audio modality offers the best monomodal classifier.

System Modality Acc-Man DER-Man DER-Auto
JFA A 26.76 37.48 42.54
DNN-Audio A 77.52 19.79 25.43
Adaboost T 62.13 28.80 34.33
CNN-Text T 67.50 29.11 32.66
SVM-HOG I 62.76 36.97 42.04
CNN-Image I 70.48 25.69 35.25

Table 2. Monomodal accuracy and DER results on the test
set, with baseline and neural network systems. Modalities
are T for text, A for audio and I for image. Acc-Man is the
accuracy using the reference transcription. DER-Man is the
DER using the reference transcription and DER-Auto is the
DER using automatic transcription.

In a second set of experiments, we analyse the perfor-
mance of several multimodal systems according to the type
of modality used and the fusion method (late of early with
embeddings).

Results, presented in Table 3 show that merging de-
cisions at the embeddings level performs better than late
decisions. They also justify the use of multimodal models
for the task: the gain of performance in the multimodal set-
ting compared to the monomodal one is very important. The
best monomodal DER-Man was 19.79 (respectively 25.43
for DER-Auto) in the monomodal setting and only 13.84
(respectively 19.9) in the multimodal setting. We can also
observe that it is the fusion of all modalities which gives the
best results.

Fusion Modality Acc-Man DER-Man DER-Auto
Majority - 51.16 39.77 44.54
Late A+T 78.49 18.67 24.11
Late A+I 80.98 17.26 22.98
Late I+T 78.02 21.16 27.60
Late A+I+T 82.36 15.37 20.97
Embedding A+T 80.16 15.90 21.82
Embedding A+I 82.16 15.45 20.65
Embedding I+T 76.01 22.83 28.60
Embedding A+I+T 85.28 13.84 19.79

Table 3. Multimodal DER results for the posterior-level late
fusion and the embeddings level fusion. Modalities are T for
text, A for audio and I for image. Acc-Man is the accuracy
using the reference transcription. DER-Man is the DER using
the reference transcription and DER-Auto is the DER using
automatic transcription and speaker segmentation.



In order to study the robustness of our methods, Table 4
shows the accuracy and DER on a subset of the test corpus
corresponding to unseen conditions (different shows). The
system based on text embeddings is robust to unseen condi-
tions while the audio and image modalities results decrease
when processing these new shows. This is particularly true
for the image modality which goes from a DER of 25.69 in
the whole test set to 43.29 on the unseen show. In this condi-
tion it is not suprising that the fusion methods do not provide
better results over the single best modality.

System Modality Acc-Man DER-Man DER-Auto
CNN-Text T 70.07 26.65 28.42
DNN-Audio A 65.69 29.88 37.31
CNN-Image I 51.09 43.29 46.47
Late A+I+T 70.07 27.77 34.61
Embedding A+I+T 66.42 32.80 34.06

Table 4. Results on the unseen conditions (different show)
which represents 5% of the test set.

These results point out one of the weaknesses of a multi-
modal approach when all the modalities don’t have the same
generalization capacity to process unseen events. If the tex-
tual modality is really robust, audio and image have difficul-
ties to process unseen events.

9. CONCLUSION

In this paper, we introduced a speaker role recognition system
based on multimodal embeddings fusion for asynchronous
data. Experiments on the REPERE corpus using manual and
automatic speaker diarization showed that merging text, au-
dio and visual features improves greatly speaker role classi-
fication performance with respect to monomodal approaches.
Our multi-modal embeddings allows to capture speaker role
features in multiple views and the use of embeddings level
fusion obtained the best results with 19.79% of DER on au-
tomatic speaker diarization. Our method allows us to take
advantage of both early and late fusion at the same time: we
can use large amounts of monomodal data for which we do
not have synchronous annotations in the other modalities as
would be performed by late fusion; we can train multimodal
classifiers that can build multimodal features directly from
each modality like in early fusion.

However one of the drawbacks of this method is the lack
of generalization of the audio and image models when pro-
cessing unseen shows. Increasing robustness to unseen events
is the line of research we are following now to improve our
multimodal SRR system.
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