Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem - Archive ouverte HAL Access content directly
Conference Papers Year : 2014

Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem

(1) , (2) , (3, 4)
1
2
3
4

Abstract

The Euler-Poinsot rigid body problem is a well known model of left-invariant metrics on SO(3). In the present paper we discuss the properties of two related reduced 2D models: the sub-Riemanian metric of a system of three coupled spins and the Riemannian metric associated to the Euler- Poinsot problem via the Serret-Andoyer reduction. We explicitly construct Jacobi fields and explain the structure of conjugate loci in the Riemannian case and give the first numerical results for the spin dynamics case.
Fichier principal
Vignette du fichier
bonnard_17149.pdf (1.67 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00925078 , version 1 (07-01-2014)
hal-00925078 , version 2 (23-02-2017)

Identifiers

  • HAL Id : hal-00925078 , version 2
  • OATAO : 17149

Cite

Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem. 52nd IEEE Conference on Decision and Control (CDC 2013), Dec 2013, Firenze, Italy. pp. 1804-1809. ⟨hal-00925078v2⟩
632 View
357 Download

Share

Gmail Facebook Twitter LinkedIn More