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Abstract

The toxicity and efficacy of more than 30 anticancer agents present very high variations, depending on the dosing
time. Therefore, the biologists studying the circadian rhythm require a very precise method for estimating the periodic
component (PC) vector of chronobiological signals. Moreover, in recent developments, not only the dominant period
or the PC vector present a crucial interest but also their stability or variability. In cancer treatment experiments, the
recorded signals corresponding to different phases of treatment are short, from 7 days for the synchronization
segment to 2 or 3 days for the after-treatment segment. When studying the stability of the dominant period, we have
to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian
domain. The classical approaches, based on Fourier transform (FT) methods are inefficient (i.e., lack of precision)
considering the particularities of the data (i.e., the short length). Another particularity of the signals considered in such
experiments is the level of noise: such signals are very noisy and establishing the periodic components that are
associated with the biological phenomena and distinguishing them from the ones associated with the noise are
difficult tasks. In this paper, we propose a new method for the estimation of the PC vector of biomedical signals, using
the biological prior informations and considering a model that accounts for the noise. The experiments developed in
cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that
can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an
Inverse Problem (IP) using the general Bayesian inference in order to infer the unknown of our model, i.e. the PC vector
but also the hyperparameters (i.e the variances). The sparsity prior information is modeled using a sparsity enforcing
prior law. In this paper, we propose a Student’s t distribution, viewed as the marginal distribution of a bivariate
normal-inverse gamma distribution. We build a general infinite Gaussian scale mixture (IGSM) hierarchical model
where we assign prior distributions also for the hyperparameters. The expression of the joint posterior law of the
unknown PC vector and hyperparameters is obtained via Bayes rule, and then, the unknowns are estimated via joint
maximum a posteriori (JMAP) or posterior mean (PM). For the PM estimator, the expression of the posterior distribution
is approximated by a separable one, via variational Bayesian approximation (VBA), using the Kullback-Leibler (KL)
divergence. For the PM estimation, two possibilities are considered: an approximation with a partially separable
distribution and an approximation with a fully separable one. Both resulting algorithms corresponding to the PM
estimation and the one corresponding to the JMAP estimation are iterative algorithms. The algorithms are presented
in detail and are compared with the ones corresponding to the Gaussian model. We examine the
(Continued on next page)
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convergency of the algorithms and give simulation results to compare their performances. Finally, we show simulation
results on synthetic and real data in cancer treatment applications. The real data considered in this paper examines
the rest-activity patterns of KI/KI Per2::luc mouse, aged 10 weeks, singly housed in RealTime Biolumicorder (RT-BIO).

Keywords: Periodic component (PC) vector estimation, Sparsity enforcing, Bayesian parameter estimation,
Variational Bayesian approximation (VBA), Kullback-Leibler (KL) divergence, Infinite Gaussian scale mixture (IGSM),
Normal-inverse gamma, Inverse problem, Joint maximum a posteriori (JMAP), Posterior mean (PM), Chronobiology,
Circadian rhythm, Cancer treatment

1 Introduction
Several biological processes in living organisms follow
oscillations that repeat themselves about every 24 h—
these oscillations are called circadian rhythms and
together with other periodic phenomena, they are the
object of study of chronobiology [1–3]. In mammals, cir-
cadian rhythms involve all organs, tissues, and cells and
are supervised by the circadian timing system (CTS),
a set of molecular clock genes that cross-regulate each
other by positive and negative feedback loops [4–6]. More
precisely, the CTS consists of a central pacemaker, the
suprachiasmatic nuclei (SCN) in the hypothalamus, which
is made sensitive to light by retinal afferents and which
coordinates the molecular clocks in the peripheral organs
by releasing diffusible and neurophysiological signals [3].
The period of the CTS, which is about 24 h, is therefore
regularly calibrated by the succession of light and day and
can be influenced by other environmental factors, such as
socio-professional interactions and feeding times [5]. The
resulting circadian physiologic fluctuations are observed
in sleep-wakefulness and rest-activity alternations, body
temperature, cortisol secretion by the adrenal gland, and
melatonin secretion by the pineal gland, and they involve
as well the sympathetic and the parasympathetic systems [6].
Former studies have already shown how taking chrono-

biology into account can improve anticancer treatment
efficacy and reduce at the same time their toxicity
(increasing therefore their tolerability), contrary to the
previous “the worst the toxicity, the better the efficacy”
paradigm [7–10]. Themolecular clocks are involved in the
regulation of important processes such as cell cycle and
proliferation, DNA damage sensing and repair, apoptosis,
angiogenesis, pharmacodynamics, and pharmacokinetics;
therefore, they can greatly influence the metabolism,
transportation, and detoxification of drugs [11].
Tolerability to anticancer treatments has been proven

to depend significantly on their timing in respect to the
circadian rhythms, measuring up to tenfold changes in
the tolerability to drug administration at different cir-
cadian times for 40 anticancer drugs in rodents and
up to fivefold in patients [11, 12]. Notably, chemother-
apeutic agents proved to be at their best efficacy, both
administered alone and combined, when they are also at

their best tolerability level, i.e., when they are least toxic
to the healthy tissues. Furthermore, relevant interpatient
variability in circadian rhythms have been observed and
can be due to factors such as gender, age, and genetic
polymorphisms; therefore, anticancer drugs dosing and
timing need to be personalized, at least for subtypes of
patients with similar chronotoxicity key features. Mod-
ulating drugs administration according to the patient’s
circadian rhythms is known as chronotherapy [13, 14]. On
the other hand, administrating anticancer drugs at their
most toxic time causes the disruption of molecular clocks
synchronization, which has been shown to accelerate the
cancer evolution [15–20].
In order to optimize cancer treatment, once proven that

a certain drug effects are susceptible to circadian rhythms,
we want to identify its best administration time. First,
for each drug is proved the correlation with the circa-
dian rhythms in a rodent model, which has been proved
to well represent the human circadian physiology [11].
This is achieved by studying the chronotoxicity of the
drug, inferred by body weight loss and histopathologic
lesions, at different circadian times (CT or ZT, from
Zeitgeber time). The mice circadian clock is synchronized
by exposure to light for 12 h, followed by 12 h of dark,
repeating this cycle and its rhythm is detected by tracking
the expression of one or more of its core genes (normally
Bmal1, Per2, Rev-erbα, or Clock are used). Mice with a
disrupted clock (clock-defective mice, obtained via the
functional knock out of one of its genes, normally Per2)
are used to confirm the relevance of the molecular clock
for the drug toxicity. At the same time, themain character-
istics of the circadian expression of these observed genes
are studied to observe whether the administration of the
drug modifies them.
Once defined the CTs at which the drug best and worst

tolerability is observed, we can look for the molecular
mechanisms that influence it. Genes influencing the
pharmacokinetics (absorption, distribution, metabolism,
and excretion) of the drug are a good starting point,
and we can follow how their expression correlates with
the higher or lower drug chronotoxicity. For instance,
the transporter abcc2, involved in the cellular efflux of
several drugs, has been shown to influence irinotecan
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chronotolerance in ileum, according to the circadian
changes in abcc2 local expression [21]. The circadian
clocks of the mice used in the experiments whose data
we analyse are first synchronized to the same day-night
alternation where 12 h of light are followed by 12 h of
dark (LD12:12). After synchronization, the mice are kept
in constant darkness (DD), which implies the subtraction
of the light. Throughout the experience, gene expression
and rest-activity are measured to establish how the basic
parameters of their circadian rhythms (period, acrophase,
amplitude) vary in respect to the drug treatment. Both
measures are allowed by an innovative monitoring device,
the RealTime-Biolumicorder (RT-BIO) [22]. The loco-
motor activity is detected by an infrared sensor, whereas
the gene expression is measured at the post-translational
level in mice engineered to express the gene of interest
together with luciferase (fLUC), so that the gene activity is
marked by bioluminescence detected by a photomultiplier
tube. Common mouse strains used are C57BL/6-based
[7, 21] and 129S1/SvImJ [23]. The acrophase and ampli-
tude depend on the periodic component (PC) vector, so
a major interest is the study of the periodicity of such
time series, i.e., the estimation of the PC vector and the
stability or the variability of the dominant period, requir-
ing a precise PC vector variation analysis. The periodical
phenomena were studied with different approaches in dif-
ferent particular conditions [24–40] using in general fast
Fourier transform (FFT)-based methods. The major lim-
itation when studying such data is given by their reduced
length, due to the duration of the experiments. The objec-
tive of an accurate description of the periodic components
variation during the experiments can be formulated as
the need of a method that can give a precise estimation
of the PC vector from a limited number of data. Also, the
method must be able to distinguish the peaks from the
PC vector due to the biological phenomena and the peaks
due to the measurements errors. The real data considered
in this article is a chronobiological time series, measuring
the locomotor activity. In order to observe the variation
or the stability of the dominant periods, very short inter-
vals of the recorded time series are considered. The prior
knowledge is the presence of the circadian rhythm: the
PC vector is sparse, having a limited number of non-zero
elements, inside the circadian interval.
The article is positioned in the context of the need of a

method capable to estimate the PC vector of a time series
in the following conditions: (a) very limited number of
data (4-day length) for circadian periodic components
(24 ± 6 h) estimation and (b) precision that can be
adjusted depending on the chronobiological context,
1-hour precision required in the particular experiment
discussed in this article. The method proposed in this
article formulates the estimation of the PC vector as an
inverse problem, using the general Bayesian inference to

infer the unknowns of the considered linear model. This
approach is presented in Section 3. A hierarchical prior
model is considered, using the Student’s t distribution
(expressed as the marginal of a normal-inverse gamma
bivariate distribution) as the sparsity enforcing prior
law for the PC vector and assigning prior distributions
for the hyperparameters involved in the model, namely
the variances associated with the PC vector and the
noise (Subsection 3.2 and Section 4). From the analytical
expression of the joint posterior law of the unknown
PC vector and hyperparameters, obtained via Bayes
rule, the unknowns are estimated via joint maximum a
posteriori (JMAP) (Subsection 4.1) or posterior mean
(PM). For the PM estimator, the expression of the pos-
terior law is approximated by a separable one, via the
variational Bayesian approximation (VBA), using the
Kullback-Leibler (KL) divergence. For the PM estimation,
two possibilities are considered: an approximation with
a partially separable law (Subsection 4.2) and one with a
full separable one (Subsection 4.3). Simulation results on
synthetic data (5 dB) and real data in cancer treatment
applications are presented in Section 5. More simulations
for the synthetic case (10 and 15 dB) are presented in the
Additional file 1.

2 Classical Fourier transformmethods
The spectral analysis for time series is a well-known sub-
ject in literature for a very long time. The most used
methods are the FFT-based methods, which are widely
used for many applications in signal processing commu-
nity, having obvious advantages: the FFT-based methods
are well known, well understood, and fast. Nevertheless,
the particularities of the biomedical signals considered in
chronobiology experiments show that the classical meth-
ods present certain limitations. In particular, for short
time series relative to the dominant period (in the exper-
iment considered in this article, a 96 h recorded signal
relative to an ∼24 h dominant period, linked with the
circadian clock) the precision given by the FFT meth-
ods is by far insufficient to determine the exact PC
vector, since via the FFT-based methods, the frequency
axis is linear, but as a function of the periods, it is not.
In particular, for a 4-day (96 h) recorded signal, beside
the 24 h corresponding periodic component, the nearest
amplitudes in the PC vector correspond to 32 and 19 h
(Fig. 1).
More general, if the prior knowledge sets the dominant

period around a value P in order to obtain a PC vector that
contains the period P and also the periods P − 1 and P + 1,
the signal must be observed for (P − 1)(P + 1) periods. In
chronobiology applications, where the circadian period is
around 24 h, a signal should be recorded for 575 days in
order to obtain a periodic component vector that contains
23-, 24-, and 25-h periods.
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Fig. 1 Synthetic data. Sparse theoretical PC vector with 3 non-zero peaks corresponding to 11, 15, and 23 h (a). The corresponding noisy signal
(SNR = 05 dB) (b). PC vector corresponding to FFT (c)

As an example, Fig. 1b presents a 4 day synthetic sig-
nal corresponding to a known PC vector (showed in
Fig. 1a) and the corresponding PC vector obtained via
FFT (Fig. 1c) (presented for the interval between 8 and
32 h, the circadian domain). In the synthetic PC vector,

the non-zero periods are set for 11, 15, and 23 h (dom-
inant peak). The FFT estimates the dominant peak at
24 h, due to the fact that the time series observation
period is limited to 96 h. In such conditions, it offers
no information for the real positions, 11, 15, 23 h. It
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also offers no informations for the peaks in the interval
[20 : 31], except the estimation for 24 h. For similar
signals corresponding to PC vectors having the princi-
pal peak around 24 h, the FFT will estimate the principal
peak at 24 h. Another example is presented in Fig. 2b, a

4-day-length signal recorded in an experiment in chrono-
biology. The FFT PC vector presents peaks corresponding
only to 8, 8.72, 9.6, 10.66, 12, 13.71, 16, 19.2, 24, and
32 h inside the considered interval [8 : 32]. The periods
corresponding to 24, 12, and 8 h can be associated with
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Fig. 2 Real data. We show a 4-day-length signal recorded in cancer treatment experiments (b) and the PC vector corresponding to FFT (c) and
corresponding to the proposed method (a)
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the presence of the circadian rhythm, expressed by the
principal peak and the corresponding harmonics. But the
presence of the other peaks can be more difficult to be
interpreted by the biologists. Another drawback of FFT
is the difficulty of selecting the peaks corresponding to
the presence of a biological phenomena and peaks that
are explained by error measures and uncertainties. This
article is proposing a method that can estimate the PC
vector, in the conditions (a) and (b) described in Section 1,
taking into account the uncertainties and being able to
distinguish between the peaks: the ones corresponding
to the biological phenomena and the ones explained by
other factors, producing a sparse PC vector (Fig. 2a). We
think that this result will be more comprehensible by the
biologists.

3 Inverse problem approach and general
Bayesian inference

The first stepa in the proposed method for improving the
precision consists in the inverse problem approach. We
formulate the relation between the available data g and the
unknown PC vector f as an inverse problem. The inverse
Fourier transform provides a linear relation between the
known biomedical signal g and the PC vector f . Using
the elements of the matrix corresponding to the inverse
Fourier transform, the linear relation is described by the
following equation:

g(ti) �
M∑
j=1

f (pj)e
2π j 1pj ti , i ∈ {1, . . . ,N} , j ∈ {1, . . . ,M} .

(1)

Introducing the notations g(ti) = gi and f (tj) = fj,
Eq. (1) becomes

gi �
M∑
j=1

fje
2π j 1pj ti , i ∈ {1, . . . ,N} j ∈ {1, . . . ,M} → g � H f .

(2)

Due to the potential modeling and measurement errors,
we need to account for errors and uncertainties, so the
linear model given by the inverse Fourier transform is
completed by introducing the error vector ε, obtaining the
forward model, Eq. (3):

g = H f + ε, (3)

where we have used the following notations:

• g represents the observed data, i.e., the
chronobiological time series:
g = [

g1, g2 . . . gN
]T ∈ MN×1, an N-dimensional

vector

• f represents the unknowns, i.e., the PC vector:
f = [

f1, f2, . . . , fM
]T ∈ MM×1, a M-dimensional

vector
• ε represents the errors:

ε = [ε1, ε2, . . . , εN ]T ∈ MN×1, is an N-dimensional
vector

The goal is to estimate the unknowns of themodel, Eq. (3),
i.e., the PC vector f and the error vector ε. In this paper,
we propose an inversion based on general Bayesian infer-
ence, building a hierarchical model and estimating the
unknowns from the posterior probability density function,
using the available data g. The estimated f̂ and the corre-
sponding estimated signal ĝ = Hf̂ are compared with f
(only in the synthetic case) and g, using as a measure of
performance Eq. (4).

δf =
∥∥∥f − f̂

∥∥∥2
2∥∥f ∥∥22 ; δg =

∥∥g − ĝ
∥∥2
2∥∥g∥∥22 . (4)

For the application considered in this paper, the matrix
H used in the model presented in Eq. (3) has very high
conditioning numbers, so the problem is ill-conditioned.
As mentioned above, in this paper, we focus on an inver-
sion based on general Bayesian inference. Nevertheless, in
literature, many other approaches are possible. One par-
ticular case of the considered linear model is the case
where the error vector is neglected (ε = 0), and thematrix
H is invertible and orthogonal, i.e., HTH = I. This is the
case of the FT matrix with M = N . Then, the solution
is given by f̂ = HTg, which corresponds to IFT. How-
ever, in general as in our case M �= N . When M < N ,
a minimum norm solution f̂MN = (

HHT)−1HTg can
be obtained, and when M > N , the classical solution
is the least square solution f̂ LS = HT (

HHT)−1 g. Since
in the case of chronobiological times series the matrix
H is proved to have a very high conditioning number,
those generalized inverse solutions are, in general, too
sensitive to the errors due to the ill-conditioning of the
matrix H. The regularization methods can partially solve
this difficulty. For example, the regularization methods
such as truncated single value decomposition (TSVD) or
Tikhonov regularization methods (TRM) can be used, but
the solutions depend on the threshold in the first case
(TSVD) and on the regularization parameter in the sec-
ond case. When M �= N and when the error vector is
not neglected (ε �= 0), the regularization methods can
still be applied and an estimation can be obtained for
f and ε, but with the following drawbacks: in general,
determining the regularization parameters is difficult and
there is not a good way to handle other a priori knowl-
edge we may have on the noise statistics and on the
unknowns.
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3.1 Bayesian inference
A fundamental particularity of the proposed method is
the use of the prior knowledge. In this article, we adopt
a Bayesian approach. The Bayesian approach for times
series was considered in [41–53]. However, the lack of
data makes the proposed methods inefficient for our case.
In Bayesian inference, the fundamental relation is given by
the Bayes rule:

p
(
f |g, θ1, θ2

) = p
(
g|f , θ1

)
p
(
f |θ2

)
p
(
g|θ1, θ2

) , θ = (θ1, θ2) , (5)

where θ represents the hyperparameters that appear in the
model. In general, we may not know the hyperparameters
θ , and this is also our case. The hyperparameters repre-
sents the variances associated with the noise ε and with f ,
which are unknown. We need to estimate them, too. This
can be done via the joint posterior law:

p
(
f , θ1, θ2|g

) ∝ p
(
g|f , θ1

)
p
(
f |θ2

)
p(θ1) p(θ2) . (6)

Such an extension presents two particular advantages:
one advantage is evidently the possibility of estimating the
hyperparameters and obtaining numerical values for vari-
ances and the second one is that such an approach can be
developed into a non-supervised algorithm.

3.2 Hierarchical prior models
The hierarchical model represents the set of probability
density functions assigned for the probabilities involved
in (6), namely the assignment of the prior p

(
g|f , θ1

)
,

the likelihood p
(
f |θ2

)
, and the hyperparameters priors

p(θ1), p(θ2). The prior biological knowledge leads to
the search of good sparsity enforcing priors. In liter-
ature [54], certain classes of distribution (heavy-tailed,
mixture models) are well known as good sparsity enforc-
ing priors. In this paper, we consider a general infinite
Gaussian scale mixture (IGSM) hierarchical model [55].
The prior distribution for the PC vector is a Student’s
t distribution expressed via a normal-inverse gamma
distribution. The error vector is also modeled using
the IGSM, considering non-stationary variances for the
noise, generalizing the results from [56]. In Section 5,
during the simulations results, we include comparisons
with the Gaussian hierarchical model for the synthetic
data.

4 Hierarchical model infinite Gaussian scale
mixture

In the first step, we model the error vector ε. We propose
to use a non-stationary Gaussian model:

p
(
εi|vεi

) = N
(
εi|0, vεi

)
, i ∈ {1, 2, . . . ,N} , (7)

where vεi are considered to be unknowns. For having the
possibility to estimate them, we model them as inverse
gamma distributions:

p
(
vεi |αε0,βε0

) = IG
(
vεi |αε0,βε0

)
, i ∈ {1, 2, . . . ,N} .

(8)

Doing this, we model the error vector as an infinite
Gaussian scale mixture:{

p(ε|vε) = N (ε|0,V ε)

p(vε |αε0,βε0) = ∏N
i=1 IG

(
vεi |αε0,βε0

)
,

(9)

where we introduced the vector vε and the corresponding
diagonal matrix V ε :

vε = [
vε1 . . . vεi . . . vεN

]T ; V ε = diag [vε] . (10)

The likelihood p
(
g|f , vε

)
is obtained using the consid-

ered linear model, Eq. (3), and the assigned distribution
for the error vector ε conditioned by the variance vε ,
Eq. (9). The distribution modeling the likelihood is also a
multivariate normal distribution, having the same covari-
ance matrix V ε and the mean Hf :

p
(
g|f , vε

) = N
(
g|Hf ,V ε

)
. (11)

The proposed prior distribution is a Student’s t distri-
bution, in order to enforce the sparsity and use the prior
knowledge of reduced number of periods in the PC vec-
tor. While a direct assignment of a Student’s t distribution
for the prior law p(f ) leads to a non-quadratic criterion
when estimating f , the Student’s t distribution corre-
sponding to the prior law can be expressed as an infinite
Gaussian scale mixture, modeling the inverse variance as
a gamma distribution or the variance as an inverse gamma
distribution. For the variance of f , we assume a general
model:

vf =
[
vf1 . . . vfj . . . vfM

]T
; Vf = diag

[
vf
]
. (12)

The prior law is then defined as an infinite Gaussian
scale mixture, via vf :{

p
(
f |vf

) = N
(
f |0,Vf

)
p
(
vf |αf 0,βf 0

) = ∏M
j=1 IG

(
vfj |αf 0,βf 0

)
. (13)

The error variance priors, Eq. (9), the likelihood, Eq. (11),
and the prior, Eq. (13), represents the IGSM hierarchical
model. The analytical form is presented in Eq. (14):
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(
g|f , vε

) = N
(
g|H f ,V ε

) ∝ det− 1
2 (V ε) exp

{
− 1

2‖V
− 1

2
ε

(
g − H f

) ‖2
}

p
(
f |vf

) = N
(
f |0,Vf

) ∝ det− 1
2 (Vf ) exp

{
− 1

2‖(Vf )
− 1

2 f ‖2
}

p(vε |αε0,βε0) = ∏N
i=1 IG

(
vεi |αε0,βε0

) ∝ ∏N
i=1 v

−(αε0+1)
εi exp

{
−∑N

i=1 βε0v−1
εi

}
p
(
vf |αf 0,βf 0

) = ∏M
j=1 IG

(
vfj |αf 0,βf 0

)
∝ ∏M

j=1 v
−(αf 0+1)
fj exp

{
−∑M

j=1 βf 0v−1
fj

}
.

(14)

From the hierarchical model, the posterior distribution
can be obtained via the proportionality relation consid-
ered in Eq. (6):

p
(
f , vε , vf |g

) ∝ p
(
g|f , vε

)
p
(
f |vf

)
p(vε |αε0,βε0)

p
(
vf |αf 0,βf 0

)
.

(15)

4.1 Joint MAP estimation
The joint maximum a posteriori, a point estimator of the
unobserved quantities f , vε , vf on the basis of the available
data g is defined as:

(̂
f , v̂ε , v̂f

)
= argmax

(f , vε , vf )
p
(
f , vε , vf |g

) = argmin
(f , vε , vf )

L
(
f , vε , vf

)
,

(16)

where for the second equality, we have defined the crite-
rion L

(
f , vε , vf

) = − ln p
(
f , vε , vf |g

)
. The MAP estimator

is the solution minimizing the criterion L
(
f , vε , vf

)
. This

can be done via alternate optimization with respect to
each of the unknowns. The computation details are pre-
sented in Appendix 1. Here, we present the final results in
Eqs. (17a), (17b), and (17c).

f̂ JMAP =
[
HTV−1

ε H + V−1
f

]−1
HTV−1

ε g (17a)

v̂εi JMAP = βεi0 + 1
2
(
gi − H i f

)2
αεi0 + 1 + 1

2
(17b)

v̂fj JMAP = βf 0 + f 2j
2

αf 0 + 1 + 1
2
, (17c)

where H i represents the line i from the matrix H. The
iterative algorithm obtained via JMAP estimation is pre-
sented in Fig. 3. The algorithm is compared with the
one corresponding to the posterior mean estimation in
Section 5.

4.2 Posterior mean (via VBA) IGSM (partial separability)
The posterior mean estimates the mean of the posterior
distribution. One of the advantages of this estimator is
the fact that it minimizes the mean square error (MSE).
In particular, the posterior distribution obtained from the
considered hierarchical model is not a separable distri-
bution, making the analytical computation of PM very
difficult. One way to compute the PM in this case is to
first approximate the posterior law p

(
f , vε , vf |g

)
with a

separable law q
(
f , vε , vf |g

)
[54]:

p
(
f , vε , vf |g

) ≈ q
(
f , vε , vf |g

) = q1(f ) q2 (vε) q3
(
vf
)
,

(18)

where we have used the notations

q2(vε) =
N∏
i=1

q2i
(
vεi

)
; q3(vf ) =

M∏
j=1

q3j
(
vfj
)
, (19)

Fig. 3 IGSM hierarchical model—JMAP estimation: iterative algorithm
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The approximate q
(
f , vε , vf |g

)
is obtained by minimizing

the Kullback-Leibler divergence, defined as:

KL
(
q
(
f , vε , vf |g

)
: p

(
f , vε , vf |g

))
=

∫∫
. . .

∫
q
(
f , vε , vf |g

)
ln

q
(
f , vε , vf |g

)
p
(
f , vε , vf |g

) df dvε dvf ,

(20)

where we also used the notations:

dvε =
N∏
i=1

dvεi ; dvf =
M∏
j=1

dvfj . (21)

Like in the MAP case, the minimization can be done via
alternate optimization resulting in the following propor-
tionalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1
(
f
) ∝ exp

{〈
ln p

(
f , vε , vf |g

)〉
q2(vε ) q3(vf )

}
q2i

(
vεi

) ∝ exp
{〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2−i(vεi ) q3(vf )

}
, i ∈ {1, 2 . . . ,N}

q3j
(
vfj
)

∝ exp
{〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2(vε ) q3−j

(
vfj

)}, j ∈ {1, 2 . . . ,M}

(22)

where we used the notations:

q2−i
(
vεi

) =
N∏

k=1,k �=i
q2k

(
vεk

)
; q3−j

(
vfj
)

=
M∏

k=1,k �=j
q3k

(
vfk

)
; 〈u(x)〉v(y) =

∫
u(x)v(y) dy.

(23)

From the proportionalities showed in Eq. (22), we
derive the probability distributions corresponding to
q1(f ), q2i(vεi), q3j(vfj) and the corresponding parameters.
The detailed computations are presented in Appendix 2.
Here, we only present the general strategy: in the first step,
developing the proportionality corresponding to q1(f ), we
obtain an expression of an exponential, having as argu-
ment a quadratic criterion, leading to the conclusion that
q1(f ) is a multivariate normal distribution. By minimiz-
ing the criterion, we obtain the analytical expression of the
corresponding mean. The variance is obtained by identifi-
cation. However, in this stage, both the analytical expres-
sions of the mean and variance depend on expectancies
corresponding to the two variances involved in the model,
i.e., vεi and vfj . In the second step, developing the pro-
portionalities corresponding to q2i(vεi) and q3j(vfj), we
establish that they are both inverse gamma distributions.
This is done using that the expectancies containing f can
be handled because q1(f) was proved to be a multivariate
Normal distribution in the previous step. Then, using the
fact that q2i(vεi) and q3j(vfj) are inverse gamma distribu-
tions, the expectancies that appear in the expressions of

the mean and variance corresponding to the multivariate
normal distribution q1(f ) can be computed. We establish
analytical expressions for all the parameters of the distri-
butions. The analytical expressions of the parameters are
presented in the Eqs. (24a), (24b), and (24c).

q1
(
f
) = N

(
f | f̂ PM, �̂

)
,

⎧⎪⎨⎪⎩
f̂ PM =

(
HT V̂−1

ε H + V̂−1
f

)−1
HT V̂−1

ε g

�̂ =
(
HT V̂−1

ε H + V̂−1
f

)−1

(24a)

q2i
(
vεi

) = IG
(
vεi |αεi ,βεi

)
,

⎧⎪⎨⎪⎩
αεi = αε0 + 1

2

βεi = βε0 + 1
2

[
H i�̂HT

i +
(
gi − H i f̂ PM

)2]
(24b)

q3j
(
vfj
)

= IG
(
vfj |αfj ,βfj

)
,

⎧⎨⎩ αfj = αf 0 + 1
2

βfj = βf 0 + 1
2

(̂
fj
2
PM + �̂jj

)
(24c)

Equation 24a provides the dependency of the parame-
ters corresponding to themultivariate normal distribution
q1(f ) and the others hyperparameters involved in the hier-
archical model: the mean f̂ PM and the covariance matrix
�̂ depend on V̂−1

ε and V̂−1
f . Eq. (70) (in Appendix 2)

defines V̂−1
ε and V̂−1

f via
{
αεi ,βεi

}
, i ∈ {1, 2, . . . ,N} and{

αfj ,βfj

}
, j ∈ {1, 2, . . . ,M}. For the mean and the variance,

we obtain the following dependency:{
αfj ,βfj

}
,
{
αεj ,βεj

} � f̂ PM, �̂ (25)

Equation 24b leads to the following dependency scheme:

f̂ PM, �̂ � {
αεj ,βεj

}
(26)

Equation 24c leads to the following dependency scheme:

f̂ PM, �̂ �
{
αfj ,βfj

}
(27)

The dependencies presented in (25), (26), and (27) leads to
an iterative algorithm with a parameter update for every
step. The algorithm is as follows:

• Initialization
• Use Eqs. (24a) and (70) to compute f̂ PM, �̂
• Use Eq. (24b) to compute

{
αεj ,βεj

}
and V̂−1

ε

• Use Eq. (24c) to compute
{
αfj ,βfj

}
and V̂−1

f

The iterative algorithm obtained using the PM estima-
tion, via VBA partial separability, is presented in Fig. 4.
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Fig. 4 IGSM hierarchical model—PM via VBA estimation (partial separability): iterative algorithm

In order to initialize the algorithm, we define the matri-

ces V̂−1
ε

(0)
and V̂−1

f
(0)
, corresponding to the iteration zero

of the algorithm. For the first iteration, using those val-
ues of matrices, the algorithm updates the estimations
corresponding to the PC vector and the corresponding
covariance matrix (a). Except the two matrices used, the
other terms involved in the equations are known: the
recorded signal g and the matrix H . After the PC vec-
tor and the covariance matrix are updated, they are used
as terms in the equations updating the hyperparameters
involved in the model. For updating the hyperparam-
eters corresponding to the noise variances (b) and PC
variances (c), the algorithm is using the estimation of
the PC vector and the covariance matrix corresponding
to the first iteration, obtained in (a). Then, the estima-
tion corresponding to the noise variance (b) are used
as input in (a), corresponding to the second iteration,
via (d) and (e).
For initializing the algorithm, one of the possible

choices is assigning values for the following parameters:{
α

(0)
fj ,β(0)

fj

}
, j ∈ {1, 2, . . . ,M} representing V̂−1

f
(0)

and{
α

(0)
εi ,β(0)

εi

}
, i ∈ {1, 2, . . . ,N} representing V̂−1

ε

(0)
, corre-

sponding to the step zero of the algorithm. This choice for
the initialization procedure is sufficient, in the sense that
the considered parameters from above represent all the
necessary informations for starting the first iteration of
the algorithm and computing all other parameters of the

algorithm corresponding to step zero, i.e., f̂ (0)
PM and �̂

(0).
For the parameters α

(0)
εi , β(0)

εi and α
(0)
fj , β(0)

fj , we consider
the following initialization:

α(0)
εj = αε0 , β(0)

εj = βε0 , α
(0)
fj = αf 0 , β

(0)
fj = βf 0

(28)

A natural choice in this case is Non-Informative Prior
Law (NIPL). The inverse gamma distribution is weak for
parameters α → 0 and β → 0, so one possible choice is
αεj0 = βεj0 = 0.001 and αfj0 = βfj0 = 0.001. In particu-
lar, such an approach is consistent with a non-supervised
algorithm. The considered initialization is presented in
Fig. 5.

4.3 Posterior mean (via VBA) IGSM (full separability)
In Subsection 4.2, the Student’s t model is considered and
the PM estimator is used. The posterior law is approxi-
mated by a separable one, Eq. (18), where the notations

Fig. 5 IGSM hierarchical model—PM via VBA estimation (partial
separability): initialization
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for q2 (vε) and q3
(
vf
)
, introduced in Eq. (19), represent

a full separability relative to vε and vf . But the prior
law p

(
f , vε , vf |g

)
is not approximated by a fully separa-

ble one since for q1(f ), we consider a multivariate law
modeling the vector f . In this subsection, we investigate
the development of the proposed model and the same
PM estimator, but the posterior law is approximated by
a fully separable law relative to all the unknowns, i.e.,
also for f . The interest of such development concerns the
applications where the precision required is high, making
the numerical computations very costly. In this case, the
posterior law from the hierarchical model p

(
f , vε , vf |g

)
is approximated by a fully separable probability density
function:

p
(
f , vε , vf |g

) ≈ q
(
f , vε , vf |g

) =
M∏
j=1

q1j
(
fj
) N∏
i=1

q2i
(
vεi

) M∏
j=1

q3j
(
vfj
)

= q1(f ) q2(vε) q3(vf )
(29)

where we used the notation introduced in (19) and also
the following notations, considered during this paragraph:

q1
(
f
) =

M∏
j=1

q1j
(
fj
)
; d f =

M∏
j=1

q1j
(
fj
)
; q1−j

(
fj
) =

M∏
k=1,k �=j

q1k
(
fk
)

(30)

Like in Subsection 4.2, the law q
(
f , vε , vf |g

)
is obtained

by minimizing the Kullback-Leibler divergence, Eq. (20),
via alternate optimization, obtaining the proportionalities
presented in Eq. (31):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q1j
(
fj
) ∝ exp

{〈
ln p

(
f , vε , vf |g

)〉
q1−j(fj) q2(vε ) q3(vf )

}
j ∈ {1, 2 . . . ,M}

q2i
(
vεi

) ∝ exp
{〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2−i(vεi ) q3(vf )

}
, i ∈ {1, 2 . . . ,N}

q3j
(
vfj
)

∝ exp
{〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2(vε ) q3−j

(
vfj

)} , j ∈ {1, 2 . . . ,M}

(31)

The detailed computations are presented in Appendix 3.
The analytical expressions of the parameters are presented
in Eqs. (32a), (32b), and (32c).

q1
(
fj
) = N

(
fj| f̂jPM, varj

)
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f̂jPM = H jT V̂−1

ε

(
g−H−j f̂ −j

)
‖
(
V̂−1

ε

)1/2
H j‖2+ v̂−1

fj

varj = 1
‖
(
V̂−1

ε

)1/2
H j‖2+ v̂−1

fj

(32a)

q2i
(
vεi

) = IG
(
vεi |αεi ,βεi

)
,

⎧⎪⎨⎪⎩
αεi = αε0 + 1

2

βεi = βε0 + 1
2

(
gi − H i f̂ PM

)
(32b)

q3j
(
vfj
)

= IG
(
vfj |αfj ,βfj

)
,

⎧⎪⎨⎪⎩
αfj = αf 0 + 1

2

βfj = βf 0 + 1
2

(̂
fj
2
PM + varj

)
,

(32c)

where H j represents the column j of the matrix H, H−j

represents the matrixH except the column j, and f −j rep-
resents the vector f except the element fj. The iterative
algorithm is presented in Fig. 6. The initialization is done
in the same conditions as in the partial separability case
(Fig. 5).

5 Simulations
This section presents the simulations corresponding to
synthetic and real data. For synthetic data, we compare
five algorithms: joint MAP with Gaussian prior, poste-
rior mean with Gaussian prior, joint MAP with IGSM
prior, posterior mean (via VBA) with IGSM prior (partial
separability), and posterior mean (via VBA) with IGSM
prior (full separability). For each iterative algorithm, we
present a comparison between the algorithm’s estimation
and the synthetic data, i.e., a comparison between f̂Method
and f , between ĝMethod and g and between ĝMethod and
g0 theoretical signal (g without noise). For every algo-
rithm considered, we present the convergency analysis of
the parameters and hyperparameters involved. Then, we
present a comparison between the estimations of pro-
posed algorithms and the classical FFT method. Finally,
the proposed algorithms are tested 10 times over the same
data, but different noise realization, in order to obtain
the L2 error vector (the normalized difference between
data and estimated data, considered for f , g, and theo-
retical signal g0) and compare the performances of each
algorithm. These comparisons between error vectors cor-
responding to each algorithm are presented at the end of
the subsection. For the synthetic data, we consider the fol-
lowing protocol: we consider a theoretical PC vector f and
the corresponding theoretical signal Hf and we consider
the corresponding signal g = Hf + ε, by adding noise
over the theoretical signal. In this article, we consider for
the synthetic case three different levels of noise: 15, 10,
and 5 dB. In this section, we include only the detailed
simulations for the 5-dB case. The other two cases are
presented in the Additional file 1. The considered signal
represents a 4-day signal, sampled every hour. The matrix
H considered in this set of simulations is a cosine plus sine
matrix.

5.1 Synthetic data 05 dB
For testing, we have considered a 4-day signal, corre-
sponding to a sparse PC vector, having non-zero values
for 11, 15, and 23 h. We consider this particular structure
for the following reason: we want to verify if the proposed
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Fig. 6 IGSM hierarchical model—PM via VBA estimation (full separability): iterative algorithm

method can precisely distinguish the peaks inside the cir-
cadian domain. As we have mentioned, for such signals,
via the FFT, we obtain a high peak corresponding to 24 h
and the corresponding harmonics, but this method offers
no information for certain values in the circadian domain.
We have showed in Section 2 (Fig. 1) that a dominant
period, corresponding to 23 h, is wrongly estimated at 24 h
via FFT method and offers no other informations in the
interval [20–31].

5.1.1 Data 05 dB
The PC vector f , theoretical signal g0, and the signal g are
presented in Fig. 7.
Figure 7a shows the theoretical PC, having the non-zero

periods corresponding to 11, 15, and 23 h. All the other
values in the PC vector are zero. Figure 7b presents the
signal corresponding to the linear model considered in
Eq. (3), neglecting the errors, g0 = Hf . We note that
the conditioning number of the matrix H is cond(H) =
56, 798, 792, 591. All the simulations are done using the
input as the noisy signal g corresponding to the linear
model, Eq. (3), presented in Fig. 7c. We compare the esti-
mated PC vector with the theoretical one (Fig. 7a) and
the corresponding reconstructed signal with g0 and g. The
comparison with the theoretical signal g0 is important in
order to verify if the propose algorithm can distinguish the
peaks corresponding to the biological phenomena from
the ones corresponding to the noise.

5.1.2 JMAP IGSM 05 dB
A comparison between the synthetic data and the JMAP
estimation, corresponding to the IGSM prior hierarchical
model is presented in Fig. 8. We compare the theoreti-
cal PC vector f and the JMAP estimation f̂ JMAP. We also
present the comparison between the estimated ĝJMAP and
g and the comparison between the estimated ĝJMAP and
the theoretical signal (without noise) g0.
The proposed method is searching for a sparse solution

corresponding to the linear model, Eq. (3). The compari-
son between the theoretical signal g0 and ĝJMAP (Fig. 8b)
shows that the proposed algorithm is converging to a solu-
tion that leads to a fairly accurate reconstruction, having
the L2 norm error δg0 = ‖g0−ĝJMAP‖22

‖g0‖22
= 0.0524. For the

PC vector, the reconstruction error is δf = ‖f −̂f JMAP‖22
‖f ‖22

=
0.0726. For the JMAP estimation, the condition imposed
for the searched solution, i.e., the sparsity is not respected
(Fig. 8a). In fact, the alternate optimization algorithm con-
sidered for searching the JMAP solution is converging to
a local minimum and the estimation errors correspond-
ing to the JMAP estimation might be far from the example
presented.
Figure 9a presents the variation of L2 PC vector error

reconstruction for 10 different noise realization. As men-
tioned, the JMAP solution given by the alternate optimiza-
tion algorithm is converging to a local minimum and the
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Fig. 7 f PC vector, theoretical signal g0, and input signal g = g0 + ε of the model (5 dB). a PC vector f . b Theoretical signal g0. c Signal g

estimationmay be very inaccurate.We note that the figure
presents a variation of L2 PC vector error reconstruction
from 0.0524 to 4.2841. Important variations correspond-
ing to the L2 error reconstruction for the theoretical signal
g0 and signal g are presented in Fig. 9b, c.

5.1.3 PM (via VBA, partial separability) IGSM 05 dB
A comparison between the synthetic data and the PM (via
VBA, partial separability) IGSM estimation is presented in
Fig. 10. We compare the theoretical PC vector f with the
PM (via VBA, partial separability) IGSM estimation f̂ PM
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Fig. 8 JMAP IGSM estimation (5 dB). a Theoretical and estimated PC. b Theoretical and estimated signal. c Real and estimated signal

(Fig. 10a) and the corresponding reconstructed signal ĝPM
both with the theoretical signal g0 (Fig. 10b) and the input
signal g (Fig. 10c).
In the case of the posterior mean estimation via

VBA, both the PC estimation and theoretical signal g0

reconstruction are very accurate (Fig. 10a, b). For the
reconstruction of the theoretical signal g0, the L2 error
norm is δg0 = ‖g0−ĝPM‖22

‖g0‖22
= 0.0275. For the PC vector,

the reconstruction error is δf = ‖f −̂f PM‖22
‖f ‖22

= 0.0283. The
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Fig. 9 JMAP IGSM L2 error measured for 10 different noise realizations (5 dB). a L2 error: f vs. f̂ JMAP. b L2 error: g0 vs. ĝJMAP. c L2 error: g vs. ĝJMAP

algorithm is converging to a sparse solution where all the
non-zero peaks are detected. The residual error computed
between g and the reconstructed signal is consistent with
the error considered in the model, 5 dB (Fig. 10c). During
the algorithm, both inverse gamma shape parameters are
constant (Eqs. (24b) and (24c)).
We present the convergence of the scale parameters βε

and βf , (Fig. 11b, d), the convergence of � covariance
matrix diagonal (Fig. 11c), and the convergence of the
algorithm’s solution f . For a better visualization of the PC
convergence, f is plotted as a vector (Fig. 11a). The color
scale corresponding to each figure represents the itera-
tions, showing a very fast convergence both for the param-
eters and hyperparameters involved in the model. All the
estimations of the parameters and hyperparameters are
superposed after the first ten iterations. In the previous
paragraph, we have showed that the JMAP estimation
for the proposed model is presenting high variations in
terms of the error estimation and reconstruction. We
show that for the PM estimation, the error variation is very
small.
Figure 12a presents the variation of L2 PC vector error

reconstruction for 10 different noise realization. The
figure presents a very small variation of L2 PC vector error
reconstruction, between 0.02215 and 0.0621. Very small
variations corresponding to the L2 error reconstruction
for the theoretical signal g0 and signal g are presented in
Fig. 10b, c.

5.1.4 PM (via VBA, full separability) IGSM 05 dB
The estimations for the full separability case are also
accurate (Fig. 13).
Numerically, for the reconstruction of the theoretical

signal g0, the L2 error norm is δg0 = ‖g0−ĝPM‖22
‖g0‖22

=
0.0247. For the PC vector, the reconstruction error is δf =
‖f −̂f PM‖22

‖f ‖22
= 0.0234.

Figure 14a presents the variation of L2 PC vector error
reconstruction for 10 different noise realization. The
figure presents a very small variation of L2 PC vector
error reconstruction, between 0.02 and 0.067. Very small

variations corresponding to the L2 error reconstruction
for the theoretical signal g0 and signal g are presented in
Fig. 14b, c.

5.1.5 Methods comparison 05 dB
A comparison between the estimations corresponding to
the IGSM proposed model is presented in Fig. 15c (JMAP
estimator), d (PM via VBA, partial separability estima-
tor), and e (PM via VBA, full separability estimator). As
mentioned in Section 3, during this article, we adopted a
Bayesian approach. However, other approaches are possi-
ble, via regularization. For this reason, we include a com-
parison with the Gaussian case (i.e., Gaussian prior), via
the two estimators discussed, Fig. 15a (Gaussian model,
JMAP estimator) and Fig. 15b (PM via VBA estimator). A
comparison with the FFT is presented in Fig. 15f.
The L2 estimation error for the PC vector is very high

for the two Gaussian models. Also, the estimations are not
sparse. For the IGSM models, the JMAP estimator is pro-
viding a good estimation, but it is unstable. PM via VBA
estimation, both partial and fully separable, provides very
accurate stable estimations.

5.1.6 Error comparison 05 dB
The L2 error measurement corresponding to the PC esti-
mation, theoretical signal estimation, and signal estima-
tion, for 10 different noise realization, is presented in the
Fig. 16.
The L2 error corresponds to the PM via the VBA IGSM

model corresponding to the PC vector estimation; Fig. 16a
shows the performances of the proposed algorithm com-
pared to the Gaussian model and the JMAP estimation for
IGSMmodel.

5.2 Real data
This subsection is dedicated to the results correspond-
ing to the real data, obtained in the experiments in
chronobiology for cancer treatment. The particular exper-
iment presented is realized on mice, investigating the
tumor clock gene expression and the locomotor activity
(rest-activity patterns) of KI/KI Per2::luc mouse, aged 10
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Fig. 10 PM (via VBA, partial separability) IGSM estimation (5 dB). a Theoretical and estimated PC. b Theoretical and estimated signal. c Real and
estimated signal

weeks, singly housed in RT-BIO and synchronized with
LD 12:12 (i.e., 12 h of light, followed by 12 h of dark-
ness). The signal considered in this section is representing
the locomotor activity of the mouse, which is known to

be rhythmic. After the LD part of the signal, the mouse
is kept in total darkness (DD) for 3 days, corresponding
to the before-treatment part of the signal and then D-
luciferin is loaded in subcutaneous implanted Alzet pump
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Fig. 11 PM (via VBA, partial separability) IGSM hyperparameters and f convergency. a f convergency. b βf convergency. c diag(�̂) convergency.
d βε convergency

[90 mg/ml], recording for 5 days the signal correspond-
ing to the during-treatment part of the signal. The last
2 days represent the after-treatment part of the signal.
During the DD segment, the locomotor activity might be
perturbed, due to the absence of the light-day regime and
due to the treatment effects. Fig. 17a presents the raw data
corresponding to the locomotor activity signal. The four
segments of interest are indicated in the figure. The raw
data signal was sampled every minute. The stability of the
period during all four segments is verified using the clas-
sical FFT method and the proposed algorithm, PM via
VBA, partial separability. For the segments correspond-
ing to the LD and during treatment, we have considered
the moving window strategy, i.e., we have considered

4-day-length signals shifted every day in order to verify
the stability or the variability of the dominant period. For
the four segments studied, we consider the mean-zero sig-
nals, normalized between [−10 :10] and sampled every
hour: the LD segment (Fig. 17b), the DD-before segment
(Fig. 17c), the DD-during segment (Fig. 17d), and the
DD-after segment (Fig. 17e).
For the LD segment, 7 days are available. We compute

the PC corresponding to the signal using the proposed
method and also using the FFT.
Via the FFT method, the dominant period is estimated

at 24 h (Fig. 18c). Evidently, beside the incertitude asso-
ciated with the FFT-estimated PC vector, the existence
of other rhythms cannot be established, being difficult to
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Fig. 12 PM (via VBA, partial separability) IGSM L2 error measured for 10 different noise realizations (5 dB). a L2 error: f vs. f̂ PM. b L2 error: g0 vs. ĝPM.
c L2 error: g vs. ĝPM
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(c) Real and Estimated Signal
Fig. 13 PM (via VBA, full separability) IGSM estimation (5 dB). a Theoretical and estimated PC. b Theoretical and estimated signal. c Real and
estimated signal

interpret all the peaks that appear PC vector. Via the pro-
posedmethod, the estimated PC vector is a sparse one and
the dominant period is estimated at 23 h (Fig. 18b). We
note that via the proposedmethod, there is no uncertainty

concerning the biological phenomena. We consider 4-
day-length signals (windows) from the available signal,
with a shift of 1 day and compute the PC via FFT and the
proposed method.
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Fig. 14 PM (via VBA, full separability) IGSM L2 error measured for 10 different noise realizations (5 dB). a Theoretical and estimated PC. b Theoretical
and estimated signal. c Real and estimated signal
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Fig. 16 L2 errors estimation (5 dB). a PC error estimation. b Theoretical signal error estimation. c Signal error estimation (5 dB)

The four windows considered are presented in Fig. 19a,
d, g, j, and all four windows present a 24-h dominant
period, via the FFT estimation (Fig. 19c, f, i, l). Via the
proposed method, we obtain sparse PC vectors, show-
ing a variability of the dominant period, between 23 and

24 h. A comparison between the proposed method and
the FFTmethod is presented in Fig. 20, showing the stabil-
ity of the dominant period established by the FFT method
(Fig. 20b) and the variability established by the pro-
posed method (Fig. 20a) (the x-axis represents the periods
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Fig. 17 Activity raw data a and the corresponding parts b–e normalized and 1-hour sampled

inside the circadian domain and the y-axis represents the
windows).
For the DD period, we consider first the before-

treatment segment. A 3-day-length signal is available.
The estimate PC vector, corresponding to the proposed
method and FFT method is presented in Fig. 21.
Via the FFT, the highest peak is set at 24 h and the next

highest peak is set at 8 h. Given the short length of the sig-
nal, 3 days, and the limitations of the FFT method, all the
values inside the interval (18, 36) except 24 are not present
in the estimated vector, so the values are uncertain. Via
the proposed method, the dominant period is set at 22 h.
For the during-treatment part of the data, a 5-day-length
signal is available.
Via the proposed method, the estimated PC vector is

a sparse vector, in accordance with the model, and the
dominant period is estimated at 25 h (Fig. 22b). For the

FFT-estimated PC vector, the dominant period is set at
24 h (Fig. 22c). Considering 4-day-length signals, we anal-
yse the stability of the dominant period. Figures 23 and 24
show a stability of the dominant period established by
the FFT method and a variability of the dominant period
established by the proposed method.
For the after treatment part, only a 2-day-length signal

is available. The FFT method is establishing a 24-h domi-
nant period (Fig. 25c) while via the proposed method, the
PC vector contains only one period, at 25 h (Fig. 25b).

6 Conclusions
In this article, we have proposed a new method for a pre-
cise estimation of the PC vector for biomedical signals,
based on the general Bayesian inference and using a hier-
archical model with sparsity enforcing prior. The prior
considered was a Student’s t distribution expressed as the
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Fig. 18 Considered signal (a) and the corresponding PC via VBA (b) and FFT (c) PC vector estimation
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Fig. 19 PC stability: PC estimation via FFT and VBA for 4-day-length signals. a LD activity: window 1. b Proposed method: window 1. c FFT: window
1. d LD activity: window 2. e Proposed method: window 2. f FFT: window 2. g LD activity: window 3. h Proposed method: window 3. i FFT: window
3. j LD activity: window 4. k Proposed method: window 4. l FFT: window 4

marginal of an infinite Gaussian scale mixture. The con-
text of our work were the short signals relative to the
prior knowledge for the dominant period (4-day signals
and 24-h period). In Subsection 5.2, we applied the pro-
posed method also for 2- and 3-day-length signals. The
objective was to develop a method that can improve the

precision given by the FFT method and also to account
for the possible effects of the measurement errors and the
uncertainties. The method was tested first on synthetic
data, in order to be validated. The algorithms correspond-
ing to the Gaussian model (JMAP and PM estimators) fail
to accurately reconstruct the sparse theoretical PC vector.

(a) Proposed Method (b) FFT

Fig. 20 PC stability: proposed method (a) vs. FFT (b)
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Fig. 21 DD before treatment signal (a) and the corresponding PC via VBA (b) and FFT (c)

When using the JMAP estimator for the IGSM hierarchi-
cal model, the estimation is unstable. The error vectors
corresponding to the JMAP-IGSM estimation (Fig. 16a, b)
are showing the drawbacks of the method. Both PM-
IGSM models accurately estimate the theoretical PC vec-
tor, (Fig. 10a, SNR = 05 dB). The comparison between the
reconstructed signal and the theoretical input (Fig. 10b,
SNR= 05 dB) and the comparison between the recon-
structed signal and the noised input (Fig. 10c, SNR=
05 dB) show a good reconstruction and a good resid-
ual error, consistent with the considered added noise for
the noised signal g. These algorithms allow the estima-
tion of the covariance matrix. The convergence of f and
hyperparameters is showing a fast convergence of the PM
algorithms. The proposed method, PM via VBA, IGSM
model was validated for a different set of data, at differ-
ent ratios of noise, and the estimate was accurate in all the
cases. For the real data, a comparison between the outputs
is impossible. We have presented a comparison between
the PC estimate corresponding to the PM-IGSM algo-
rithm and the FFT estimate. The proposed method offers
more precision compared to the FFT and is able to select

the peaks corresponding to the biological phenomena.
Via the proposed method, the conclusion imposed by the
FFT method that the considered experiment presents a
stability of the dominant period at 24 h is invalidated,
showing a variation of the dominant period between
22 and 25 h.

Appendices
Appendix 1
Computations for JMAP estimation
This section presents the computation for the joint MAP
estimation (Subsection 4.1). The estimation is done via
alternate optimization. The criterion isL

(
f , vε , vf

) = − ln
p
(
f , vε , vf |g

)
, and p

(
f , vε , vf |g

)
is defined in Eq. (15).
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Fig. 22 DD during treatment signal (a) and the corresponding PC via VBA (b) and FFT (c)
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Fig. 23 PC stability: PC estimation via FFT and VBA for 4-day-length signals, activity DD, during. a DD activity during: window 1. b Proposed method:
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Fig. 24 PC stability: proposed method (a) vs. FFT (b)
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Fig. 25 DD after treatment signal (a) and the corresponding PC via VBA (b) and FFT (c)



Dumitru et al. EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:3 Page 25 of 32

• With respect to vεi , i ∈ {1, 2, . . . ,N}:
∂L

(̂
f , vε , v̂f

)
∂vεi

= 0 ⇔ ∂

∂vεi

(
1
2
ln det (V ε) + 1

2
‖V− 1

2
ε

(
g − H f

) ‖2 + (αε0 + 1) ln vεi + βε0v−1
εi

)
= 0

⇔ ∂

∂vεi

((
αε0 + 1 + 1

2

)
ln vεi +

[
βε0 + 1

2
(
gi − H i f

)2] v−1
εi

)
= 0

⇔
(

αε0 + 1 + 1
2

)
vεi −

(
βε0 + 1

2
(
gi − H i f

)2) = 0

⇒ v̂εi JMAP = βε0 + 1
2
(
gi − H i f

)2
αε0 + 1 + 1

2

• With respect to vf , j ∈ {1, 2, . . . ,M}:

∂L
(̂
f , v̂ε , vf

)
∂vfj

= 0 ⇔ ∂

∂vfj

(
1
2
ln det

(
Vf

) + 1
2
‖ (Vf

)− 1
2 f ‖2 + (

αf 0 + 1
)
ln vfj + βf 0v−1

fj

)
= 0

⇔ ∂

∂vfj

([
αf 0 + 1 + 1

2

]
ln vfj +

[
βf 0 + fj2

2

]
v−1
fj

)
= 0

⇔
(

αf 0 + 1 + 1
2

)
vfj −

(
βf 0 + fj2

2

)
= 0

⇒ v̂fj JMAP = βf 0 + fj2
2

αf 0 + 1 + 1
2

Appendix 2
Computations for PM estimation via VBA, partial separability
This section presents the computation for the PM estimation, via VBA, partial separability (Subsection 4.2). The
analytical expression of the logarithm is as follows:

ln p
(
f , vε , vf |g

) = − 1
2
ln det (V ε) − 1

2
‖V− 1

2
ε

(
g − H f

) ‖2 − 1
2
ln det

(
Vf

) − 1
2
‖V− 1

2
f f ‖2

−
N∑
i=1

(αε0 + 1) ln vεi −
N∑
i=1

βε0v−1
εi −

M∑
j=1

(
αf 0 + 1

)
ln vfj −

M∑
j=1

βf 0v−1
fj + C

(33)

• Expression of q1(f ):
The proportionality relation concerning q1(f ) established in Eq. (22) refers to f , so in the expression of ln p

(
f , vε , vf |g

)
,

all the terms free of f can be regarded as constants:〈
ln p

(
f , vε , vf |g

)〉
q2(vε) q3(vf )

=
〈
C − 1

2
‖V− 1

2
ε

(
g − H f

) ‖2 − 1
2
‖V− 1

2
f f ‖2

〉
q2(vε) q3(vf )

leading to:〈
ln p

(
f , vε , vf |g

)〉
q2(vε) q3(vf )

= C − 1
2

〈
‖V− 1

2
ε

(
g − H f

) ‖2
〉
q2(vε)

− 1
2

〈
‖V− 1

2
f f ‖2

〉
q3(vf )

(34)

Considering the notation introduced in (10) corresponding to V ε and denoting the ith line of the matrix H with H i,
i ∈ {1, 2, . . . ,N}, we write:

V− 1
2

ε

(
g − H f

) = [
v−1/2
ε1

(
g1 − H1 f

)
. . . v−1/2

εi

(
gi − H i f

)
. . . v−1/2

εN

(
gN − HN f

)]T (35)

so the norm is written as:

‖V− 1
2

ε

(
g − H f

) ‖2 =
N∑
i=1

v−1
εi

(
gi − H i f

)2 (36)
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Introducing the notations:

ṽ−1
εi =

∫
v−1
εi q2i

(
vεi

)
dvεi ; ṽ−1

ε =
[
ṽ−1
ε1 . . . ṽ−1

εi . . . ṽ−1
εN

]T
;

Ṽ−1
ε = diag

(
ṽ−1
ε

)
(37)

we can write:〈
‖V− 1

2
ε

(
g − H f

) ‖2
〉
q2(vε)

=
N∑
i=1

ṽ−1
εi

(
gi − H i f

)2
= ‖

(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2
(38)

Introducing the notation

ṽ−1
fj =

∫
v−1
fj q3j

(
vfj
)
dvfj ; ṽ−1

f =
[
ṽ−1
f1 . . . ṽ−1

fj . . . ṽ−1
fM

]T
;

Ṽ−1
f = diag

(
ṽ−1
fj

)
(39)

we can write:〈
‖V− 1

2
f f ‖2

〉
q3(vf )

= ‖
(
Ṽ−1

ε

) 1
2 f ‖2 (40)

Finally from (34), (38), and (40), for the expression of〈
ln p

(
f , vε , vf |g

)〉
q2(vε) q3(vf )

, we have:

〈
ln p

(
f , vε , vf |g

)〉
q2(vε ) q3(vf )

= C − 1
2
‖
(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2

− 1
2
‖
(
Ṽ−1

f

) 1
2 f ‖2

(41)

and via the first proportionality from (22) and the nota-
tion:

J(f ) = ‖
(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2 + ‖
(
Ṽ−1

f

) 1
2 f ‖2 (42)

the probability q1(f ) can be expressed by the following
proportionality:

q1(f ) ∝
{
−1
2
J(f )

}
(43)

The criterion J(f ) introduced in Eq. (42) is quadratic in f .
Equation 43 establishes a proportionality relation between
q1(f ) and an exponential function having as argument a
quadratic criterion. This leads to the following:

Intermediate conclusion 1. The probability distribution
function q1(f ) is a multivariate normal distribution.
Of course, the mean is given by the solution that mini-

mizes the criterion J(f ), i.e., the solution of the equation
∂J(f )
∂f = 0 (and in particular, this is the same criterion that

arrived in the MAP estimation technique for f , with some
formal differences):

∂J(f )
∂f

= 0 ⇒ f̂ PM =
(
HT Ṽ−1

ε H + Ṽ−1
f

)−1
HT Ṽ−1

ε g

(44)

The corresponding covariance matrix is computed by
identification. On the one hand, we have the following
relation:

N
(
f | f̂ PM, �̂

)
∝ (

det(�̂)
) 1
2 exp

{
−1
2

(
f − f̂ PM

)T
�̂

−1 (f − f̂ PM
)}

(45)

One the other hand, we have the following proportional-
ity, given by Eq. (43):

N
(
f | f̂ PM, �̂

)
∝ q1(f ) ∝ exp

{
−1
2
J(f )

}
(46)

So, the covariance matrix �̂ must respect the following
relation:(

f − f̂ PM
)T

�̂
−1 (f − f̂ PM

)
≡ J(f ), (47)

where the sign ≡ represents an equality between the two
terms until a free f term. If we consider the covariance
matrix

�̂ =
(
HT Ṽ−1

ε H + Ṽ−1
f

)−1
(48)

we have the following equalities:(
f − f̂ PM

)T
�̂

−1 (f − f̂ PM
)

=
(
f − �̂HT Ṽ−1

ε g
)T

�̂
−1(

f − �̂HT Ṽ−1
ε g

)
=

(
f T − gT Ṽ−1

ε H�̂
)

(
�̂

−1f − HT Ṽ−1
ε g

)
= f T

(
HT Ṽ−1

ε H + Ṽ−1
f

)
f − 2 f THT Ṽ−1

ε g + C,

(49)

where we have used the equality f THT Ṽ−1
ε g =

gT Ṽ−1
ε H f , as a consequence of the fact that one

term is the transpose of the other and the term is
a scalar. We also used the fact that �̂ = �̂

T and
gT Ṽ−1

ε H
(
HT Ṽ−1

ε H + Ṽ−1
f

)−1
HT Ṽ−1

ε g was viewed as a
constant C. We also have the following equalities:

J
(
f
) = ‖

(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2 + ‖
(
Ṽ−1

f

) 1
2 f ‖2

=
(
gT − f THT

)
Ṽ−1

ε

(
g − H f

) + f T Ṽ−1
f f

= f T
(
HT Ṽ−1

ε H + Ṽ−1
f

)
f − 2 f THT Ṽ−1

ε g + C.

(50)
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Equations 49 and (50) show that equality imposed in (47)
is verified with the covariance matrix defined as in (48).
So, for the normal distribution N

(
f | f̂ , �̂

)
proportional

to q1(f ), we have the following parameters:

q1(f ) = N
(
f | f̂ PM, �̂

)
,

⎧⎪⎨⎪⎩ f̂ PM =
(
HT Ṽ−1

ε H + Ṽ−1
f

)−1
HT Ṽ−1

ε g

�̂ =
(
HT Ṽ−1

ε H + Ṽ−1
f

)−1

(51)

• Expression of q2i
(
vεi

)
:

The proportionality relation concerning q2i
(
vεi

)
estab-

lished in Eq. (22) refers to vεi , so in the expression of
ln p

(
f , vε , vf |g

)
, all the terms free of vεi can be regarded as

constants:〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2−i(vεi) q3(vf )

= C − 1
2

〈ln det (V ε)〉q2−i(vεi)

− (αε0 + 1) ln vεi

− 1
2

〈
‖V− 1

2
ε

(
g − H f

) ‖2
〉
q1(f ) q2−i(vεi)

− βε0v−1
εi

(52)

For the first integral, it is trivial to verify:

〈ln det (V ε)〉q2−i(vεi)
= C + ln vεi (53)

For the second integral, we have the following
development:〈
‖V− 1

2
ε

(
g − H f

) ‖2
〉
q1(f ) q2−i(vεi )

=
〈
‖Ṽ−1

ε−i

1
2 (g − H f

) ‖2
〉
q1(f )

(54)

where we have introduced the following notations:

ṽ−1
ε−i =

[
ṽ−1
ε1 . . . ṽ−1

εi−1 v−1
εi ṽ−1

εi+1 . . . ṽ−1
εN

]T
;

˜V−1
ε−i = diag

(
ṽ−1
ε−i

) (55)

Again, using the fact that q1(f ) is a multivariate normal
distribution, we have:〈

‖˜V−1
ε−i

1
2 (

g − H f
) ‖2

〉
q1(f )

= ‖˜V−1
ε−i

1
2 (

g − H f̂ PM
)

‖2

+ Tr
(
HT˜V−1

ε−iH�̂

)
(56)

and considering as constants all terms free of vεi , we have:

‖˜V−1
ε−i

1
2 (

g − H f̂ PM
)

‖2 = C + v−1
εi

(
gi − H i f̂ PM

)2
;

Tr
(
HT˜V−1

ε−iH�̂

)
= C + v−1

εi H i�̂HT
i (57)

whereH i is the line i of the matrixH, so we can conclude:〈
‖V− 1

2
ε

(
g − H f

) ‖2
〉
q1(f ) q2−i(vεi)

= C +
[
H i�̂HT

i +
(
gi − H i f̂ PM

)2]
v−1
εi

(58)

From (52) via (53) and (58), we get:〈
ln p

(
f , z, vε , vf |g

)〉
q1(f ) q2−i(vεi) q3(vf )

= C −
(

αε0 + 1 + 1
2

)
ln vεi(

βε0 + 1
2

[
H i�̂HT

i +
(
gi − H i f̂ PM

)2])
v−1
εi

from which we can establish the proportionality corre-
sponding to q2i(vεi):

q2i
(
vεi

) ∝ v−(
αε0+1+ 1

2
)

εi exp
{
−
(

βε0 + 1
2

[
H i�̂HT

i

+
(
gi − H i f̂ PM

)2])
v−1
εi

}
(59)

Equation (59) leads to the following.

Intermediate conclusion 2. The probability distribution
function q3i

(
vεi

)
is an inverse gamma distribution, with

the parameters αεi and βεi :
We can write:

q2i
(
vεi

) = IG
(
vεi |αεi ,βεi

)
,

⎧⎪⎪⎨⎪⎪⎩
αεi = αε0 + 1

2

βεi = βε0 + 1
2

[
H i�̂HT

i +
(
gi − H i f̂ PM

)2]
(60)

• Expression of q3j(vfj) :

The proportionality relation concerning q3j
(
vfj
)
estab-

lished in Eq. (22) refers to vfj , so in the expression of
ln p

(
f , z, vε , vf |g

)
, all the terms free of vfj can be regarded

as constants:〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2(vε) q3−j

(
vfj

)
= −1

2
〈
ln det

(
Vf

)〉
q3−j

(
vfj

) − (
αf 0 + 1

)
ln vfj

− 1
2

〈
‖ (Vf

)− 1
2 f ‖2

〉
q1(f ) q3−j(vfj )

− βf 0v−1
fj

(61)

Considering all vfj free terms as constants, it is easy to
verify:〈

ln det
(
Vf

)〉
q3−j

(
vfj

) = C + ln vfj (62)
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For the second integral:〈
‖ (Vf

)− 1
2 f ‖2

〉
q1(f ) q3−j

(
vfj

) =
〈
‖
(
˜V−1
f−i

) 1
2
f ‖2

〉
q1(f )

(63)

where we have introduced the notations:

ṽ−1
f−i =

[
ṽ−1
f1 . . . ṽ−1

fi−1
v−1
fi ṽ−1

fi+1
. . . ṽ−1

fN

]T
;

˜V−1
f−i = diag

(
ṽ−1
f−i

) (64)

Considering the fact that q1(f ) was established as a multi-
variate normal distribution, we have:〈

‖
(
Ṽ−1

f−i

) 1
2 f ‖2

〉
q1(f )

= ‖
(
Ṽ−1

f−i

) 1
2 f̂ PM‖2 + Tr

(
Ṽ−1

f−i�̂
)

= C + v−1
fi

(̂
fj
2
PM + �̂jj

)
(65)

From (61) via (62) and (65), we get:

〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2(vε ) q3−j

(
vfj

) = −
(

αf 0 + 1
2

+ 1
)
ln vf

−
(
βf 0 + 1

2

(̂
fj
2
PM + �̂jj

))
v−1
f

(66)

from which we can establish the proportionality corre-
sponding to q4

(
vfj
)
:

q3j
(
vfj
)

∝ v−(
αf 0+ 1

2+1
)

fj exp
{
−
[
βf 0 + 1

2

(̂
fj
2
PM + �̂jj

)]
v−1
f

}
(67)

Equation (67) leads to the following.
Intermediate conclusion 3. The probability distribution
function q4(vf ) is an inverse gamma distribution, with the
parameters αfj and βfj :

q3j
(
vfj
)

= IG
(
vfj |αfj ,βfj

)
,

⎧⎪⎨⎪⎩
αfj = αf 0 + 1

2

βfj = βf 0 + 1
2

(̂
fj
2
PM + �̂jj

)
(68)

Expressions (51), (60), and (68) resume the distribu-
tions families and the corresponding parameters for q1(f ),
q2i

(
vεi

)
, i ∈ {1, 2, . . . ,N} and q3j

(
vfj
)
, j ∈ {1, 2, . . . ,M}.

However, the parameters corresponding to the multivari-
ate normal distribution are expressed via Ṽ−1

ε and Ṽ−1
f

(and by extension, all elements forming the three matrices
ṽ−1
εi , i ∈ {1, 2, . . . ,N} and ṽ−1

fj , j ∈ {1, 2, . . . ,M}).

• Computation of Ṽ−1
ε , Ṽ−1

f :
For an inverse gamma distribution with parameters α and
β , IG (x|α,β), the following relation holds:〈

x−1〉
IG(x|α,β)

= α

β

The prove of the above relation is done by direct computa-
tion, using the analytical expression of the inverse gamma
distribution:〈
x−1〉

IG(x|α,β)
=

∫
x−1 βα

	(α)
x−α−1 exp

{
−β

x

}
dx

= βα

	(α)

	(α + 1)
βα+1

∫
βα+1

	(α + 1)
x−(α+1)−1

exp
{
−β

x

}
dx =

= α

β

∫
IG(x|α + 1,β)︸ ︷︷ ︸

1

dx = α

β

Since q2i
(
vεi

)
, i ∈ {1, 2, . . . ,N} and q3j

(
vfj
)
, j ∈

{1, 2, . . . ,M} are inverse gamma distributions, with
parameters αεi and βεi , i ∈ {1, 2, . . . ,N}, respectively, αfj
and βfj , j ∈ {1, 2, . . . ,M}, we can express the expectancies
ṽ−1
εi and ṽ−1

fj via the parameters of the two inverse gamma
distributions using the result above:

ṽ−1
εi = αεi

βεi
; ṽ−1

f = αf

βf
(69)

Using the notation introduced in (37) and (39), we obtain:

Ṽ−1
ε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αε1
βε1

. . . 0 . . . 0
...

. . .
...

. . .
...

0 . . .
αεi
βεi

. . . 0
...

. . .
...

. . .
...

0 . . . 0 . . .
αεN
βεN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V̂−1

ε ;

Ṽ−1
f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αf1
βf1

. . . 0 . . . 0
...

. . .
...

. . .
...

0 . . .
αfj
βfj

. . . 0
...

. . .
...

. . .
...

0 . . . 0 . . .
αfM
βfM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V̂−1

f

(70)

Remark. In Eq. (70), we have introduced other notations
for Ṽ−1

f and Ṽ−1
ε . All three values were expressed during

the model via unknown expectancies, but at this point,
we arrive at expressions that do not contain any more
integrals to be computed. Therefore, the new notations
represent the final expressions for the density functions
q that depend only on numerical hyperparameters, set in
the prior modeling.
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Appendix 3
Computations for PM estimation via VBA, full separability
This section presents the computation for the PM esti-
mation, via VBA, full separability (Subsection 4.3). The
expression of the logarithm ln p(f , vε , vf |g) was estab-
lished in the preview section (Eq. (33)).

• Expression of q1j(fj):
Using Eq. (41):〈

ln p
(
f , vε , vf |g

)〉
q1−j(fj) q2(vε) q3(vf )

= C − 1
2

〈
‖
(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2
〉
q1−j(fj)

− 1
2

〈
‖
(
Ṽ−1

f

) 1
2 f ‖2

〉
q1−j(fj)

(71)

For the first norm, considering all the fj free terms as
constants, we have:

‖
(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2 = C + ‖
(
Ṽ−1

ε

)1/2
H j‖2f 2j

− 2H jT Ṽ−1
ε

(
g − H−jf −j) fj

(72)

where H j represents the column j of the matrix H , H−j

represents the matrixH except the column j, and f −j rep-
resents the vector f except the element fj. Introducing the
notation

f̃k =
∫

fkq1k(fk) dfk ; f̃ −j =
[
f̃1 . . . f̃j−1 f̃j+1 . . . z̃M

]T
(73)

the expectancy of the first norm becomes:〈
‖
(
Ṽ−1

ε

)1/2 (
g − H f

) ‖2
〉
q1−j(fj)

= C + ‖
(
Ṽ−1

ε

)1/2
H j‖2f 2j

− 2H jT Ṽ−1
ε

(
g − H−j f̃ −j

)
fj

(74)

The expectancy for the second norm, considering all the
free fj terms as constants:〈

‖
(
Ṽ−1

f

) 1
2 f ‖2

〉
q1−j(fj)

= C + ṽ−1
fj f 2j (75)

From Eqs. (31) and (71) and Eqs. (74) and (75), the pro-
portionality for q1j(fj) becomes:

q1j(fj) ∝ exp
{(

‖
(
Ṽ−1

ε

)1/2
H j‖2 + ṽ−1

fj

)
f 2j

−2H jT Ṽ−1
ε

(
g − H−j f̃ −j

)
fj
} (76)

Defining the criterion J
(
fj
) =

(
‖
(
Ṽ−1

ε

)1/2
H j‖2 + ṽ−1

fj

)
f 2j −2H jT Ṽ−1

ε

(
g − H−j f̃ −j

)
fj, we arrive to the following.

Intermediate conclusion 4. The probability distribution
function q1j(fj) is a normal distribution.
In order to compute the mean of the normal distribu-

tion, it is sufficient to compute the solution thatminimizes
the criterion J(fj):

∂J(fj)
∂fj

= 0 ⇔ f̂jPM =
H jT Ṽ−1

ε

(
g − H−j f̃ −j

)
‖
(
Ṽ−1

ε

)1/2
H j‖2 + ṽ−1

f

(77)

For the variance, we apply the same identification strategy
as in the previous case, obtaining:

q1(fj) = N
(
fj |̂fjPM, varj

)
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f̂jPM = H jT Ṽ−1

ε

(
g−H−j f̃ −j

)
‖
(
Ṽ−1

ε

)1/2
H j‖2+ṽ−1

fj

varj = 1
‖
(
Ṽ−1

ε

)1/2
H j‖2+ṽ−1

fj

(78)

• Expression of q2i(vεi)

The proportionality relation corresponding to q2i
(
vεi

)
established in Eq. (31) refers to vεi , so in the expression of
ln p

(
f , vε , vf |g

)
, all the terms free of vεi can be regarded as

constants:

ln p
(
f , vε , vf |g

) = C −
(

αε0 + 1 + 1
2

)
ln vεi

−
(

βε0 + 1
2
(
gi − H i f

))
v−1
εi

(79)

With the notation:〈
f
〉
q1(f ) =

[
f̂1PM . . . f̂jPM . . . f̂MPM

]T Not= f̂ PM (80)

the expectancy of the logarithm becomes:〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2−i(vεi) q3(vf )

= C −
(

αε0 + 1 + 1
2

)
ln vεi

−
(

βε0 + 1
2

[
H i�̂HT

i +
(
gi − H i f̂ PM

)2])
v−1
εi

(81)

and the proportionality relation for q2i
(
vεi

)
becomes:

q2i
(
vεi

) ∝ v−(
αε0+1+ 1

2
)

εi exp
{
−
(

βε0 + 1
2

[
H i�̂HT

i

+
(
gi − H i f̂ PM

)2])
v−1
εi

}
(82)

Equation 82 leads to the following.
Intermediate conclusion 5. The probability distribution
function q2i

(
vεi

)
is an inverse gamma distribution, with

the parameters αεi and βεi .
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q2i
(
vεi

) = IG
(
vεi |αεi ,βεi

)
,

⎧⎪⎪⎨⎪⎪⎩
αεi = αε0 + 1

2

βεi = βε0 + 1
2

[
H i�̂HT

i +
(
gi − H i f̂ PM

)2] (83)

• Expression of q3j(vfj)
The proportionality relation corresponding to q3j

(
vfj
)

established in Eq. (31) refers to vfj , so in the expression of
ln p

(
f , vε , vf |g

)
, all the terms free of vfj can be regarded as

constants:

ln p
(
f , vε , vf |g

) = C − 1
2
ln vfj −

1
2

〈
f 2j
〉
q1j(fj)

v−1
fj

−
(
αfj0 + 1

)
ln vfj − βfj0v

−1
fj

(84)

The integral of the logarithm:

〈
ln p

(
f , vε , vf |g

)〉
q1(f ) q2(vε ) q3−j

(
vfj

) = C −
(

αf 0 + 1
2

+ 1
)
ln vfj

−
[
βf 0 + 1

2

(̂
fj
2
PM + varj

)]
v−1
fj

(85)

Equation 85 leads to the following.
Intermediate conclusion 6. The probability distribution
function q3j

(
vfj
)
is an inverse gamma distribution, with

the parameters αfj and βfj .

q3j
(
vfj
)

= IG
(
vfj |αfj ,βfj

)
,

⎧⎨⎩ αfj = αf 0 + 1
2

βfj = βf 0 + 1
2

(̂
fj
2
PM + varj

)
(86)

Appendix 4
List of symbols and abbreviations
List of symbols
During the article, all the terms written in bold repre-

sent vectors or matrices.

1. H—the matrix used in the linear model considered
during all the article. H ∈ MN×M . The matrix
corresponds to the IFT and can be derived from
Eq. (2).

2. H i represents the i line of the matrix H . H i ∈ M1×M
3. g0 represents the “theoretical” signal, i.e., the signal

corresponding to the considered model (2) that does
not account for the noise, g0 = Hf . During the
synthetic simulation section, the comparison
between the estimated signal ĝ0 and the theoretical
signal g0 is particular important, measuring if the
propose algorithm selects the solution corresponding
to the biological phenomena.

4. f represents the PC vector, f ∈ M1×M . This is the
fundamental unknown of our model. All the
estimates of the PC vector are denoted f̂ and in
specific cases the particular estimation used in the
model is indicated: f̂ JMAP or f̂ PM. During the article,
the subscript used for indicating an element of the
PC vector is i : fi and the element is not bold, being a
scalar.

5. ε represents the errors:
ε = [ε1, ε2, . . . , εN ]T ∈ MN×1, is an N-dimensional
vector

List of abbreviations

1. CT—circadian time
2. CTS—circadian timing system
3. FFT—fast Fourier transform
4. IGSM—infinite Gaussian scale mixture
5. IP—inverse problem
6. JMAP—joint maximum a posteriori
7. KL—Kullback-Leibler
8. PC vector—periodic component vector
9. PM—posterior mean
10. RT-BIO—RealTime Biolumicorder
11. TSVD—truncated single value decomposition
12. TRM—Tikhonov regularization methods
13. VBA—variational Bayesian approximation
14. ZT—Zeitgeber time
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