
HAL Id: hal-01475251
https://hal.science/hal-01475251

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soft timing closure for soft programmable logic cores:
The ARGen approach

Théotime Bollengier, Loïc Lagadec, Mohamad Najem, Jean-Christophe Le
Lann, Pierre Guilloux

To cite this version:
Théotime Bollengier, Loïc Lagadec, Mohamad Najem, Jean-Christophe Le Lann, Pierre Guilloux.
Soft timing closure for soft programmable logic cores: The ARGen approach . ARC 2017 - 13th
International Symposium on Applied Reconfigurable Computing, Delft University of Technology Apr
2017, Delft, Netherlands. �hal-01475251�

https://hal.science/hal-01475251
https://hal.archives-ouvertes.fr

Soft timing closure for soft programmable logic
cores: The ARGen approach

Théotime Bollengier1,2, Löıc Lagadec2, Mohamad Najem2, Jean-Christophe Le
Lann2, and Pierre Guilloux3

1 B-Com, France
2 Lab-STICC UMR 6285, France

3 IRISA UMR 6074, France
loic.lagadec@ensta-bretagne.fr

Abstract. Reconfigurable cores support post-release updates which short-
ens time-to-market while extending circuits’ lifespan. Reconfigurable cores
can be provided as hard cores (ASIC) or soft cores (RTL). Soft recon-
figurable cores outperform hard reconfigurable cores by preserving the
ASIC synthesis flow, at the cost of lowering scalability but also exacer-
bating timing closure issues. This article tackles these two issues and in-
troduces the ARGen generator that produces scalable soft reconfigurable
cores. The architectural template relies on injecting flip-flops into the in-
terconnect, to favor easy and accurate timing estimation. The cores are
compliant with the academic standard for place and route environment,
making ARGen a one stop shopping point for whoever needs exploitable
soft reconfigurable cores.

1 Introduction

As integrated circuits become increasingly complex and expensive to develop,
the ability to apply post-fabrication changes appears all the more attractive.
A direct gain lies in eliminating the cost and time associated with re-spinning
silicon when fixing a bug or specializing the device to a specific application.
Embedding reconfigurable logic in designs offers a solution to the semiconductor
designers who need to update silicon post production.

In this context, several embedded FPGAs (eFPGA) have been developed as
reported in [1] [2] [3]. EFPGAs are flexible logic fabrics, that, once programmed,
implement digital circuits. But, unlike FPGAs, eFPGAs are intended to serve
as pieces of a whole system-on-chip design. This approach allows:

– To support easy design specialization, while promoting reuse among several
applications,

– To fix design issues that would have been belatedly detected (only after
fabrication, if not post delivery),

– To add on-demand fleeting functionalities, such as assertion-based monitoring[4].
– To reflect changes in design specifications. This shortens time-to-market by

allowing starting the design ahead of full specification availability (eg. to

support changes in an evolving standard). The case of the H.264/AVC stan-
dard - that includes 22 revisions, corrigenda, and amendments spanning from
May 2003 to February 2014 - helps assessing how serious this issue is.

This obviously comes at the cost of area and performance overheads, com-
pared to a straight silicon implementation. However there are even more serious
limitations[5].

First, every eFPGA embeds a fixed amount of reconfigurable resources. Any
mismatch between theses resources and the applications needs (in terms of
amount and nature of resources) is a serious issue. It may either prevent from
using this support (if the application requirements exceed the eFPGA resources)
or lead to a poor resources usage (internal fragmentation may nullify the advan-
tage of using an optimized hard eFPGA core). Then, tailoring eFPGAs in order
to set up a product line may seem attractive. Unfortunately, customizing eF-
PGA size and resources towards an application domain is likely to cause lengthy
development cycles, as each new instance of hard eFPGA core must be silicon
proven. However, Kuon et al. [6] demonstrated automation of circuit design,
layout and verification, to cut off the required effort and time to design a new
embedded hard FPGA core.

Second, eFPGAs are hard IP cores, which integration is complex and time
consuming, and raises technology compliance issues, as all the cores must be
provided with the same technology. As an example, the System-on-Chip of [7]
was a scalable system infrastructure hosting heterogeneous reconfigurable ac-
celerators, whose implementation required to migrate one of the accelerators to
90-nm, which resulted in a 6 months extra work.

This incites to move up a level of abstraction, based on soft macros that
are process-independent. Some works have been reported in designing Soft Pro-
grammable Logic Cores (SPLCs) as summarized in section 2. This paper com-
plements these previous works by addressing some known issues in terms of
scalability and timing closure.

The main contribution is ARGen, a generator of soft reconfigurable cores.
ARGen supports core customization and trades a minor overhead against ac-
curate timing closure. Also, SPLCs come along with their programming envi-
ronment. As a result, the SPLCs’ strengths (flexibility, just-fit dimensioning,
performances predictability) outweigh disadvantages in term of performances.

The remainder of this paper is organized as follows: section 2 summarizes
related work on soft reconfigurable logic cores, section 3 describes the structure
of the proposed SPLC, aiming to simplify both SPLC synthesis and system inte-
gration, section 4 presents the exploitation tool flow and circuit timing analysis,
before section 5.1 reports some results.

2 Background

Soft programmable logic cores (SPLC) have been introduced in [8] [5] to empha-
size flexibility and shorten development time, hence promote agility. Unlike hard

core eFPGAs, synthesizable SPLCs are delivered as RTL descriptions, and syn-
thesizing such cores is done using usual tools (standard ASIC or FPGA flows).

Integrating SPLCs in a design is easy : a flat synthesis of designs with one
or many SPLCs requires no floorplanning.

Integrating SPLCs is safe : a whole design that contains SPLCs, can be ver-
ified, simulated and emulated without additional complexity.

Integrating SPLCs is a just-fit process : SPLCs can be easily customized
at the sole cost of updating the RTL description, with no need to silicon-
proof each modified instance again, so that domain space exploration may
be affordable.

Integrating SPLCs is reversible : the decision to use either a SPLC or fixed
logic to implement any subpart of a design remains reversible until just before
the chip goes to foundry. This decision stays on the designer who best knows
which subsystem may/will need later modifications, and how much flexibility
makes sense.

Integrating SPLCs supports optimization : authors in [9] demonstrated
that soft core area overhead can be reduced by 58% and the delay overhead
by 40% by creating custom standard cells (referred as tactical cells) that are
more suitable for reconfigurable architecture implementations, and by using
a tile-based approach to structure the layout of the hard macro.

As summarized above, SPLCs exhibit valuable features thanks to their RTL
nature, nevertheless two difficulties emerge, that prevent from a wide broad
adoption. First, the timing paths to explore are many. Second, the awareness of
physical timings is poor.

Unlike regular designs, SPLCs present unusually large number of potential
timing paths and combinatorial loops, due to their reconfigurable nature. This
stresses the synthesis tool and may limit the size and nature of SPLCs [9]. To
address this problem, authors in [5] propose to simplify the SPLC architecture
by removing programmable flip-flops and by allowing the signal flow to go only
in one direction, thus preventing combinatorial loops. As a consequence, the
SPLCs exclusively target combinatorial applications; the proposed architecture
is minimal which restricts the complexity and nature of applicative circuits to
be implemented.

Moreover, performing timing analysis of a circuit mapped on a SPLC may
be subject to a physical timing information miss. Exploiting the SPLCs goes
through synthesizing applications on the reconfigurable cores. This relies on a
synthesis tool -further referred as virtual synthesis tool- that is independent from
the physical synthesis tool (the standard ASIC tool flow) used to implement the
SPLC itself. As an example, in [8] [5], the virtual synthesis tool is VPR [10]. The
virtual synthesis tool executes timing-driven placement and routing, as well as
timing analysis. These steps require the tool to be aware of every physical delay
of SPLC resources. In [8], these physical delays are approximated using the con-
ceptual representation of the SPLC. This results in an inaccurate circuit timing
analysis, as adjacent resources in the conceptual SPLC representation may actu-
ally be positioned far apart in the silicon, thus tampering the delay estimation.

In [5] and [9], timing exceptions are set to ignore the unused SPLC paths in the
mapped circuit netlists when performing timing analysis according to the phys-
ical ASIC tools. This ensures the delay measures of the mapped circuits’ critical
paths are more reliable. However this comes at the cost of back and forth navi-
gation between virtual and physical synthesis tools. Another option would be to
extract an accurate information from the physical synthesis to feed the virtual
tools. Yet, extracting this information means collecting the elementary delays of
all arbitrary sub-segments of all combinatorial paths. This is of high complexity
and must be processed for each new SPLC physical synthesis. Besides, this can
only be considered a preliminary step, before the virtual synthesis tool actually
exploits this information. As a consequence, even if back annotating the SPLC
conceptual representation (used by the virtual tool flow) with actual physical
delays is considered in [5] [11], it has never been implemented in practice.

Our contribution goes one step beyond, and lifts these limitations. In this
work, we propose a template for modifying SPLC architectures. This allows as
easy SPLC integration as reported in [5] - but with no restriction on the SPLC
architectures - while providing easy and accurate timing analysis of mapped
circuits, solely using the virtual synthesis tool.

3 SPLC design

Using an SPLC assumes three pre-requisite steps: generating the SPLC architec-
ture, synthesizing this architecture to a physical target, and supporting system
integration. Once generated, the SPLC module becomes a library element that
can be instantiated within the application’s RTL description, then the whole
design is synthesized using an ASIC flow. The portable RTL description of the
SPLC supports flat synthesis of the whole design without the need for specific
steps such as floorplaning.

Then synthesizing and deploying applications onto the SPLC involve a ded-
icated software environment. This tool is independent from the physical tech-
nology, which in turn may require specific software development, as detailed in
section 4.

Fig. 1 shows how these two flows, which together contribute to making SPLC
a credible solution, relate and interact. The “ArGen” tool covers two aspects as
detailled in the next section: architecture generation and bitstream production.

3.1 Overview of the SPLC architecture

A SPLC architecture is composed of two layers:

– The computation layer, which is the set of reconfigurable elements that are
available to applications, such as routing wires and function units.

– The configuration layer, which configures the computation layer.

The “ARGen” tool reads a specification of the computation layer, to automat-
ically generate the SPLC’s RTL description. This specification expresses the

Fig. 1. Complete synthesis flow for using an SPLC.

computation layer resources and their interconnections; the configuration layer
is then automatically derived and eventually added to the model. Finally, a
model transformation generates VHDL textual description of the architecture
, allowing the SPLC module to be instantiated from a user design. The SPLC
entity contains clock inputs, a vector of inputs and a vector of outputs, as well
as a configuration interface. The generated RTL code is portable, simulation
friendly, and synthesizable.

3.2 Detailed Computation Layer

The target SPLC computation layer that serves as a case study for this paper
allows the synthesis of a large spectrum of applications. It is a fine-grained
generic LUT-based architecture compatible with the standard architectures used
in the academic Versatile Place and Route (VPR) tool [10]. This architecture is
a simple island-style architecture as shown in Fig. 2, composed of Configurable
Logic Blocks (CLBs) surrounded by routing channels.

LUT
REG

BLE N

LUT
REG

BLE 1

..
.

..
.

..
.

C
R

O
S
S
B

A
R

..
.

..
.

N
 o

u
tp

u
ts

I
in

p
u
ts

N

fr
e
e
d
b
a
c
k
s

CLB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

CLB

SB

SB SB SB

SB

SB

SB

SB

vIO vIO vIO

vIO vIO vIO

vIO

vIO

vIO

vIO

vIO

vIO

Fig. 2. An illustration of the proposed computation layer with 3× 3 CLBs.

The SPLC has Width × Height CLBs, each of which has I inputs and N
outputs. A CLB is composed of N BLEs (Basic Logic Element). A BLE has
one LUT with K inputs and one register that can be bypassed (the application

register). Inputs of BLEs are derived from a global crossbar with I + N in-
puts (the I CLB inputs plus N feedback signals from the BLEs outputs). Each
routing channel contains W unidirectional wires, in both directions, that can be
connected to other wires from adjacent routing channels, depending on how the
Switch Blocks (SB) are configured. Connections are implemented as multiplexers
that are controlled through their select signal(s) coming from the configuration
layer (as illustrated in Fig. 3).

The ARGen approach isolates the SPLC conceptual representation from its
physical implementation on silicon. The proposed solution is to inject extra regis-
ters within the SPLC to latch the output of every configurable multiplexer that
connects routing wire tracks. These registers are referred to as Virtual Time
Propagation Registers (VTPRs). VTPRs break down physical logic chains into
short segments, and prevent any combinatorial loop from appearing on the phys-
ical SPLC implementation, whichever its configuration. VTPRs are transparent
for circuits mapped on the SPLC, and do not appear in the SPLC conceptual
model.

VTPRs exhibit two decisive advantages. First, using VTPRs in a SPLC archi-
tecture alleviates the task of the physical synthesizer, as VTPRs reduce timing
paths in the SPLC architecture and prevent combinatorial loops. This promotes
architectures’ scalability. There is no more need to limit size and complexity of
synthesized architectures, nor to restrict the signal flow in one direction. This,
however, rises the need for an extra and faster clock (ClkV TPR), to allow signal
propagation through VTPRs within one applicative clock cycle. Second, VTPRs
favors timing closure, as reported in section 4.2. VTPRs brings no improvement
in term of performances of the synthesized SPLC. In that, VTPRs differ from
C-slowing [12] which can be combined with retiming for sake of throughput
increase.

3.3 Detailed Configuration Layer

The SPLC configuration is a contiguous sequence of bits that corresponds to the
adequate configuration of SPLC resources (LUTs content, Crossbar, CLBs, and
SBs) to implement a given application. The configuration layer is implemented
as one or multiple shift registers. Once the transfer of the SPLC configuration to
this register completes, every bit in the configuration layer is set to the desired
value, resulting in the implementation of the synthesized circuit.

3.4 System integration

When a design requires reconfigurability, the designer first isolates the part of
the design which is subject to change apart from the static design, thus identify-
ing the signals at the interface. The RTL of the static part instantiates the SPLC
module, and connects the interface signals to the SPLC virtual inputs/outputs.
A configuration controller drives the SPLC configuration interface, made of an
input config in vector and an input config valid bit. The number of config-
uration shift registers, forcing the size of the config in vector, is determined

con�g in BLE in

BLE

out

con�g out

BLE

app

reg

con�guration

registers

SB

...
con�g in

con�g out

Fig. 3. Implementation of a Switch Box (left) and a BLE (right), whith their associated
configuration registers from the configuration layer.

RTL

synthesis
netlist

(blif)

application

(HDL)
logic optimization,

mapping

mapped

netlist (blif)

packing,

placement,

routing

virtual

bitstream

(bin)

traces

(txt, xml)

configuration

extraction

timing

analysis
report (txt)

Fig. 4. Synthesis flow: from application RTL to an SPLC configuration

to fit designer’s needs (the wider the interface, the faster the configuration, the
more area it consumes). The configuration controller can read the SPLC con-
figuration bitstream from an internal memory, be mapped on a bus in case of a
SoC, or even be accessible from outside the chip through the pinout.

4 SPLC exploitation

When deploying applications onto SPLCs, no commercial tool fits the archi-
tecture, but some open-source academic works have been reported that offer a
customizable solution for application synthesis. The ARGen approach relies on
existing third parties tools, while offering a fast and accurate timing closure as
a strong contribution. To this end, in addition to RTL code, the ARGen tool
also generates VPR specific architecture description files. Additionally, ARGen
generates bitstream and executes timing analysis.

4.1 Application synthesis targeting the SPLC architecture

Hardware applications are designed as a RTL description within a Hardware
Description Language (HDL). First, this description is used to produce a low-
level netlist. Any tool can be supported as long as it outputs BLIF format[13]
(e.g. the Odin II open-source CAD tool [14] that takes verilog as input). Then

techno-mapping and optimizations take place. In this flow, ABC [15] is used to
perform logic synthesis and optimizations, then map the netlist to the SPLC
LUTs and produce a new netlist. Then, this netlist can be packed, placed and
routed using VPR [10]. Finally, a timing report is generated along with the SPLC
configuration bitstream by parsing VPR’s outputs, and computing a portion of
configuration per each SPLC resource. The synthesis flow of applications for
the overlay is summarized in Fig. 4. This flow targets the SPLC architecture at
various stages:

– LUT mapping respects the maximum number K of inputs per LUT;
– BLE packing into CLB respects N , the number of BLEs per CLB, as well

as I, the number of inputs per CLB;
– Placement exploits the location of SPLC resources;
– Routing conforms to the SPLC routing graph;
– Configuration is compliant with the SPLC bitstream template;
– Timing analysis is specific to the SPLC architecture, as highlighted in the

next section.

4.2 Timing analysis

When synthesizing a SPLC, the timing reports indicate the Fmax frequency at
which the design may operate. Fmax depends on the worst case propagation
delay of SPLC atomic resources isolated between two VTPRs.

The virtual synthesis flow only relies on Fmax to perform timing analysis. At
the netlist level, assuming a net NC connects two logic nodes LA and LB , the
delay of the mapped net NC can be computed as the number of VTPRs along
the mapped path from LA to LB .

Adding VTPRs requires to operate two clocks: ClkV TPR, the VTPRs clock,
and Clkapp, clocking the application registers. To ensure that the mapped circuit
properly runs on the SPLC, ClkV TPR and Clkapp must abide by the relation:

Fmax ≥ FClkV TPR
≥ NV TPR × FClkapp

(1)

where
NV TPR = max

∀ hypernet Nc

(max
Ni

c∈subnets(Nc)
(length(N i

c))) (2)

In eq. 2, the netlist is seen as a set of hypernets. These multi-terminal nets are
spread as a collection of monoterminal nets, each of which goes from and reaches
either an IO or a register.

This greatly simplifies and speeds up timing computation. Especially as the
Manhattan distance is a smart approximation of length. Then eq. 2 profitably
replaces Elmore delay computation [16].

5 Experiments

The experiments rely on exploring the implementation cost of a parametric
SPLC. Then, the use of this SPLC is demonstrated on a regular expression
matching application.

Fig. 5. VTPRs make timings pre-
dictable and lead to acceptable fre-
quency

Fig. 6. Computing power exhibits scal-
ability

5.1 SPLC definition

The SPLC structure conforms to the previous specification, with dimensions
ranging from 2 ∗ 2 to 14 ∗ 14 CLBs, with 4 BLEs per CLB (16 to 764 BLEs).
The SPLC is synthesized using the J-2014-09-SP7 version of Synopys Design
Compiler, on a ST 65nm technology.

Figures 5, 6, and 7 illustrate some benefits of using VTPRs. Figure 5 and
6 illustrate the max frequency of the SPLC, regarding its dimensions, and the
offered computing power respectively. What makes sense to be noticed here is
first the top frequency (467 MHz) but also that the computing power (#BLE×
fmax) exhibits scalability.

The two following figures illustrate the feasibility of the approach.

Fig. 7. VTPRs make the synthesis time
affordable, hence promote scalability

Fig. 8. VTPRs lead to a 3% average
overhead in term of area

Figure 7 shows that the synthesis time ranges from 2.08 to 4.85 s per BLE,
with 2.89s/BLE in average when using VTPRs. Instead, this average rises up
to 10.18 without VTPRs (ranging from 2.17 to 24.28). Besides, the standard
deviation is reduced from 8.22 to 0.97 when introducing VTPRs. The lessons
learned are two: first VTPRs save synthesis time, second VTPRs make synthesis
time predictable. Figure 8 shows that VTPRs come almost for free in term of
area (around 2% for bigger SPLCs). Also, as virtual prototyping usualy relies on
FPGAs as an experimental platform, Table 1 reports results when implementing
SPLCs -with and without VTPRs- on top of Xilinx FPGAs. Three stages are

Table 1. Synthesis time on Xilinx FPGA, with and without VTPR

Dimensions XST time MAP time PAR time TRCE time Total Synthesis time

Size BLEs Raw VTPRs Ratio Raw VTPRs Ratio Raw VTPRs Ratio Raw VTPRs Ratio Raw VTPRs Ratio

2× 2 16 32 32 1.00 133 120 1.11 103 66 1.56 35 33 1.06 303 251 1.21
4× 4 64 68 61 1.11 228 238 0.96 344 138 2.49 71 39 1.82 711 476 1.49
6× 6 144 159 146 1.09 530 298 1.78 60538 155 390.57 219 49 4.47 61446 648 94.82
8× 8 256 328 354 0.93 909 524 1.73 3088 220 14.04 493 63 7.82 4818 1161 4.15

10× 10 400 661 715 0.92 1842 763 2.41 4940 350 14.11 1208 84 14.38 8651 1912 4.52
12× 12 576 1296 1371 0.94 4838 1179 4.10 39856 474 84.08 3289 105 31.32 49279 3129 15.75
14× 14 784 2343 2487 0.94 4613 3904 1.18 18617 654 28.47 5007 154 32.51 30580 7199 4.24

reported: XST (RTL synthesizer), MAP and PAR (logic synthesizer, placer and
router), and TRCE (timing analyser).

VTPRs do not significantly impact synthesis time. On the opposite, MAP
and PAR show unpredictable execution time unless VTPRs are used. This comes
from the heuristics within these tools. In particular, the combinational loops
within the SPLCs are broken down into smaller netlists undeterministicaly.
TRCE seems to scale with regards to #BLEs. Again, the synthesis time is
shorter and more predictable when using VTPRs, which preserves the FPGAs
as a potential virtual prototyping platform when designing VTPR aware SPLCs.

5.2 Usage

Embedding a SPLC in a design adds some flexibility, which makes sense in
various cases. First, this feature helps designers to fix bugs encountered in the
design by offering post release Engineering Change Order (ECO) opportunities.
Second, the SPLC can be used to implement transient functions. As an exam-
ple, hardware probes and monitors may be useful when validating the design,
although they are usually removed in a production phase. Last, SPLCs support
incorporating new functions while updating some others. It is usually an itera-
tive process to make a design change successfully, and SPLCs naturally support
incremental compilation.

This paper focuses on the third item, and promotes the use of SPLC as a
support for automata implementation. We consider a regex (regular expression)
engine that generates logic to be implemented on a SPLC. The hardware tem-
plate assumes an initial memory continuously streams data (one byte per cycle)
to the generated design whose role is to detect a match with a reference pattern.
The detection scheme relies on a non-deterministic finite automata (NFA) [17]
to alleviate the need for backtracking (due to its multiple active states). Table
2 illustrates the implementation cost of representative expressions in terms of
flip-flops and LUTs in the SPLC. The number of flip-flops only depends on the
pattern size, while the number of LUTS does on the pattern complexity. The first
five expressions score the cost of |, ?, + and ∗ constructs. The last two illustrate
real cases. The link expression looks for hyperlinks with a known root. The full
expression is: /<a\s+href="/courses/[^"]*"[^>]*>/. ssh is of higher com-
plexity and corresponds to searching ssh traces in a log file. The full expression

Table 2. Synthesis results

regex SPLC FF SPLC LUT SPLC BLE min NV TPR min size W min

/abcdefgh/ 8 12 12 10 2x2 4
/abcd|efgh/ 8 15 15 12 2x2 4

/a(bcdefg)?h/ 8 13 13 12 2x2 4
/a(bcdefg)+h/ 8 14 14 10 2x2 8
/a(bcdefg)*h/ 8 16 16 10 2x2 6

link 23 44 44 14 4x4 12
ssh 76 99 100 18 6x6 12

is: /[^]+ +\d+ \d+:\d+:\d+ [^]+ sshd\[\d+\]: Accepted (password |
publickey) for [^]+ from \d+\.\d+\.\d+\.\d+ port \d+ ssh/

The interesting point is that these expressions can be synthesized on modest
SPLCs (6th column in Table 2), quickly enough (1 to 10 seconds, depending on
the expression) to support design space exploration. Then, the circuit designer
can dimension the SPLC in a just fit approach (last two columns) for a class
of regex. The performances are only slightly impacted by the complexity of the
expressions. NV TPR denotes the factor by which the clock is divided due to the
presence of VTPRs in the routing to generate the applicative clock Clkapp. The
worst case still exhibits over 25 MHz FClkapp

applicative frequency.

6 Conclusion

The decision to include a reconfigurable IP in a design shortens time-to-market
by allowing starting early development cycle before full availability of final ap-
plicative specifications. The design remains flexible, and the designers can par-
tially update the circuit, even after silicon release. Integrating some Soft Pro-
grammable Logic Cores (SPLCs) is the easiest way to gain this flexibility, without
affecting the ASIC design flow. However, timing analysis of circuits running on
SPLCs usually comes to be inaccurate.

Our contribution tackles this issue by providing SPLCs decorated with VT-
PRs. VTPRs are extra registers, which break down loops in the interconnect
in order to master the timings in the SPLC. This offers simplified timing clo-
sure (predictable and accurate timings). Besides, VTPRs ensure scalability when
synthesizing the SPLC. Also, VTPRs make sense as an affordable feature, and
come at the sole cost of 3% area overhead in average.

Finally, this approach has been demonstrated through implementing regex
detection. This use case illustrates how SPLCs can support changing proto-
cols. This work also closely relates to overlays, which are usualy virtual coarse-
grain architectures, overlaying on top of fine-grained FPGA devices, for sake
of improved productivity, portability, debugging capabilities, etc. ARGEN has
demonstrated to suit designer’s needs when adressing overlays. Future work will
investigate how combining SPLC and overlays can drive new improvements.

Credits

This work has been supported by the French National Research Agency under
the contracts ANR-11-INSE-015 (ARDyT) and ANR-A0-AIRT-07. (B-Com)

References

1. Menta - embedded Programmable Logic. http://www.menta-efpga.com.
2. Nanoxplore. http://www.nanoxplore.com.
3. ADICSYS - eFPGA (embedded FPGA) IP. http://www.adicsys.com.
4. M. Abramovici, P. Bradley, K. N. Dwarakanath, P. Levin, G. Memmi, and

D. Miller, in Proceedings of DAC 2006, E. Sentovich, Ed. ACM, pp. 7–12.
5. S. J. Wilton, N. Kafafi, J. C. Wu, K. A. Bozman, V. O. Aken’Ova, and R. Saleh,

“Design considerations for soft embedded programmable logic cores,” IEEE Jour-
nal of Solid-State Circuits, vol. 40, no. 2, pp. 485–497, 2005.

6. I. Kuon, A. Egier, and J. Rose, “Design, layout and verification of an FPGA using
automated tools,” in FPGA 2005, H. Schmit and S. J. E. Wilton, Eds. ACM, 2005,
pp. 215–226. [Online]. Available: http://doi.acm.org/10.1145/1046192.1046220

7. N. Voros, A. Rosti, and M. Hübner, Eds., Dynamic System Reconfiguration in
Heterogeneous Platforms, ser. Lecture notes in electrical engineering. Springer
Netherlands,, 2009., vol. 40.

8. N. Kafafi, K. Bozman, and S. J. Wilton, “Architectures and algorithms for
synthesizable embedded programmable logic cores,” in Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable gate ar-
rays. ACM, 2003, pp. 3–11.

9. V. A. Ova, G. Lemieux, and R. Saleh, “An improved ”soft” efpga design and
implementation strategy,” in Proceedings of the IEEE 2005 Custom Integrated
Circuits Conference, CICC 2005. IEEE, 2005, pp. 179–182. [Online]. Available:
http://dx.doi.org/10.1109/CICC.2005.1568636

10. V. Betz and J. Rose, Field-Programmable Logic and Applications: 7th International
Workshop, FPL ’97 London, UK, September 1–3, 1997 Proceedings. Springer
Berlin Heidelberg, 1997, ch. VPR: a new packing, placement and routing tool for
FPGA research, pp. 213–222.

11. T. Wiersema, A. Bockhorn, and M. Platzner, “Embedding fpga overlays into con-
figurable systems-on-chip: Reconos meets zuma,” in ReConFigurable Computing
and FPGAs (ReConFig), 2014 International Conference on, Dec 2014, pp. 1–6.

12. C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algorithmica,
pp. 5–35, 1991.

13. U. of California Berkeley. (1992) Berkeley logic interchange format(blif). [Online].
Available: http://vlsi.colorado.edu/∼vis/blif.ps

14. P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin 2 - an open-source
verilog hdl synthesis tool for cad research,” in FCCM 2010, 2010.

15. R. Brayton and A. Mishchenko, Computer Aided Verification: 22nd International
Conference, CAV 2010. Springer Berlin Heidelberg, 2010, ch. ABC: An Academic
Industrial-Strength Verification Tool, pp. 24–40.

16. W. C. Elmore, “The transient response of damped linear networks with particular
regard to wideband amplifiers,” Journal of Applied Physics, vol. 19, no. 1, pp.
55–63, 1948.

17. R. Sidhu and V. K. Prasanna, “Fast regular expression matching using fpgas,” in
FCCM, ser. FCCM ’01. IEEE Computer Society, 2001, pp. 227–238.

http://www.menta-efpga.com
http://www.nanoxplore.com
http://www.adicsys.com
http://doi.acm.org/10.1145/1046192.1046220
http://dx.doi.org/10.1109/CICC.2005.1568636
http://vlsi.colorado.edu/~vis/blif.ps

	Soft timing closure for soft programmable logic cores: The ARGen approach

