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Introduction

Masonry vaults are very common in numerous historical buildings, bridges and tunnels. The use of masonry for new constructions declined considerably since the second half of the 20th century, but these structures still exist and their maintenance necessitates the study of their behavior. In particular, the objective of this paper is to develop a model to study the behavior of the masonry vaulted tunnels of the Paris metro, whose infrastructure is mostly underground and was built predominantly in the early 20th century. Such structures can withstand displacements in the order of several tens of millimeters without reaching failure, and this is not properly accounted for by numerical models (notably elastoplastic models).

Masonry is a heterogeneous material made of elementary blocks (bricks or stone blocks) and mortar joints.

Its behavior has been studied in numerous scientific publications (see for instance the survey provided by [START_REF] Angelillo | Mechanics of Masonry Structures[END_REF]). Before the 20th century, the calculation methods developed for masonry vaults were focused on the evaluation of their bearing capacity [START_REF] Benvenuto | An Introduction to the History of Structural Mechanics: Part II: Vaulted Structures and Elastic Systems[END_REF], on the basis of graphic analysis of the static equilibrium of the structure. More recently, masonry vaults have been analyzed by means of limit analysis (Heyman, The safety of masonry arches, 1969) , (Heyman, The Stone Skeleton, 1997), [START_REF] Livesley | Limit analysis of structures formed from rigid blocks[END_REF] and of the yield design theory [START_REF] Salençon | Calcul à la rupture et analyse limite[END_REF], [START_REF] Delbecq | Les ponts en maçonnerie[END_REF]. However, such stability analyses do not allow to compute the deformation of the structure when the applied load bring it close to failure.

The development of modern displacement computation approaches and numerical methods, permits to evaluate the deformation of any structure under complex conditions, in all stages of an incremental loading.

Among the different numerical techniques to model masonry structures [START_REF] Roca | Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches[END_REF], the finite element method is frequently used. It is especially adapted to discuss the interaction between the masonry vault of a tunnel and the surrounding ground, which generally exhibits a complex behavior that can be conveniently taken into account in the framework of the finite element method. Three modeling strategies can be distinguished for masonry structures [START_REF] Lourenço | Computational Strategies for Masonry Structures[END_REF]:

1) detailed micro-modeling: each component of the masonry, i.e. blocks, joints and interfaces are modeled separately, with a constitutive law for each component;

2) simplified micro-modeling, where the blocks are geometrically expanded to account for mortar, while the mortar behavior is reflected in the interface constitutive law;

3) macro-modeling, in which all components of the masonry are represented as a continuous homogeneous medium and "equivalent" to the masonry.

Given the computational effort required and the large number of necessary experimental data, the first two approaches are reserved for small masonry structures and for situations in which the local heterogeneities of the stress field are investigated. The macro-modeling is suitable for large structures. Several examples of these three approaches can be found in [START_REF] Angelillo | Mechanics of Masonry Structures[END_REF] and [START_REF] Roca | Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches[END_REF].

The objective in our study is to develop a model for masonry vaults. To this end, a macro-modeling approach was adopted using a homogenization technique proposed by (Zucchini & Lourenço, A coupled homogenisation-damage model for masonry cracking, 2004) to transform the masonry into an equivalent continuum medium. Then, an isotropic damage model is used to represent the nonlinear behavior of the masonry components, which describes the degradation of the material (stiffness reduction) before the macroscopic failure [START_REF] Murakami | Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture[END_REF]. Variations of the directions of the block-mortar bond in the vault are also taken into account.

Damage models have been used by several authors to study masonry structures under various loading conditions: walls under seismic loads [START_REF] Callerio | An elastic-plastic model with damage for cyclic analysis of masonry panels[END_REF], [START_REF] Maier | Experimental and numerical methods in earthquake engineering[END_REF], [START_REF] Papa | Damage models for masonry structures[END_REF], [START_REF] Toti | Nonlocal damage propagation in the dynamics of masonry elements[END_REF], [START_REF] Wawrzynek | Plastic-damage macro-model for non-linear masonry structures subjected to cyclic or dynamic loads[END_REF] ; walls under a point shear load (Addessi, Marfia, & Sacco, A plastic nonlocal damage model, 2002), (Addessi & Sacco, A multi-scale enriched model for the analysis of masonry panels, 2012), [START_REF] Berto | Shear behaviour of masonry panel: parametric FE analyses[END_REF], [START_REF] Uva | Towards a multiscale analysis of periodic masonry brickwork: A FEM algorithm with damage and friction[END_REF], (Zucchini & Lourenço, A micro-mechanical homogenisation model for masonry: Application to shear walls, 2009); walls under in-plane vertical or horizontal loads [START_REF] Greco | An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material[END_REF], [START_REF] Luciano | Homogenization technique and damage model for old masonry material[END_REF], [START_REF] Massart | Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry[END_REF], [START_REF] Quinteros | Nonlinear homogenization techniques to solve masonry structures problems[END_REF], [START_REF] Tesei | A unilateral nonlocal tensile damage model for masonry structures[END_REF], [START_REF] Zahra | Prediction of masonry compressive behaviour using a damage mechanics inspired modelling method[END_REF], (Zucchini & Lourenço, A coupled homogenisation-damage model for masonry cracking, 2004), (Zucchini & Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 2007); vaults under different loads [START_REF] Creazza | Analyses of Masonry Vaults: A Macro Approach based on Three-Dimensional Damage Model[END_REF], [START_REF] Pelà | Continuum damage model for orthotropic materials: Application to masonry[END_REF], [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack reclosure effect[END_REF]; and bridges [START_REF] Domède | Méthode de requalification des ponts en maçonnerie[END_REF], [START_REF] Domede | Structural analysis of a multi-span railway masonry bridge combining in situ observations, laboratory tests and damage modelling[END_REF] ; among others. Most of the studies on masonry using damage models consider a wall subjected to in-plane loads or earthquake motions; the case of vaults (bridge or buried arches) is not commonly discussed. Old masonry tunnels are even more rarely studied: the analysis of buried masonry vaults is the focus of our study.

The model for masonry vaults was programmed in the finite element code CESAR-LCPC (ajouter une référence à Humbert P., Dubouchet A., Fezans G., Remaud D. (2005) In this paper we present firstly the numerical implementation, followed by a set of comparisons with experimental tests which allowed the validation of the proposed approach.

Homogenization-damage model for masonry

Masonry homogenization

The process of homogenization consists in replacing a heterogeneous medium by an equivalent homogeneous one. In the case of masonry, the very regular geometrical pattern of bricks or blocks and mortar joints makes it possible to assume that the heterogeneous masonry material is comparable to a composite one with a periodic microstructure. Such a medium is defined by a "basic cell" whose graphic repetition represents the whole structure (Fig. 1). The geometry of the basic cell and the behavior of its components, i.e. blocks and joints, are used to derive the constitutive law of the homogenized continuum. This procedure is referred as a micro-mechanical model for the homogenization of masonry by (Zucchini & Lourenço, A micro-mechanical model for the homogenisation of masonry, 2002), and gives the homogenized macroscopic stiffness matrix H that connects the macroscopic stresses 0 Σ to the macroscopic strains 0 Ε in the basic cell. This matrix is then used to compute forces and displacements in the structure.

A state of the art on the homogenization techniques for masonry can be found in [START_REF] Lourenço | Analysis of masonry structures : review of and recent trends in homogenization techniques[END_REF]. Homogenization can be carried out by numerical or analytical means. In this paper a simplified analytical approach was used.

Nonlinear homogenization

Among the homogenization techniques, the analytical engineering approach proposed by (Zucchini &

Lourenço, A micro-mechanical model for the homogenisation of masonry, 2002) for the masonry was chosen. This technique aims to replace the complex behavior of the basic cell with a simplified one. Initially developed for the elastic range, the approach was extended to the nonlinear range in By introducing the equilibrium between micro and macro forces in the basic cell boundaries and interfaces, the compatibility of the deformation of the components and using Hooke's law, together with other simplifying assumptions, a system of equations for each load case is introduced, which allows to compute the stresses and strains in each component, under a given macroscopic stress field.

In the nonlinear range, the model associates a scalar damage variable to each component of the basic cell (i.e.

joints and blocks). The problem is treated in an incremental way: under increasing load, the homogenization technique must account for the damage in each component, and consequently update the internal stresses and elastic parameters. Damage is evaluated using a simple Rankine criterion (i.e. only the maximum principal stress is compared to the tensile strength).

The great interest of this approach lies in the fact that the nonlinear anisotropic constitutive law of the masonry is obtained by solving a set of algebraic equations, and it is not necessary to solve an auxiliary boundary problem on the basic cell by means of a finite element simulation.

A damage coefficient r k =(1-d k ) is introduced for each component stress, where d is the damage variable, k=1,2,3 and B, respectively for the horizontal, vertical, and cross joint, and block (Fig. 2 b). The variable d is evaluated with the model presented in paragraph 3.1.

A system of equations is written in terms of effective stresses for the case of the quarter cell subjected to a normal macroscopic stress 0 ii σ (Fig. 2 a). For instance, equilibrium at the right boundary leads to: , 2004) for the full set of the equations. The system of equations can be expressed as:

0 i j a ij A σ σ = (2)
where

T B nn nn nn B hh hh hh B bb bb bb       = σ σ σ σ σ σ σ σ σ σ , , , , , , , , 2 1 2 1 2 1 represents the internal stresses in the basic cell, { } T nn hh bb 0 , 0 , 0 , 0 , , , , 0 , 0 0 0 0 0 σ σ σ σ =
a vector containing the macroscopic stresses and a A a matrix that contains the geometrical and mechanical properties of the components. In the proposed approach, it is assumed that the horizontal stresses varies linearly inside the block, and

B bb
σ denotes the average value in the block.

Homogenized strains are calculated once the system of equations ( 2) is solved. Finally, Young's moduli and Poisson's ratios are calculated from average strains and stresses. For example, in the direction b, boundary imposed conditions to the basic cell 0 , 0

0 0 0 = = ≠ nn hh bb σ σ σ
, lead to:

0 0 0 0 bb hh bh bb bb b E ε ε ν ε σ - = =
(3) Each case of shear stress forms a separated system of equations. Strains are then calculated in all the components, i.e. blocks and joints, and finally the corresponding macroscopic strains. It is then possible to evaluate the macroscopic homogenized stiffness matrix H.

Improved model for masonry vaults

The following modifications of the model are proposed:

-the isotropic damage model used to characterize the nonlinear behavior of each component in the masonry is different from the model initially proposed; -the model takes into account variations of the directions of the block-mortar bond in the vault; -a regularization technique is adopted to reduce the dependence of the solution regarding the finite element mesh, in the numerical modeling of the softening law. The state of damage for isotropic models (Lemaitre & Desmorat, Engineering Damage Mechanics, 2005) is controlled by a scalar variable d that ranges from 0 to 1, 0 representing the undamaged material and 1 corresponding to fracture, such that the damaged modulus is given by E d =E 0 (1-d), where E 0 is the elastic modulus without damage. A modified version of the Mazars model [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] for concrete proposed by [START_REF] Davenne | Un code de calcul pour la prévision du comportement de structures endommageables en béton, en béton armé ou en béton de fibres[END_REF] is used. This model considers an equivalent strain ε ~ at each material point, which depends on the three-dimensional state of strain:

2 3 2 2 2 1 ~+ + + + + = ε ε ε γ ε (4)
where ε i (i=1,2,3) represent the principal strains,

= + i ε ε i if ε i ≥ 0 ; or 0 if not.
In eq. ( 4) the coefficient γ is defined by the following expression:

2 3 2 2 2 1 2 3 2 2 2 1 - - - - - - + + + + - = σ σ σ σ σ σ γ (5)
where i σ represents the principal effective stress in the direction i; and i σ is the negative part of the principal effective stress:

= - i σ σ i if σ i ≤ 0 ; or 0 if not.
The value of γ is bounded between 0 and 1 and calculated only when at least a one principal effective stress is negative, i.e. in compression.

The damage variable evolves if the equivalent strain ε ~ reaches a threshold value ε D0 . Following [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] , this threshold is the strain at the maximum stress in a uniaxial direct tension test. Assuming that the behavior is linear up to the maximum tensile stress we can write ε D0 =f t /E 0 , where f t is the tensile strength. The damage criterion is then written:

0 ~≤ - = M F ε ε (6)
where M ε ~ is the actual threshold, equal to the initial threshold ε D0 if it has never been reached, or the maximum value reached by ε ~ otherwise. The damage variable d is a linear combination of two damage variables [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF], d t and d c , associated respectively to the tensile and compression stresses:

c c t t d d d α α + = (7)
In the absence of traction α t =0, in the absence of compression α c =0, and in all cases α t +α c =1, see [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] for a detailed definition of α t and α c . The evolution laws of the two variables of damage are:

( ) ( ) [ ] 0 0 ẽxp 1 1 D M c c M c D c B A A d ε ε ε ε - - - - = ( ) [ ] 0 0 ẽxp 1 D M t M D t B d ε ε ε ε - - - = (8)
where A c and B c are parameters obtained experimentally from the stress-strain curves of a compression test.

The equation for d t in ( 8) is a modified expression, from that of [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF], proposed by [START_REF] Borderie | Stratégies et Modèles de Calculs pour les Structures en Béton[END_REF] as a regularization technique in traction, to avoid the well-known excessive mesh sensitivity problems in the finite element modeling of the softening behavior of the damage law, see [START_REF] Murakami | Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture[END_REF]. The parameter B t depends on the characteristic length l c , the mode I fracture energy G ft , and the tensile strength of the material f t :

ft t c t G f l B = (9)
where l c = S , and S is the area (or volume) of the finite element to which the integration point belongs. The mode I fracture energy is assumed to be a material property. This is another difference with respect to the model of Zucchini & Lourenço, in which the characteristic length is taken equal to the component dimension perpendicular to the crack direction, producing high mesh-sensitivity because l c is a constant quantity.

Introducing damage in each homogeneous isotropic component makes it possible to reproduce implicitly the global anisotropic damage behavior of the masonry.

Strain driven problem

For the coupling of the numerical homogenization procedure with damage, it is convenient to evaluate the stresses and strains in the basic cell by imposing a macroscopic incremental strain field instead of a stress field.

When studying traction parallel to the bed joint of the masonry, the model of Zucchini & Lourenço imposes to the basic cell a macroscopic horizontal strain and null macroscopic stress in the other directions (Zucchini & Lourenço, A coupled homogenisation-damage model for masonry cracking, 2004); when studying compression, a macroscopic vertical strain and null macroscopic stress in the other directions (Zucchini & Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 2007). In our study a uniform strain field is imposed, instead of these mixed boundary conditions.

In practice, we decompose the macroscopic strain tensor into two contributions: one due to the normal strain and other due to shear strain. Two auxiliary problems on the basic cell must be solved. The damage in each component depends on the sum of the stresses in the given component obtained for each auxiliary problem. This approach was adopted by (Zucchini & Lourenço, A micro-mechanical homogenisation model for masonry: Application to shear walls, 2009). In our study, we adopt the following simplifying assumption: damage in components is caused only by the macroscopic strains 0 bb ε , 0 hh ε , 0 nn ε (Fig. 3), the strain 0 bh ε , considered small compared to strains 0 ii ε , is neglected. With this assumption, a single auxiliary problem must be solved to compute internal stresses and strains of each component within the basic cell. A a matrix that contains the geometrical and mechanical properties of the components. A complete presentation of the system of equations can be found in (Moreno Regan, 2016).

Homogenized damaged parameters

For a given macroscopic strain field, stresses σ in the components are obtained after resolution of the system (10), and then the damage coefficients r k = (1-d k ) are calculated for each component using the model of paragraph 3.1.

Given the fact that a strain field is imposed to the basic cell, it is difficult to evaluate the Poisson's ratios. It is proposed here to solve firstly the system (10) that gives the damage coefficient r k . Secondly, the coefficients r k previously obtained are injected into the system of equations where an arbitrary macroscopic stress

1 0 = ij σ
Pa is imposed with different boundary conditions, to finally calculate the damaged elastic moduli and the Poisson's ratios.

Geometrical considerations for the vault

The model defined in the previous paragraphs was presented with respect to the directions of the basic cell, denoted b, h and n. For a wall, the orientation of the local axes is constant. In a masonry vault (Fig. 4 a), the orientation of the block-mortar bond varies and it is necessary to take it into account: the global coordinate system (GCS) in which the finite element mesh is constructed and the local coordinate system (LCS) which follows the orthotropic directions of the masonry (Fig. 4). The directions b and h are in the plane while the direction n is out of the plane. The vault geometry is defined by the intrados and the extrados, both of elliptical shape, making it possible to take into account a wide variety of geometries. A fictitious "mean ellipse" is defined in the vault, midway between the intrados and the extrados, centered in C, with semi-axes a and b (Fig. 4b). Each point M (x M , y M ) of the vault is associated with its projection onto the mean ellipse, denoted by N(x N , y N ), and the local masonry directions b and h are taken equal to the normal and the tangent to the mean ellipse. We introduce the angle θ that defines the position of the point M with respect to the horizontal axis and the normal projection to the mean ellipse (Fig. 4 b).

The coordinates of the point N (x N , y N ) are given by and the angle θ is defined by:

      - = 2 2 1 a k x x M N       - = 2 2 1 b k y y M N
        = 2 2 arctan b x a y N N θ (12)
The angle θ is positive counterclockwise. For θ = 90° the point is at the keystone of the vault.

The strain field applied to the basic cell in paragraph 3.2 has to be expressed in the LCS. In a 2D study, the transition from the GCS to the LCS is carried out by performing the following operation:

0 0 j ij i Q Ε = ε (13)
where 0 Ε is the macroscopic strain vector in the GCS (with the conventions of Fig. 4) and 0 ε the macroscopic strain vector in the LCS. The matrix Q is given by:

          -sin cos cos sin cos sin sin cos 2 cos sin sin cos 2 sin cos Q (14)
where θ is computed with equation (12).

Damage tensor

The orthotropic damaged stiffness matrix d C (see eq.( 18) below) is given implicitly by homogenizationdamage technique without the formulation of a damage tensor variable. To display the state of damage of the vault, it is interesting to calculate an orthotropic damage tensor, using the strain equivalence principle (Lemaitre, A course in damage mechanics, 1992). We can write:

( ) ij ij ij M I D 1 - - = (15)
where I is the identity second order tensor; M is a second order tensor called effective damage tensor according to [START_REF] Murakami | Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture[END_REF], which transforms the stress tensor σ into effective stress tensorσ and is expressed as

d kj ik ij S C M 0 = (16) 0 ik
C is the undamaged stiffness matrix in the LCS and

( ) ij d d ij C S       = -1
. This produces an asymmetrical second order tensor D: The tensor D expresses damage in the LCS (Fig. 4). Thus, for example D 11 can be seen as the degradation of the E b module and D 22 as degradation of E h . The evaluation of the anisotropic damage tensor is not needed to carry out the calculations, but provides the possibility to represent graphically the anisotropic damage state in the vault given by the model.

Numerical implementation

In our study, we propose to apply the homogenization-damage technique to each integration point of the finite element mesh in order to compute forces and displacements in the structure.

Global iterative resolution procedure

In the finite element analysis of damage problems, an elastic solution is computed first, with the initial value of the damage parameters. At a local level, the strains induce a modification of the damage parameters (described in the following section), and of the stiffness of the material: the stress state must be updated to account for this stiffness reduction, which produces out-of-balance nodal forces. The procedure follows a classical Newton-Raphson iterative scheme.

More precisely, once the homogenized macroscopic parameters are obtained at the local level, the damaged stiffness matrix d C is updated in the LCS (see paragraph 3.4). In plane stress we have:

LCS bh hb bh h hb bh hb b hb bh hb b hb bh b d G E E E E C                   - - - - = 0 0 0 1 1 0 1 1 ν ν ν ν ν ν ν ν ν ν (18)
Then the damaged stiffness matrix d H in the GCS is computed:

lj d ij ki d kl P C T H = (19)
where T and P are transformation matrices: Angle θ is computed with equation ( 12). Finally, the update of the macroscopic stresses 0 Σ is carried out:

0 0 j d ij i H Ε = Σ (21)
The numerical scheme is summarized in Box 1, where m represents the global iteration. The global damage criterion F G adopted here is:

[ ] k c G F F max = (22)
where k c F represents the damage criterion of each component given by equation ( 6). 

Local iterative resolution procedure

Since the stresses in each component depend on the damage coefficient r k = (1-d k ) and the damage variable d k depends on the stress state in each component, a local iterative process is necessary. It is performed at the basic cell level: for each strain increment 0 ii ε , the system ( 10) is solved to obtain the unknown internal stresses and strains in the cell components (k=1,2,3, and B), using the damage coefficients of the previous iteration. Damaged coefficients are then updated using the model of paragraph 3.1, from the new stresses.

The process is iterated until convergence of the coefficients r k . It is considered that convergence is achieved when:

η < max p with p max = max [p k ], and 
( ) ( ) k n k n k n k n k r r r r p , max , min 1 1 1 - - - = (23)
where n is the actual iteration in the basic cell and η is the tolerance taken equal to 10 -3 . The procedure is summarized in Box 2. 

Validation

The model presented above makes it possible to account for the strength and geometry of the mortar joints in the vault, since the homogenization technique is performed at each step of the loading process. It is possible to compare homogenized numerical results with experimental results provided that the results are analyzed at the appropriate scale (many authors have adopted this approach to validate numerical homogenized models for masonry: [START_REF] Luciano | Homogenization technique and damage model for old masonry material[END_REF], [START_REF] Massart | Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry[END_REF], [START_REF] Quinteros | Nonlinear homogenization techniques to solve masonry structures problems[END_REF], [START_REF] Uva | Towards a multiscale analysis of periodic masonry brickwork: A FEM algorithm with damage and friction[END_REF] The approach presented in the preceding paragraphs was applied to some experimental studies for validation purpose.

Elementary validations

We considered existing experimental studies in the literature to verify that the expected behavior is correctly reproduced. All FEM calculations were carried out in plane stress conditions.

Compression strength

Tests on the compressive strength of masonry prisms by [START_REF] Mcnary | Mechanics of Masonry in Compression[END_REF] are used to validate the numerical model. Two types of blocks were tested. The properties of the materials are presented in Appendix A. The geometric parameters are showed in Table 1. In the simulations, the vertical displacement is set to zero on the lower boundary, and a vertical displacement is imposed on the upper boundary. Finite element size is about 5 cm. Results are showed in Table 2. Good agreement is observed for Unit 1 test with a -1.9 % deviation, whereas a less accurate numerical result is obtained for Unit 2 test with a -11.7% deviation. A comparison with the numerical results by [48] for the same tests is also presented, these show -2.7% and 6.6% deviations respectively. 

Tensile strength

Experimental tests on the tensile strength of masonry are scarce in the literature. We studied the tests performed by [START_REF] Backes | Tensile strength of masonry[END_REF] on a series of walls using different types of masonry mortar and bricks, with different combinations of strength. Brick dimensions are 240 mm length, 115 mm depth and 113 mm height, with a 10 mm thickness of mortar joints. The specimen for testing is 490 x 482 mm. We considered the results of the KS12 and HLz12 brick types and MGII and MGIII mortars. The properties of the materials are presented in Appendix A.

The principle of the test is to apply a direct tensile stress parallel to the bed joints with two metal beams glued to the wall (see [START_REF] Backes | Tensile strength of masonry[END_REF] and (Lourenço, Rots, & van der Pluijm, Understanding the tensile behaviour of masonry paralel to bed joints : a numerical approach, 1999) for further details). The rectangular prisms were modeled with a horizontal displacement set to zero on the left boundary, and a horizontal displacement imposed on the right boundary. Finite element size is about 5 cm. The results show a good agreement with experimental results (Table 3). 

Validation in the case of a masonry vault

Eventually, the model was used to simulate experimental tests performed by (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015) on semi-circular masonry vaults. Two particular cases are studied here (Fig. 5): the first one is a simple vault subjected to a point load, and the second one, a buried vault with a point load applied on the surface.

The vaults had two reinforced concrete supports connected with two steel rods with a diameter of 20 mm, in order to avoid horizontal movements of the supports. For the buried vaults, concrete walls were built to retain the filling, connected by two steel beams to prevent horizontal displacements and rotations of the walls. The vault geometry is showed in 

Modelling of the vault without fill

The FEM calculations were carried out in plane strain conditions. The applied boundary conditions in the vault are zero vertical and horizontal displacements in the supports. To deal with the softening behavior of the vault and avoid numerical instabilities, the structure is associated in the simulation with a fictitious spring placed at the point of application of the load. As damage evolves in the vault, the spring takes the difference between the external applied force and the force born by the vault.

The modeling results are shown in Fig. 6 and Table 4, where u r is the radial displacement of the vault of point A (Fig. 5 a). The angles in the numerical curve correspond to the formation of hinges in the loading process (Fig. 7). In the experimental results, the maximum load is reached for a small displacement, whereas in the calculations deformation is a little higher when maximum load is reached. However, from a qualitative point of view the model produces satisfactory results. 

Modelling of the buried vault

The applied boundary conditions at the supports are zero vertical and horizontal displacements. Regarding the retaining walls of the fill (Fig. 5), we considered that there are no horizontal displacements of the walls, although a minor horizontal displacement of the upper edge of around 0.8 mm was measured. An elastoplastic model with a Drucker-Prager criterion was used for the filling, made of expanded clay, using the values given in Appendix A. Property values for masonry materials are also presented in Appendix A.

The calculation was conducted in plane strain conditions in two steps: (1) application of the weight of the filling and vault and (2) application of the load in 100 increments.

The modeling results are shown in Fig. 8 and Table 5. The failure load is predicted with a good precision, the radial displacement u r of point A (see Fig. 5b) , however, is a little less accurate. Fig. 9 shows that the model satisfactorily reproduces the four-hinge failure mechanism. Damage variable D 22 is shown to represent the damage state of the vault (see paragraph 3.5). As for the non-buried vault, the hinges are identified in the numerical results as completely damaged zones where an abrupt change in the slope of the deformed shape takes place. The small differences between experimental and numerical results showed in Fig. 8 and Fig. 9, can be due to the behavior of the fill and its interaction with the vault. The mechanical properties of the fill material have an influence on the way the applied load is transferred to the vault. A sensitivity analysis shows that a lower cohesion (a softer material) causes earlier numerical failure of the vault (Fig. 10). Two cases were studied: a vault without filling and a buried vault. The model satisfactorily reproduces the failure load, the four-hinge failure and it is also possible to evaluate the deformation of the structure during loading process up to failure. The simulations also show that the mechanical properties of the fill material have an influence on the way the applied load is transferred to the vault.

The proposed model can be used to study any masonry vault, whose geometry can be represented by an elliptical curve. This model will be used for the masonry vaults of the Paris metro, in order to evaluate the serviceability state when nearby civil engineering works alter the original equilibrium state of the structure. **Properties taken from [START_REF] Backes | Tensile strength of masonry[END_REF]. The elasticity modulus have been proposed in such a way that after the homogenization process, we find the value of the masonry modules in tension measured by [START_REF] Backes | Tensile strength of masonry[END_REF], i.e. E = 3870 and 3273 MPa for walls KS12-MGII and HLz12-MG III, respectively. Other properties were proposed 

  CESAR-LCPC, un progiciel de calcul dédié au Génie Civil. Bulletin des Laboratoires des Ponts et Chaussées 256-257: 7-37.), a software package dedicated to civil engineering and geotechnical engineering applications, developed since the 1980's by the French Institute of science and technology for transport, development and networks (IFSTTAR).

Fig. 1

 1 Fig. 1 Basic cell of a masonry wall (Zucchini & Lourenço, A micro-mechanical model for the homogenisation of masonry, 2002)

  Fig. 2 Quarter basic cell in the masonry of the model of Zucchini & Lourenço (Zucchini & Lourenço, A micromechanical model for the homogenisation of masonry, 2002)

  2,3 and B, indicate the component, respectively the horizontal, vertical, and cross joint, and block. The superscript 0 represents homogenized cell variables. The subscripts b, h, and n represents the local coordinate system (LCS) of the basic cell (Fig. 2 b). See (Zucchini & Lourenço, A micro-mechanical model for the homogenisation of masonry, 2002) and (Zucchini & Lourenço, A coupled homogenisationdamage model for masonry cracking

3. 1

 1 Isotropic damage model for the components The model of Zucchini & Lourenço uses a simple Rankine damage criterion to study the behavior in traction (Zucchini & Lourenço, A coupled homogenisation-damage model for masonry cracking, 2004) and an elastoplastic model in compression (Zucchini & Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 2007), in each component of the masonry. Instead of this complex model, we used a single isotropic damage model.

Fig. 3

 3 Fig. 3 Strain field applied to the quarter basic cell Thus the system of equations (2) becomes:

  Fig. 4 Geometry of the masonry vault of a tunnel

Box 1

 1 Global iterative algorithm for masonry vaults (i) Compute incremental macroscopic stresses and strains in each integration point from ( ) Compute damage coefficients in basic cell, see Box 2 (iii) Check global criterion F G >0 ?, Eq. (22) YES: damage loading. Proceed to (iv) NO: no further damage. Exit (iv) Compute local damaged stiffness matrix ( ) Compute damage tensor D for display only, Eq. (17) (vi) Update global stiffness matrix ( )

Box 2

 2 Local iterative algorithm in the basic cell For each integration point:(i) Compute local macroscopic strains, Eq. (13) (ii) Compute stresses and strains in all components with ( ) to (ii) (vi) Update damaged homogenized parameters, see paragraph 3.3

  , (Zucchini & Lourenço, A micro-mechanical homogenisation model for masonry: Application to shear walls, 2009) and (Zucchini & Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 2007), among others).

Fig. 5 .

 5 Fig. 5 Geometry of masonry arches semicircular studied by (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015) (in mm)

  Fig. 6 Force-displacement curves for the vault without filling: experiment (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015) and numerical modeling

Fig. 8

 8 Fig. 8 Force-displacement curves for the buried vault: experiment (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015) and modeling

Fig

  Fig. 10 Force-displacement curves for the buried vault with different cohesions

*

  Properties taken from (Zucchini & Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 2007) other properties were proposed.

*

  Properties taken from and[START_REF] Hojdys | Experimental and numerical simulation of collapse of masonry arches[END_REF],(Krajewski & Hojdys, Burried vaults with different types of extrados finishes -experimental tests, 2014) and (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015), other properties were proposed Table A.3 Properties of the fill from of the buried from (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015), other properties were proposed

Table 1

 1 Properties of the prisms tested in compression[START_REF] Mcnary | Mechanics of Masonry in Compression[END_REF] 

	Ref	Blocks dimensions (mm) length Height depth	Mortar thickness (mm)	Prism size (mm)
	Unit 1	200	57	98	9.5	200x323
	Unit 2	194	55	89	9.5	200x323

Table 2

 2 Comparison between the measured compressive strength[START_REF] Mcnary | Mechanics of Masonry in Compression[END_REF] and numerical predictions (MPa)

	Prism Experimental	Model	Zucchini &
				Lourenço
				(Zucchini &
				Lourenço,
				Mechanics of
				masonry in
				compression:
				Results from a
				homogenisation
				approach,
				2007)
	U1M	48.2	47.3	46.9
	U2M	37.7	33.3	40.2

Table 3

 3 Comparison between the measured tensile strength[START_REF] Backes | Tensile strength of masonry[END_REF] and numerical predictions (MPa)

	Prism	Experimental	Model
	KS12-MG II	0.17	0.19
	HLz12-MG III	0.22	0.21

Table 5

 5 Comparison of results

Table A

 A .1 Properties of mortar and brick for the validation of the compressive and tensile tests

		McNary & Abrams (McNary &	Backes (Backes, 1985)
	Ref			
			Abrams, 1985)	
		Unit1	Unit 2	Mortar M	Unit KS12 Mortar MG II Unit HLZ 12 Mortar MG III
	E	15000*	9900*	11600*
	ν	0.13*	0.17*	0.096*
	f t	2.74*	1.79*	2.97
	G ft	79*	52*	
	f c	58.9*	44*	
	A c	1.15	1.1	
	B c	634	400	
	ε D0	1.84E-4	1.81E-4	

Table A .

 A 2 Properties of mortar and brick for the validation of the masonry vault

	Krajewski & Hojdys (Krajewski & Hojdys, Experimental
	Ref			
		studies on buried barrel vaults, 2015)	
	vault without fill	buried vault
	Unit	Mortar	Unit	Mortar
	ρ			
	E			
	ν			
	f t			
	G ft			
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Appendix A

In the tables presented in this appendix, the following notation is used: Damage model coefficient for compression [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] Damage model coefficient for compression [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF] Damage threshold strain

In cases the parameters A c and B c were proposed in such a way as to obtain the value of the peak stress in the strain-stress curve equals the known compressive strength. Damage threshold strains were calculated with ε D0 =f t /E 0 .