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Abstract 

This paper presents an approach developed to study the behavior of the masonry vaulted tunnels in 

order to evaluate the serviceability state and failure load. An appropriate homogenization technique is 

used to simulate the global anisotropic behavior across the vault. The model takes into account 

isotropic damage in each component of the masonry and the variations of the directions of anisotropy 

in case of a vault. A set of comparisons with experimental tests allowed the validation of the proposed 

approach. Failure loads and deformation states are correctly assessed. The present model was 

programmed in the finite element code CESAR-LCPC. 
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1. Introduction 

Masonry vaults are very common in numerous historical buildings, bridges and tunnels. The use of masonry 

for new constructions declined considerably since the second half of the 20th century, but these structures 

still exist and their maintenance necessitates the study of their behavior. In particular, the objective of this 

paper is to develop a model to study the behavior of the masonry vaulted tunnels of the Paris metro, whose 

infrastructure is mostly underground and was built predominantly in the early 20th century. Such structures 

can withstand displacements in the order of several tens of millimeters without reaching failure, and this is 

not properly accounted for by numerical models (notably elastoplastic models). 

Masonry is a heterogeneous material made of elementary blocks (bricks or stone blocks) and mortar joints. 

Its behavior has been studied in numerous scientific publications (see for instance the survey provided by 

(Angelillo, 2014)). Before the 20th century, the calculation methods developed for masonry vaults were 

focused on the evaluation of their bearing capacity (Benvenuto, 1991), on the basis of graphic analysis of the 

static equilibrium of the structure. More recently, masonry vaults have been analyzed by means of limit 

analysis (Heyman, The safety of masonry arches, 1969) , (Heyman, The Stone Skeleton, 1997), (Livesley, 

1978) and of the yield design theory (Salençon, 1983), (Delbecq, 1982). However, such stability analyses do 

not allow to compute the deformation of the structure when the applied load bring it close to failure.   

The development of modern displacement computation approaches and numerical methods, permits to 

evaluate the deformation of any structure under complex conditions, in all stages of an incremental loading. 

Among the different numerical techniques to model masonry structures (Roca, Cervera, Gariup, & Pela, 

2010), the finite element method is frequently used. It is especially adapted to discuss the interaction 

between the masonry vault of a tunnel and the surrounding ground, which generally exhibits a complex 

behavior that can be conveniently taken into account in the framework of the finite element method. Three 

modeling strategies can be distinguished for masonry structures (Lourenço P. , 1996): 

1) detailed micro-modeling: each component of the masonry, i.e. blocks, joints and interfaces are modeled 

separately, with a constitutive law for each component;  

2) simplified micro-modeling, where the blocks are geometrically expanded to account for mortar, while the 

mortar behavior is reflected in the interface constitutive law;  



4 

3) macro-modeling, in which all components of the masonry are represented as a continuous homogeneous 

medium and "equivalent" to the masonry.  

Given the computational effort required and the large number of necessary experimental data, the first two 

approaches are reserved for small masonry structures and for situations in which the local heterogeneities of 

the stress field are investigated. The macro- modeling is suitable for large structures. Several examples of 

these three approaches can be found in (Angelillo, 2014) and (Roca, Cervera, Gariup, & Pela, 2010).  

The objective in our study is to develop a model for masonry vaults. To this end, a macro-modeling approach 

was adopted using a homogenization technique proposed by (Zucchini & Lourenço, A coupled 

homogenisation-damage model for masonry cracking, 2004) to transform the masonry into an equivalent 

continuum medium. Then, an isotropic damage model is used to represent the nonlinear behavior of the 

masonry components, which describes the degradation of the material (stiffness reduction) before the 

macroscopic failure (Murakami, 2012). Variations of the directions of the block-mortar bond in the vault are 

also taken into account.  

Damage models have been used by several authors to study masonry structures under various loading 

conditions: walls under seismic loads (Callerio & Papa, 1998), (Maier, Papa, & Nappi, 1991), (Papa, 1995), 

(Toti, Gattulli, & Sacco, 2015), (Wawrzynek & Cincio, 2005) ; walls under a point shear load (Addessi, 

Marfia, & Sacco, A plastic nonlocal damage model, 2002), (Addessi & Sacco, A multi-scale enriched model 

for the analysis of masonry panels, 2012), (Berto, Saetta, Scotta, & Vitaliani, 2004), (Uva & Salerno, 2006), 

(Zucchini & Lourenço, A micro-mechanical homogenisation model for masonry: Application to shear walls, 

2009); walls under in-plane vertical or horizontal loads (Greco, Leonett, Luciano, & Nevone Blasi, 2016), 

(Luciano & Sacco, 1997), (Massart, Peerlings, & Geers, 2004), (Quinteros, Oller, & Nallim, 2012), (Tesei & 

Ventura, 2016), (Zahra & Dhanasekar, 2016), (Zucchini & Lourenço, A coupled homogenisation-damage 

model for masonry cracking, 2004), (Zucchini & Lourenço, Mechanics of masonry in compression: Results 

from a homogenisation approach, 2007); vaults under different loads (Creazza, Matteazzi, Saetta, & 

Vitaliani, 2002), (Pelà , Cervera, & Roca, 2011), (Stablon, Sellier, Domede, Plu, & Dieleman, 2012); and 

bridges (Domède, 2006), (Domede, Sellier, & Stablon, 2013) ; among others. Most of the studies on masonry 

using damage models consider a wall subjected to in-plane loads or earthquake motions; the case of vaults 
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(bridge or buried arches) is not commonly discussed. Old masonry tunnels are even more rarely studied: the 

analysis of buried masonry vaults is the focus of our study.    

The model for masonry vaults was programmed in the finite element code CESAR-LCPC (ajouter une 

référence à Humbert P., Dubouchet A., Fezans G., Remaud D. (2005) CESAR-LCPC, un progiciel de calcul 

dédié au Génie Civil. Bulletin des Laboratoires des Ponts et Chaussées 256-257: 7-37.), a software package 

dedicated to civil engineering and geotechnical engineering applications, developed since the 1980’s by the 

French Institute of science and technology for transport, development and networks (IFSTTAR). 

In this paper we present firstly the numerical implementation, followed by a set of comparisons with 

experimental tests which allowed the validation of the proposed approach.   

2. Homogenization-damage model for masonry 

2.1 Masonry homogenization  

The process of homogenization consists in replacing a heterogeneous medium by an equivalent 

homogeneous one. In the case of masonry, the very regular geometrical pattern of bricks or blocks and 

mortar joints makes it possible to assume that the heterogeneous masonry material is comparable to a 

composite one with a periodic microstructure. Such a medium is defined by a "basic cell" whose graphic 

repetition represents the whole structure (Fig. 1).  

 

 

 

 

Fig. 1 Basic cell of a masonry wall (Zucchini & Lourenço, A micro-mechanical model for the homogenisation of 

masonry, 2002) 

The geometry of the basic cell and the behavior of its components, i.e. blocks and joints, are used to derive 

the constitutive law of the homogenized continuum. This procedure is referred as a micro-mechanical model 

for the homogenization of masonry by (Zucchini & Lourenço, A micro-mechanical model for the 

homogenisation of masonry, 2002), and gives the homogenized macroscopic stiffness matrix H that connects 
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the macroscopic stresses 0Σ  to the macroscopic strains 0Ε  in the basic cell. This matrix is then used to 

compute forces and displacements in the structure. 

A state of the art on the homogenization techniques for masonry can be found in (Lourenço, Milani, Tralli, & 

Zucchnini, 2007). Homogenization can be carried out by numerical or analytical means. In this paper a 

simplified analytical approach was used.  

2.2 Nonlinear homogenization  

Among the homogenization techniques, the analytical engineering approach proposed by (Zucchini & 

Lourenço, A micro-mechanical model for the homogenisation of masonry, 2002) for the masonry was 

chosen. This technique aims to replace the complex behavior of the basic cell with a simplified one. Initially 

developed for the elastic range, the approach was extended to the nonlinear range in (Zucchini & Lourenço, 

A coupled homogenisation-damage model for masonry cracking, 2004), (Zucchini & Lourenço, Mechanics 

of masonry in compression: Results from a homogenisation approach, 2007) and (Zucchini & Lourenço, A 

micro-mechanical homogenisation model for masonry: Application to shear walls, 2009) for various loading 

situations. This technique will be referred as the model of Zucchini & Lourenço in the following.   

The approach is based on the superposition principle. The elastic response to the basic cell subjected to a 

uniform macroscopic stress state is determined by studying separately six basic loading conditions: three 

cases of normal loading and three cases of pure shear loading, along the axes of the local coordinate system 

(LCS) (Fig. 2 a). For each load case, the value of one component of the macroscopic stress tensor is imposed 

to the basic cell, the other components being zero. 

 

 

 

 

a) Six elementary loading cases b) Components of the basic cell 
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Fig. 2 Quarter basic cell in the masonry of the model of Zucchini & Lourenço (Zucchini & Lourenço, A micro-

mechanical model for the homogenisation of masonry, 2002)  

Because of symmetry conditions, only one quarter of the basic cell is studied. It is divided into four 

components: in one hand the blocks, and in the other hand, the mortar joints, with the horizontal, vertical and 

cross joints (Fig. 2 b)  

By introducing the equilibrium between micro and macro forces in the basic cell boundaries and interfaces, 

the compatibility of the deformation of the components and using Hooke's law, together with other 

simplifying assumptions, a system of equations for each load case is introduced, which allows to compute 

the stresses and strains in each component, under a given macroscopic stress field.   

In the nonlinear range, the model associates a scalar damage variable to each component of the basic cell (i.e. 

joints and blocks). The problem is treated in an incremental way: under increasing load, the homogenization 

technique must account for the damage in each component, and consequently update the internal stresses and 

elastic parameters. Damage is evaluated using a simple Rankine criterion (i.e. only the maximum principal 

stress is compared to the tensile strength).  

The great interest of this approach lies in the fact that the nonlinear anisotropic constitutive law of the 

masonry is obtained by solving a set of algebraic equations, and it is not necessary to solve an auxiliary 

boundary problem on the basic cell by means of a finite element simulation.  

A damage coefficient r
k
=(1-d

k
) is introduced for each component stress, where d is the damage variable,  

k=1,2,3 and B, respectively for the horizontal, vertical, and cross joint, and block (Fig. 2 b). The variable d is 

evaluated with the model presented in paragraph 3.1.  

A system of equations is written in terms of effective stresses for the case of the quarter cell subjected to a 

normal macroscopic stress 0
iiσ  (Fig. 2 a). For instance, equilibrium at the right boundary leads to: 

022 )( hhhh
B
hh

B tltrlr σσσ +=+  (1) 

Superscripts 1,2,3 and B, indicate the component, respectively the horizontal, vertical, and cross joint, and 

block. The superscript 0 represents homogenized cell variables. The subscripts b, h, and n represents the 

local coordinate system (LCS) of the basic cell (Fig. 2 b). See (Zucchini & Lourenço, A micro-mechanical 
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model for the homogenisation of masonry, 2002) and (Zucchini & Lourenço, A coupled homogenisation-

damage model for masonry cracking, 2004) for the full set of the equations. The system of equations can be 

expressed as: 

0
ij

a
ijA σσ =  (2) 

where 
T

B
nnnnnn

B
hhhhhh

B
bbbbbb 






= σσσσσσσσσσ ,,,,,,,, 212121  represents the internal stresses in the basic cell, 

{ }T

nnhhbb 0,0,0,0,,,,0,0 0000 σσσσ =  a vector containing the macroscopic stresses and aA  a matrix that contains the 

geometrical and mechanical properties of the components. In the proposed approach, it is assumed that the 

horizontal stresses varies linearly inside the block, and 
B

bbσ  denotes the average value in the block. 

Homogenized strains are calculated once the system of equations (2) is solved. Finally, Young’s moduli and 

Poisson’s ratios are calculated from average strains and stresses. For example, in the direction b, boundary 

imposed conditions to the basic cell 0,0 000 ==≠ nnhhbb σσσ , lead to:  

0

0

0

0

bb

hh
bh

bb

bb
bE

ε
εν

ε
σ

−==  (3) 

Each case of shear stress forms a separated system of equations. Strains are then calculated in all the 

components, i.e. blocks and joints, and finally the corresponding macroscopic strains. It is then possible to 

evaluate the macroscopic homogenized stiffness matrix H.  

3. Improved model for masonry vaults 

The following modifications of the model are proposed:  

- the isotropic damage model used to characterize the nonlinear behavior of each component in the masonry 

is different from the model initially proposed;  

- the model takes into account variations of the directions of the block-mortar bond in the vault; 

- a regularization technique is adopted to reduce the dependence of the solution regarding the finite element 

mesh, in the numerical modeling of the softening law.   
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3.1 Isotropic damage model for the components 

The model of Zucchini & Lourenço uses a simple Rankine damage criterion to study the behavior in traction 

(Zucchini & Lourenço, A coupled homogenisation-damage model for masonry cracking, 2004) and an 

elastoplastic model in compression (Zucchini & Lourenço, Mechanics of masonry in compression: Results 

from a homogenisation approach, 2007), in each component of the masonry. Instead of this complex model, 

we used a single isotropic damage model. 

The state of damage for isotropic models (Lemaitre & Desmorat, Engineering Damage Mechanics, 2005) is 

controlled by a scalar variable d that ranges from 0 to 1, 0 representing the undamaged material and 1 

corresponding to fracture, such that the damaged modulus is given by Ed =E0 (1-d), where E0 is the elastic 

modulus without damage. A modified version of the Mazars model (Mazars, 1986) for concrete proposed by 

(Davenne, Saouridis, & Piau, 1989) is used. This model considers an equivalent strain ε~  at each material 

point, which depends on the three-dimensional state of strain:  

2

3

2

2

2

1
~

+++ ++= εεεγε  (4) 

where εi (i=1,2,3) represent the principal strains, =+iε  εi  if  εi ≥ 0 ; or 0 if not. In eq. (4) the coefficient γ is 

defined by the following expression:   

2

3

2

2

2

1

2

3

2

2

2

1

−−−

−−−

++

++
−=

σσσ

σσσ
γ  (5) 

where iσ  represents the principal effective stress in the direction i; and 
−iσ  is the negative part of the 

principal effective stress: =−iσ σi  if  σi ≤ 0 ; or 0 if not. The value of γ is bounded between 0 and 1 and 

calculated only when at least a one principal effective stress is negative, i.e. in compression.  

The damage variable evolves if the equivalent strain ε~  reaches a threshold value εD0.  Following (Mazars, 

1986) , this threshold is the strain at the maximum stress in a uniaxial direct tension test. Assuming that the 

behavior is linear up to the maximum tensile stress we can write εD0=ft/E0, where ft is the tensile strength. The 

damage criterion is then written: 
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0~~ ≤−= MF εε  (6) 

where Mε~  is the actual threshold, equal to the initial threshold εD0 if it has never been reached, or the 

maximum value reached by ε~  otherwise.  The damage variable d is a linear combination of two damage 

variables (Mazars, 1986), dt and dc, associated respectively to the tensile and compression stresses: 

cctt ddd αα +=  (7) 

In the absence of traction αt=0, in the absence of compression αc=0, and in all cases αt+αc=1, see (Mazars, 

1986) for a detailed definition of αt and αc. The evolution laws of the two variables of damage are: 

( )
( )[ ]0

0
~exp~

1
1

DMc

c

M

cD
c

B

AA
d

εεε
ε

−
−

−
−=  

( )[ ]0
0 ~exp~1 DMt

M

D
t Bd εε

ε
ε

−−−=  

(8) 

where Ac and Bc are parameters obtained experimentally from the stress-strain curves of a compression test. 

The equation for dt in (8) is a modified expression, from that of (Mazars, 1986), proposed by (La Borderie, 

2003) as a regularization technique in traction, to avoid the well-known excessive mesh sensitivity problems 

in the finite element modeling of the softening behavior of the damage law, see (Murakami, 2012). The 

parameter Bt depends on the characteristic length lc, the mode I fracture energy Gft, and the tensile strength of 

the material ft:  

ft

tc
t

G

fl
B =  (9) 

where lc = S , and S is the area (or volume) of the finite element to which the integration point belongs. The 

mode I fracture energy is assumed to be a material property. This is another difference with respect to the 

model of Zucchini & Lourenço, in which the characteristic length is taken equal to the component dimension 

perpendicular to the crack direction, producing high mesh-sensitivity because lc is a constant quantity. 

Introducing damage in each homogeneous isotropic component makes it possible to reproduce implicitly the 

global anisotropic damage behavior of the masonry.  
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3.2 Strain driven problem 

For the coupling of the numerical homogenization procedure with damage, it is convenient to evaluate the 

stresses and strains in the basic cell by imposing a macroscopic incremental strain field instead of a stress 

field.  

When studying traction parallel to the bed joint of the masonry, the model of Zucchini & Lourenço imposes 

to the basic cell a macroscopic horizontal strain and null macroscopic stress in the other directions (Zucchini 

& Lourenço, A coupled homogenisation-damage model for masonry cracking, 2004); when studying 

compression, a macroscopic vertical strain and null macroscopic stress in the other directions (Zucchini & 

Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 2007). In our 

study a uniform strain field is imposed, instead of these mixed boundary conditions.  

In practice, we decompose the macroscopic strain tensor into two contributions: one due to the normal strain 

and other due to shear strain. Two auxiliary problems on the basic cell must be solved. The damage in each 

component depends on the sum of the stresses in the given component obtained for each auxiliary problem. 

This approach was adopted by (Zucchini & Lourenço, A micro-mechanical homogenisation model for 

masonry: Application to shear walls, 2009). In our study, we adopt the following simplifying assumption: 

damage in components is caused only by the macroscopic strains 0
bbε , 0

hhε , 0
nnε  (Fig. 3), the strain 0

bhε , 

considered small compared to strains 0
iiε , is neglected. With this assumption, a single auxiliary problem must 

be solved to compute internal stresses and strains of each component within the basic cell.   

 

 

 

 

 

 

 

 

 

 
Fig. 3 Strain field applied to the quarter basic cell  

Thus the system of equations (2) becomes: 

0
ij

b
ijA εσ =  (10) 
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where 
T

B
nnnnnn

B
hhhhhh

B
bbbbbb 






= σσσσσσσσσσ ,,,,,,,, 212121  represents the internal stresses, 

{ }T

nnhhbb 0,0,0,0,,,,0,0 0000 εεεε =  a vector containing the macroscopic strains and bA  a matrix that contains the 

geometrical and mechanical properties of the components. A complete presentation of the system of 

equations can be found in (Moreno Regan, 2016).   

3.3 Homogenized damaged parameters  

For a given macroscopic strain field, stresses σ in the components are obtained after resolution of the system 

(10), and then the damage coefficients r
k
 = (1-d

k
) are calculated for each component using the  model of 

paragraph 3.1.  

Given the fact that a strain field is imposed to the basic cell, it is difficult to evaluate the Poisson's ratios. It is 

proposed here to solve firstly the system (10) that gives the damage coefficient r
k
. Secondly, the coefficients 

r
k
 previously obtained are injected into the system of equations where an arbitrary macroscopic stress 

10 =ijσ  Pa is imposed with different boundary conditions, to finally calculate the damaged elastic moduli and 

the Poisson’s ratios.  

3.4 Geometrical considerations for the vault 

The model defined in the previous paragraphs was presented with respect to the directions of the basic cell, 

denoted b, h and n. For a wall, the orientation of the local axes is constant. In a masonry vault (Fig. 4 a), the 

orientation of the block-mortar bond varies and it is necessary to take it into account: the global coordinate 

system (GCS) in which the finite element mesh is constructed and the local coordinate system (LCS) which 

follows the orthotropic directions of the masonry (Fig. 4). The directions b and h are in the plane while the 

direction n is out of the plane.  

 

 

 

 

 

 

 

 

 
a)  Definition of the coordinate systems b) Normal projection of the M point into the mean ellipse 

 
Fig. 4 Geometry of the masonry vault of a tunnel 
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The vault geometry is defined by the intrados and the extrados, both of elliptical shape, making it possible to 

take into account a wide variety of geometries. A fictitious “mean ellipse” is defined in the vault, midway 

between the intrados and the extrados, centered in C, with semi-axes a and b (Fig. 4b). Each point M (xM, yM) 

of the vault is associated with its projection onto the mean ellipse, denoted by N(xN, yN), and the local 

masonry directions b and h are taken equal to the normal and the tangent to the mean ellipse. We introduce 

the angle θ that defines the position of the point M with respect to the horizontal axis and the normal 

projection to the mean ellipse (Fig. 4 b).  

The coordinates of the point N (xN, yN) are given by  








 −=
2

2
1

a

k
xx MN  








 −=
2

2
1

b

k
yy MN  

where 

4

2

4

2

2

2

2

2

44

1
22

b

y

a

x

b

y

a

x

k
MM

MM

+

−+
=  

(11) 

and the angle θ is defined by: 














=

2

2

arctan
bx

ay

N

Nθ  (12) 

The angle θ is positive counterclockwise. For θ = 90° the point is at the keystone of the vault.  

The strain field applied to the basic cell in paragraph 3.2 has to be expressed in the LCS. In a 2D study, the 

transition from the GCS to the LCS is carried out by performing the following operation:   

00
jiji Q Ε=ε  (13) 

where 0Ε is the macroscopic strain vector in the GCS (with the conventions of Fig. 4) and 0ε the 

macroscopic strain vector in the LCS. The matrix Q is given by:   

















−−
−=

θθθθθθ
θθθθ

θθθθ

22

22

22

sincoscossincossin

sincos2cossin

sincos2sincos

Q  (14) 

where θ is computed with equation (12).  
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3.5 Damage tensor 

The orthotropic damaged stiffness matrix dC  (see eq.(18) below)  is given implicitly by homogenization-

damage technique without the formulation of a damage tensor variable. To display the state of damage of the 

vault, it is interesting to calculate an orthotropic damage tensor, using the strain equivalence principle 

(Lemaitre, A course in damage mechanics, 1992). We can write:     

( )ijijij MID 1−−=  (15) 

where I is the identity second order tensor; M is a second order tensor called effective damage tensor 

according to (Murakami, 2012), which transforms the stress tensor σ into effective stress tensorσ and is 

expressed as 

d
kjikij SCM 0=  (16) 

0
ikC  is the undamaged stiffness matrix in the LCS and ( )

ij

dd
ij CS





=

−1
. This produces an asymmetrical 

second order tensor D: 

LCS
D

D

D

DDD

DDD

DDD

D



























=

66

55

44

333231

232221

131211

00000

00000

00000

000

000

000

 (17) 

The tensor D expresses damage in the LCS (Fig. 4). Thus, for example D11 can be seen as the degradation of 

the Eb module and D22 as degradation of Eh. The evaluation of the anisotropic damage tensor is not needed to 

carry out the calculations, but provides the possibility to represent graphically the anisotropic damage state in 

the vault given by the model. 

4. Numerical implementation  

In our study, we propose to apply the homogenization-damage technique to each integration point of the 

finite element mesh in order to compute forces and displacements in the structure.  
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4.1 Global iterative resolution procedure   

In the finite element analysis of damage problems, an elastic solution is computed first, with the initial value 

of the damage parameters. At a local level, the strains induce a modification of the damage parameters 

(described in the following section), and of the stiffness of the material: the stress state must be updated to 

account for this stiffness reduction, which produces out-of-balance nodal forces. The procedure follows a 

classical Newton-Raphson iterative scheme.  

More precisely, once the homogenized macroscopic parameters are obtained at the local level, the damaged 

stiffness matrix dC  is updated in the LCS (see paragraph 3.4). In plane stress we have:  

LCS

bh

hbbh

h

hbbh

hbb

hbbh

hbb

hbbh

b

d

G

EE

EE

C

























−−

−−

=

00

0
11

0
11

νννν
ν

νν
ν

νν

 (18) 

Then the damaged stiffness matrix dH  in the GCS is computed: 

lj
d
ijki

d
kl PCTH =  (19) 

where T and P are transformation matrices: 

















−−

−
=

θθθθθθ
θθθθ
θθθθ

22

22

22

sincoscossin2cossin2

sincoscossin

sincossincos

T  

















−−

−
=

θθθθθθ
θθθθ
θθθθ

22

22

22

sincoscossincossin

sincos2cossin

sincos2sincos

P  (20) 

Angle θ is computed with equation (12). Finally, the update of the macroscopic stresses 0Σ  is carried out: 

00
j

d
iji H Ε=Σ  (21) 

The numerical scheme is summarized in Box 1, where m represents the global iteration. The global damage 

criterion FG adopted here is: 

[ ]k
cG FF max=  (22) 

where k
cF  represents the damage criterion of each component given by equation (6). 
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Box 1 Global iterative algorithm for masonry vaults 

(i) Compute incremental macroscopic stresses and strains in each integration point from ( ) 1−m
d

H  

(ii) Compute damage coefficients in basic cell, see Box 2 

(iii) Check global criterion FG>0 ?, Eq. (22) 

YES: damage loading. Proceed to (iv) 

NO: no further damage. Exit 

(iv) Compute local damaged stiffness matrix ( )md
C , Eq. (18) 

(v) Compute damage tensor D for display only, Eq. (17) 

(vi) Update global stiffness matrix ( )md
H , Eq. (19) 

(vii) Update macroscopic stresses 0
iΣ , Eq. (21)  

4.2 Local iterative resolution procedure   

Since the stresses in each component depend on the damage coefficient r
k
 = (1-d

k
) and the damage variable 

d
k
 depends on the stress state in each component, a local iterative process is necessary. It is performed at the 

basic cell level: for each strain increment 0
iiε , the system (10) is solved to obtain the unknown internal 

stresses and strains in the cell components (k=1,2,3, and B), using the damage coefficients of the previous 

iteration. Damaged coefficients are then updated using the model of paragraph 3.1, from the new stresses. 

The process is iterated until convergence of the coefficients r
k
. It is considered that convergence is achieved 

when:  

η<maxp  with pmax = max [pk],  and  
( )
( )k

n
k

n

k
n

k
n

k
rr

rr
p

,max

,min
1

1

1

−

−−=  (23) 

where n is the actual iteration in the basic cell and η is the tolerance taken equal to 10
-3

. The procedure is 

summarized in Box 2. 
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Box 2 Local iterative algorithm in the basic cell 

For each integration point: 

(i) Compute local macroscopic strains, Eq. (13) 

(ii) Compute stresses and strains in all components with ( ) 1−n
kr , Eq. (10) 

(iii) For each component: 

Compute equivalent strain, Eq. (4)  

Check damage criterion k
cF >0 ? Eq. (6) 

      YES: damage loading. Proceed to (iv) 

      NO: no further damage. Exit 

(iv) Update damage coefficients ( )nkr  

(v) Convergence? Eq. (23)  

YES: Proceed to (vi) 

NO: Proceed to (ii) 

(vi) Update damaged homogenized parameters, see paragraph 3.3 

 

5. Validation 

The model presented above makes it possible to account for the strength and geometry of the mortar joints in 

the vault, since the homogenization technique is performed at each step of the loading process. It is possible 

to compare homogenized numerical results with experimental results provided that the results are analyzed at 

the appropriate scale (many authors have adopted this approach to validate numerical homogenized models 

for masonry: (Luciano & Sacco, 1997), (Massart, Peerlings, & Geers, 2004), (Quinteros, Oller, & Nallim, 

2012), (Uva & Salerno, 2006), (Zucchini & Lourenço, A micro-mechanical homogenisation model for 

masonry: Application to shear walls, 2009) and (Zucchini & Lourenço, Mechanics of masonry in 

compression: Results from a homogenisation approach, 2007), among others).  

The approach presented in the preceding paragraphs was applied to some experimental studies for validation 

purpose.  

5.1 Elementary validations 

We considered existing experimental studies in the literature to verify that the expected behavior is correctly 

reproduced. All FEM calculations were carried out in plane stress conditions.  
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5.1.1 Compression strength 

Tests on the compressive strength of masonry prisms by (McNary & Abrams, 1985) are used to validate the 

numerical model. Two types of blocks were tested. The properties of the materials are presented in 

Appendix A. The geometric parameters are showed in Table 1. In the simulations, the vertical displacement 

is set to zero on the lower boundary, and a vertical displacement is imposed on the upper boundary.  Finite 

element size is about 5 cm.  

Table 1 Properties of the prisms tested in compression (McNary & Abrams, 1985) 

Ref 
Blocks dimensions (mm) 

Mortar thickness 

(mm) 

Prism size 

(mm) 
length Height depth 

Unit 1 200 

194 

57  

55 

98   

89 

9.5 

9.5 

200x323 

200x323 Unit 2 

 

Results are showed in Table 2. Good agreement is observed for Unit 1 test with a -1.9 % deviation, whereas 

a less accurate numerical result is obtained for Unit 2 test with a -11.7% deviation.  A comparison with the 

numerical results by [48] for the same tests is also presented, these show -2.7% and 6.6% deviations 

respectively.  

Table 2 Comparison between the measured compressive strength (McNary & Abrams, 1985) and numerical predictions 

(MPa) 

Prism Experimental Model Zucchini & 

Lourenço 

(Zucchini & 

Lourenço, 

Mechanics of 

masonry in 

compression: 

Results from a 

homogenisation 

approach, 

2007) 

U1M 48.2 47.3 46.9 

U2M 37.7 33.3 40.2 

 

5.1.2 Tensile strength 

Experimental tests on the tensile strength of masonry are scarce in the literature. We studied the tests 

performed by (Backes, 1985) on a series of walls using different types of masonry mortar and bricks, with 
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different combinations of strength. Brick dimensions are 240 mm length, 115 mm depth and 113 mm height, 

with a 10 mm thickness of mortar joints. The specimen for testing is 490 x 482 mm. We considered the 

results of the KS12 and HLz12 brick types and MGII and MGIII mortars. The properties of the materials are 

presented in Appendix A. 

The principle of the test is to apply a direct tensile stress parallel to the bed joints with two metal beams 

glued to the wall (see (Backes, 1985) and (Lourenço, Rots, & van der Pluijm, Understanding the tensile 

behaviour of masonry paralel to bed joints : a numerical approach, 1999) for further details). The rectangular 

prisms were modeled with a horizontal displacement set to zero on the left boundary, and a horizontal 

displacement imposed on the right boundary. Finite element size is about 5 cm. The results show a good 

agreement with experimental results (Table 3).  

Table 3 Comparison between the measured tensile strength (Backes, 1985) and numerical predictions (MPa) 

Prism Experimental Model 

KS12-MG II 0.17 0.19 

HLz12-MG III 0.22 0.21 

 

5.2 Validation in the case of a masonry vault 

Eventually, the model was used to simulate experimental tests performed by (Krajewski & Hojdys, 

Experimental studies on buried barrel vaults, 2015) on semi-circular masonry vaults. Two particular cases 

are studied here (Fig. 5): the first one is a simple vault subjected to a point load, and the second one, a buried 

vault with a point load applied on the surface.  

The vaults had two reinforced concrete supports connected with two steel rods with a diameter of 20 mm, in 

order to avoid horizontal movements of the supports. For the buried vaults, concrete walls were built to 

retain the filling, connected by two steel beams to prevent horizontal displacements and rotations of the 

walls. The vault geometry is showed in Fig. 5. The bricks length, width and thickness are 250 mm, 125 mm 

and 65 mm, respectively. The thickness of the mortar joints was 13 mm. The properties of the materials are 

presented in Appendix A.  
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a) Vault without fill b) Buried vault 

Fig. 5 Geometry of masonry arches semicircular studied by (Krajewski & Hojdys, Experimental studies on buried barrel 

vaults, 2015) (in mm) 

A set of LVDT sensors are placed in the vault intrados. Focus was taken only on the sensor positioned just 

below the load (point A, Fig. 5 a).  The mean ellipse (see paragraph 3.4) is defined by a = b = 111.25 cm for 

both cases. 

5.2.1 Modelling of the vault without fill 

The FEM calculations were carried out in plane strain conditions. The applied boundary conditions in the 

vault are zero vertical and horizontal displacements in the supports. To deal with the softening behavior of 

the vault and avoid numerical instabilities, the structure is associated in the simulation with a fictitious spring 

placed at the point of application of the load. As damage evolves in the vault, the spring takes the difference 

between the external applied force and the force born by the vault.  

The modeling results are shown in Fig. 6 and Table 4, where ur is the radial displacement of the vault of 

point A (Fig. 5 a). The angles in the numerical curve correspond to the formation of hinges in the loading 

process (Fig. 7). In the experimental results, the maximum load is reached for a small displacement, whereas 

in the calculations deformation is a little higher when maximum load is reached. However, from a qualitative 

point of view the model produces satisfactory results. 
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Table 4 Comparison of results  

 

 

 

 

 

Fig. 6 Force-displacement curves for the vault without filling: 

experiment (Krajewski & Hojdys, Experimental studies on buried 

barrel vaults, 2015) and numerical modeling 

In Fig. 7, the experimental and numerical failure mechanism of the vault are shown; notably, the four-hinge 

failure mechanism obtained experimentally (red dots) is correctly reproduced by the model. The hinges are 

identified in the numerical results as completely damaged zones where an abrupt change in the slope of the 

deformed shape takes place. The deviation between the simulation and the experiment can be attributed to 

numerous factors, notably the uncertainties on the details of the experimental setup (the type of contact 

between the vault and the support for instance).  

 

 

 

 
                            

 

 

 
a) Experimental (Krajewski & Hojdys, Experimental 

studies on buried barrel vaults, 2015), referred as 

specimen S02 

b) Numerical, damage variable D22 

(D=1 complete damage; D=0 no damage) 

Fig. 7 Failure mechanism of the vault without filling: comparison of experiment and modeling 

 Fmax (kN) ur (mm) 

Experimental 

(Krajewski & 

Hojdys, 

Experimental 

studies on buried 

barrel vaults, 

2015) 

4.10 0.43 

Model 3.86 0.69 
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5.2.2 Modelling of the buried vault  

The applied boundary conditions at the supports are zero vertical and horizontal displacements. Regarding 

the retaining walls of the fill (Fig. 5), we considered that there are no horizontal displacements of the walls, 

although a minor horizontal displacement of the upper edge of around 0.8 mm was measured. An 

elastoplastic model with a Drucker-Prager criterion was used for the filling, made of expanded clay, using 

the values given in Appendix A. Property values for masonry materials are also presented in Appendix A. 

The calculation was conducted in plane strain conditions in two steps: (1) application of the weight of the 

filling and vault and (2) application of the load in 100 increments.    

The modeling results are shown in Fig. 8 and Table 5. The failure load is predicted with a good precision, the 

radial displacement ur  of point A (see Fig. 5b) ,  however, is a little less accurate. Fig. 9 shows that the 

model satisfactorily reproduces the four-hinge failure mechanism. Damage variable D22 is shown to represent 

the damage state of the vault (see paragraph 3.5). As for the non-buried vault, the hinges are identified in the 

numerical results as completely damaged zones where an abrupt change in the slope of the deformed shape 

takes place.   

 

Table 5 Comparison of results 

 

 

 

 

 

Fig. 8 Force-displacement curves for the buried vault: experiment (Krajewski & Hojdys, Experimental studies on buried 

barrel vaults, 2015) and modeling 

 

 

 Fmax (kN) ur (mm) 

Experimental 

(Krajewski & 

Hojdys, Experimental 

studies on buried 

barrel vaults, 2015) 

24.70 6.75 

Model 23.53 4.73 
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a) Experimental (Krajewski & Hojdys, Experimental 

studies on buried barrel vaults, 2015), referred as 

specimen SKM 

b) Numerical, damage variable D22 

(D=1 complete damage; D=0 no damage) 

Fig. 9 Failure mechanism of the buried vault: comparison of experimental data and modeling 

The small differences between experimental and numerical results showed in Fig. 8 and Fig. 9, can be due to 

the behavior of the fill and its interaction with the vault. The mechanical properties of the fill material have 

an influence on the way the applied load is transferred to the vault. A sensitivity analysis shows that a lower 

cohesion (a softer material) causes earlier numerical failure of the vault (Fig. 10).  

 

 

 

 

 

 

 

Fig. 10 Force-displacement curves for the buried vault with different cohesions 
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6. Conclusions 

A numerical model was proposed to analyze the nonlinear behavior of masonry vaults using a macro-

modeling strategy. The study includes the analyses of buried vaults up to failure. The nonlinear 

homogenization technique proposed by (Zucchini & Lourenço, A coupled homogenisation-damage model 

for masonry cracking, 2004) was used to study the masonry with the following modifications: the nonlinear 

behavior of the components of the masonry is characterized by an isotropic damage model and the directions 

of the masonry in a vault were taken into account. The homogenization technique is modified to include a 

regularization technique to reduce the dependency of the solution with respect to the finite element mesh. 

The model was programmed in the finite element code CESAR-LCPC. 

The model was used to reproduce elementary tests in tension and compression. A good agreement was found 

between experimental and numerical strengths. Secondly, the experimental tests conducted by (Krajewski & 

Hojdys, Experimental studies on buried barrel vaults, 2015) on circular vaults, were reproduced numerically. 

Two cases were studied: a vault without filling and a buried vault. The model satisfactorily reproduces the 

failure load, the four-hinge failure mechanism, and it is also possible to evaluate the deformation of the 

structure during loading process up to failure. The simulations also show that the mechanical properties of 

the fill material have an influence on the way the applied load is transferred to the vault.   

The proposed model can be used to study any masonry vault, whose geometry can be represented by an 

elliptical curve. This model will be used for the masonry vaults of the Paris metro, in order to evaluate the 

serviceability state when nearby civil engineering works alter the original equilibrium state of the structure.  
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Appendix A 

In the tables presented in this appendix, the following notation is used: 

ρ 

E 

ν 

ft 

Gft 

fc 

Ac   

Bc 

εD0 

Density (kg/m
3
) 

Young's modulus (MPa)  

Poisson's ratio  

Tensile strength (MPa)  

Mode I fracture energy (Pa.m)  

Compression strength (MPa) 

Damage model coefficient for compression 

(Mazars, 1986) 

Damage model coefficient for compression 

(Mazars, 1986) 

Damage threshold strain 

In all cases the parameters Ac and Bc were proposed in such a way as to obtain the value of the peak stress in 

the strain-stress curve equals the known compressive strength. Damage threshold strains were calculated 

with εD0=ft/E0.   
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Table A.1 Properties of mortar and brick for the validation of the compressive and tensile tests  

Ref 

McNary & Abrams (McNary & 

Abrams, 1985) 

Backes (Backes, 1985) 

 Unit1 Unit 2 Mortar M Unit KS12 Mortar MG II Unit HLZ 12 Mortar MG III 

E 

ν 

ft 

Gft 

fc 

Ac 

Bc 

εD0 

15000* 

0.13* 

2.74* 

79* 

58.9* 

1.15 

634 

1.84E-4 

9900* 

0.17* 

1.79* 

52* 

44* 

1.1 

400 

1.81E-4 

11600* 

0.096* 

2.97 

100 

31.1* 

0.8 

1318 

2.65E-4 

4500** 

0.2 

1.44** 

150 

23.2** 

1.0 

275 

3.2E-4 

1120** 

0.2 

0.13 

9.0 

3.5** 

0.8 

356 

1.16E-4 

3500** 

0.2 

0.9** 

100 

23.3** 

1.0 

206 

2.57E-4 

1832** 

0.2 

0.15 

10 

9.86** 

1.0 

246 

8.19E-5 

*Properties taken from (Zucchini & Lourenço, Mechanics of masonry in compression: Results from a homogenisation approach, 

2007) other properties were proposed.  

**Properties taken from (Backes, 1985). The elasticity modulus have been proposed in such a way that after the homogenization 

process, we find the value of the masonry modules in tension measured by (Backes, 1985), i.e. E = 3870 and 3273 MPa for walls 

KS12-MGII and HLz12-MG III, respectively. Other properties were proposed 
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Table A.2 Properties of mortar and brick for the validation of the masonry vault 

Ref 

Krajewski & Hojdys (Krajewski & Hojdys, Experimental 

studies on buried barrel vaults, 2015) 

 

vault without fill buried vault 

Unit Mortar Unit Mortar 

ρ 

E 

ν 

ft 

Gft 

fc 

Ac 

Bc 

εD0 

1700* 

10000 

0.2* 

0.9 

100 

24.4* 

1.0 

561 

9E-5 

1700* 

250* 

0.16* 

0.08* 

10 

1.0* 

0.5 

269 

3.2E-4 

1700* 

10000 

0.2* 

0.9 

100 

21.4* 

1.0 

644 

9E-5 

1700* 

150 

0.16* 

0.08* 

30 

1.1* 

0.5 

142 

5.33E-4 

*Properties taken from and (Hojdys, Kaminski, & Krajewski, 2013b), (Krajewski & Hojdys, Burried vaults with different types of 

extrados finishes - experimental tests, 2014) and (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015), other 

properties were proposed  

 

 

Table A.3 Properties of the fill from of the buried vault 

 Expanded clay  

ρ 

E 

ν 

Cohesion (kPa) 

Friction angle (°) 

Dilatancy angle (°) 

300* 

10 

0.3 

4.5 

37* 

10 

*Properties taken from (Krajewski & Hojdys, Experimental studies on buried barrel vaults, 2015), other properties were proposed  
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