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Abstract

We propose the kl-UCB++ algorithm for regret minimization in stochastic bandit models with

exponential families of distributions. We prove that it is simultaneously asymptotically optimal

(in the sense of Lai and Robbins’ lower bound) and minimax optimal. This is the first algorithm

proved to enjoy these two properties at the same time. This work thus merges two different lines of

research with simple and clear proofs.

Keywords: Stochastic multi-armed bandits, regret analysis, upper confidence bound (UCB), mini-

max optimality, asymptotic optimality.

1. Introduction

For regret minimization in stochastic bandit problems, two notions of time-optimality coexist. On

the one hand, one may consider a fixed model: the famous lower bound by Lai and Robbins (1985)

showed that the regret of any consistent strategy should grow at least as C(µ) log(T )
(
1−o(1)

)
when

the horizon T goes to infinity. Here, C(µ) is a constant depending solely on the model. A strategy

with a regret upper-bounded by C(µ) log(T )
(
1 + o(1)

)
will be called in this paper asymptotically-

optimal. Lai and Robbins provided a first example of such a strategy in their seminal work. Later,

Garivier and Cappé (2011) and Maillard et al. (2011) provided finite-time analysis for variants of

the UCB algorithm (see Agrawal (1995); Burnetas and Katehakis (1996); Auer et al. (2002a)) which

imply asymptotic optimality. Since then, other algorithms like Bayes-UCB (Kaufmann et al., 2012)

and Thompson Sampling (Korda et al., 2013) have also joined the family.

On the other hand, for a fixed horizon T one may assess the quality of a strategy by the greatest

regret suffered in all possible bandit models. If the regret of a bandit strategy is upper-bounded by

C ′
√
KT (the optimal rate: see Auer et al. (2002b) and Cesa-Bianchi and Lugosi (2006)) for some

numeric constant C ′, this strategy is called minimax-optimal. The PolyINF and the MOSS strategies

by Audibert and Bubeck (2009) were the first proved to be minimax-optimal.

Hitherto, as far as we know, no algorithm was proved to be at the same time asymptotically-

and minimax-optimal. Two limited exceptions may be mentioned: the case of two Gaussian arms

is treated in Garivier et al. (2016a); and the OC-UCB algorithm of Lattimore (2015) is proved to

be minimax-optimal and almost problem-dependent optimal for Gaussian multi-armed bandit prob-
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lems. Notably, the OC-UCB algorithm satisfies another worthwhile property of finite-time instance

near-optimality, see Section 2 of Lattimore (2015) for a detailed discussion.

Contributions. In this work, we put forward the kl-UCB++ algorithm, a slightly modified version

of kl-UCB+ algorithm discussed in Garivier et al. (2016a) as an empirical improvement of UCB,

and analyzed in Kaufmann (2016). This bandit strategy is designed for some exponential distri-

bution families, including for example Bernoulli and Gaussian laws. It borrows from the MOSS

algorithm of Audibert and Bubeck (2009) the idea to divide the horizon by the number of arms

in order to reach minimax optimality. We prove that it is at the same time asymptotically- and

minimax-optimal. This work thus merges the progress which has been made in different direc-

tions towards the understanding of the optimism principle, finally reconciling the two notions of

time-optimality.

Insofar, our contribution answers a very simple and natural question. The need for simultaneous

minimax- and problem-dependent optimality could only be addressed in very limited settings by

means that could not be generalized to the framework adopted in our paper. Indeed, for a given

horizon T , the worst problem depends on T : it involves arms separated by a gap of order
√

K/T .

Treating the T -dependent problems correctly for all T appears as a quite different task than catching

the optimal, problem-dependent speed of convergence for every fixed bandit model. We show in

this paper that the two goals can indeed be achieved simultaneously.

Combining the two notions of optimality requires a modified exploration rate. We stick as much

as possible to existing algorithms and methods, introducing just what is necessary to obtain the

desired results. Starting from that of kl-UCB (so as to have a tight asymptotic analysis), one has

to completely cancel the exploration bonus of the arms that have been drawn roughly T/K times.

The consequence is very slight and harmless in the case where the best arm is much better than the

others, but essential in order to minimize the regret in the worst case where the best arm is barely

distinguishable from the others. Indeed, when the best arm is separated by a gap of order
√

K/T
from the suboptimal arms, we can not afford to draw more than T/K times a suboptimal arm so as

to get a regret of order
√
KT .

We present a general yet simple proof, combining the best elements of the above-cited sources

which are simplified as much as possible and presented in a unified way. To this end, we develop

new deviation inequalities, improving the analysis of the different terms contributing to the regret.

This analysis is made in the framework which we believe is the best compromise between simplicity

and generality (simple exponential families). This permits us to treat, among others, the Bernoulli

and the Gaussian case at the same time. More fundamentally, this appears to us as the right, simple

framework for the analysis, which emphasizes what is really required to have simple lower- and

upper-bounds (the possibility to make adequate changes of measure, and Chernoff-type deviation

bounds).

The paper is organized as follows. In Section 2, we introduce the setting and assumptions

required for the main results, Theorems 1 and 2, which are presented in Section 3. We give the

entire proofs of these results in Sections 4 and 5, with only a few technical lemmas proved in

Appendix A. We conclude in Section 6 with some brief references to possible future prospects.

2. Notation and Setting

Exponential families. We consider a simple stochastic bandit problem with K arms indexed by

a ∈ {1, . . . ,K}, with K > 2. Each arm is assumed to be a probability distribution of some
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canonical one-dimensional exponential family νθ indexed by θ ∈ Θ. The probability law νθ is

assumed to be absolutely continuous with respect to a dominating measure ρ on R, with a density

given by

dνθ
dρ

(x) = exp(xθ − b(θ)), where b(θ) = log

∫

R

exθdρ(x) and Θ =
{
θ ∈ R : b(θ) < +∞

}
.

It is well-known that b is convex, twice differentiable on Θ, that b′(θ) = E(νθ) and b′′(θ) =
V (νθ) > 0 are respectively the mean and the variance of the distribution νθ. The family can thus

be parametrized by the mean µ = b′(θ), for µ ∈ I = b′(Θ) := (µ̄−, µ̄+). The Kullback-Leibler

divergence between two distributions is KL(νθ, νθ′) = b(θ′) − b(θ) − b′(θ)(θ′ − θ). This permits

to define the following divergence on the set of arm expectations: for µ = E(νθ) and µ′ = E(νθ′),
we write

kl(µ, µ′) := KL(νθ, νθ′) .

For a minimax analysis, we need to restrict the set of means to bounded interval: we suppose

that each arm νθ satisfies µ = b′(θ) ∈ [µ−, µ+] ⊂ I for two fixed real numbers µ+, µ−. Our

analysis requires a Pinsker-like inequality; we therefore assume that the variance is bounded in the

exponential family: there exists V > 0 such that

sup
µ∈I

b′′
(
b′
−1

(µ)
)
= sup

µ∈I
V
(
νb′−1(µ)

)
6 V < +∞ .

This implies that for all µ, µ′ ∈ I ,

kl(µ, µ′) >
1

2V
(µ − µ′)2 . (1)

In the sequel, we denote by F the set of bandit problems ν satisfying these assumptions. By the

usual Pinsker inequality, this setting includes in particular Bernoulli bandits with V = 1/4 and

kl(µ, µ′) = µ log(µ/µ′)+ (1−µ) log
(
(1−µ)/(1−µ′)

)
(by convention, 0 log 0 = 0 log 0/0 = 0).

This also includes (bounded) Gaussian bandits with known variance σ2, with the choice V = σ2

and kl(µ, µ′) = (µ − µ′)2/(2σ2).

Regret. The K arms are denoted νθ1 , . . . νθK , and the expectation of arm a ∈ {1, . . . ,K} is

denoted by µa. At each round 1 6 t 6 T , the player pulls an arm At and receives an independent

draw Yt of the distribution νθAt
. This reward is the only piece of information available to the player.

The best mean is µ⋆ = maxa=1,...,K µa. We denote by Na(T ) =
∑T

t=1 I{At=a} the number of

draws of arm a up to and including time T . In this work, the goal is to minimize the expected regret

RT = Tµ⋆ − E

[
T∑

t=1

Yt

]
= E

[
T∑

t=1

(
µ⋆ − µAt

)
]
=

K∑

a=1

(
µ⋆ − µa

)
E
[
Na(T )

]
.

Lai and Robbins (1985) proved that if a strategy is uniformly efficient, that is if it is such that under

any bandit model of a sufficiently rich family (such as an exponential family described above)

RT = o(Tα) holds for every α > 0, then it needs to draw any suboptimal arm a at least as often as

E
[
Na(T )

]
>

log(T )

kl(µa, µ⋆)

(
1− o(1)

)
.
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In light of the previous equality, this directly implies an asymptotic lower bound on RT / log(T ).
On the other side, a straightforward adaptation of the the proof of Theorem A.2 of Auer et al.

(2002b) shows that there exists a constant C ′ depending only on the considered family F of distri-

butions such that

sup
ν∈F

RT > C ′min
(√

KT, T
)
,

where the supremum is taken over all bandit problems ν in F . Note that the notion of minimax-

optimality is defined here up to a multiplicative constant, in contrast to the definition of (problem-

dependent) asymptotic optimality. For a discussion on the minimax and asymptotic lower bounds,

we refer to Garivier et al. (2016b) and references therein.

3. The kl-UCB++ Algorithm

We denote by µ̂a,n the empirical mean of the first n rewards from arm a. The empirical mean of

arm a after t rounds is

µ̂a(t) = µ̂a,Na(t) =
1

Na(t)

t∑

s=1

Ys I{As=a} .

Parameters: The horizon T and an exploration function g : N 7→ R
+.

Initialization: Pull each arm of {1, ..,K} once.

For t = K to T − 1, do

1. Compute for each arm a the quantity

Ua(t) = sup

{
µ ∈ I : kl

(
µ̂a(t), µ

)
6

g
(
Na(t)

)

Na(t)

}
. (2)

2. Play At+1 ∈ argmaxa∈{1,..,K} Ua(t).

The kl-UCB++ algorithm is a slight modification of algorithm kl-UCB+ of Garivier and Cappé

(2011) and of the kl-UCB-H+ analyzed in Kaufmann (2016). It uses the exploration function g
given by

g(n) = log+

(
T

Kn

(
log2+

(
T

Kn

)
+ 1

))
, (3)

where log+(x) := max
(
log(x), 0

)
. The exploration function g borrows the general form with

the extra exploration rate from the kl-UCB algorithm, the division by the number of draws from

kl-UCB+, and the division by the number of arm from MOSS.

The following results state that the kl-UCB++ algorithm is simultaneously minimax- and asympto-

tically-optimal.

Theorem 1 (Minimax optimality) For any family F satisfying the assumptions detailed in Sec-

tion 2, and for any bandit model ν ∈ F , the expected regret of the kl-UCB++ algorithm is upper-

bounded as

RT 6 76
√
V KT + (µ+ − µ−)K . (4)
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Theorem 2 (Asymptotic optimality) For any bandit model ν ∈ F , for any suboptimal arm a and

any δ such that
√

22V K/T 6 δ 6 (µ⋆ − µa)/3,

E
[
Na(T )

]
6

log(T )

kl(µa + δ, µ⋆ − δ)
+O

(
loglog(T )

δ2

)
(5)

which implies the asymptotic optimality (see the end of the proof in Section 5 for an explicit bound).

Theorems 1 and 2 are proved in Sections 4 and 5 respectively. The main differences between the two

proofs are discussed at the beginning of Section 5. Note that the two regret bounds of Theorems 1

and 2 also apply to all [0, 1]-valued bandit models, with the value V = 1/4, as the deviations of

[0, 1]-valued random variables are dominated by those of a Bernoulli distribution with the same

mean (this is discussed for example in Cappé et al. (2013)). However, the kl-UCB++ algorithm is

not asymptotically optimal then: the regret bound in log(T )/kl(µa, µ
∗) is not optimal in that case.

Asymptotic optimality would require tight distribution-dependent, non-parametric upper confidence

bounds (for example based on the empirical-likelihood method, as in the above cited paper). This

is out of the scope of this work (and would require a lot more space).

4. Proof of Theorem 1

This proof merges merges ideas presented in Bubeck and Liu (2013) for the analysis of the MOSS

algorithm and from the analysis of kl-UCB in Cappé et al. (2013) (see also Kaufmann (2016)). It is

divided into the following steps:

Decomposition of the regret. Let a∗ be the index of an optimal arm. Since by definition of the

strategy Ua∗(t) 6 UAt+1
(t) for all t > K − 1, the regret can be decomposed as follows:

RT 6 K(µ+ − µ−) +

T−1∑

t=K

E
[
µ⋆ − Ua∗(t)

]

︸ ︷︷ ︸
A

+

T−1∑

t=K

E
[
UAt+1

(t)− µAt+1

]

︸ ︷︷ ︸
B

. (6)

We define δ0 =
√

22V K/T ; since the bound (4) is otherwise trivial, we assume in the sequel that

δ0 6 1. For the first term A, as in the proof of MOSS algorithm, we carefully upper bound the

probability that appears inside the integral thanks to a ’peeling trick’. The second term B is easier

to handle since we can reduce the index to UCB-like-index thanks to the Pinsker inequality (1) and

proceed as in Bubeck and Liu (2013).

Step 1: Upper-bounding A. Term A is concerned with the optimal arm a∗ only. Two words of

intuition: since Ua∗(t) is meant to be an upper confidence bound for µ⋆, this term should not be too

large, at least as long as the the confidence level controlled by function g is large enough – but when

the confidence level is low, the number of draws is large and deviations are unlikely.

Upper-bounding term A boils down to controlling the probability that µ⋆ is under-estimated at

time t. Indeed,

E
[
µ⋆ − Ua∗(t)

]
6 E

[(
µ⋆ − Ua∗(t)

)
+

]
6

∫ +∞

0
P
(
u < µ⋆ − Ua∗(t)

)
du

6 δ0 +

∫ +∞

δ0

P
(
Ua∗(t) 6 µ⋆ − u

)
du , (7)

5
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and we need to upper bound the left-deviations of the mean of arm a∗. On the event {Ua∗(t) 6

µ⋆ − u}, we have that µ̂a∗(t) 6 Ua∗(t) 6 µ⋆ − u < µ⋆, and by definition of Ua∗(t) it holds that

kl
(
µ̂a∗(t), µ

⋆
)
>

g
(
Na∗(t)

)

Na∗(t)
.

Consequently,

P
(
Ua∗(t) 6 µ⋆ − u

)
6 P

(
µ̂a∗(t) 6 µ⋆ − u and kl

(
µ̂a∗(t), µ

⋆
)
> g
(
Na∗(t)

)
/Na∗(t)

)

6 P
(
∃1 6 n 6 T, µ̂a∗,n 6 µ⋆ − u and kl(µ̂a∗,n, µ

⋆) > g(n)/n
)
. (8)

For small values of n, the dominant term is given by kl(µ̂a∗,n, µ
⋆) > g(n)/n, whereas for large

n the event µ̂a∗,n 6 µ⋆ − u is quite unlikely. This is why we split the probability in two terms,

proceeding as follows. Let f be the function defined, for u > δ0, by

f(u) =
2V

u2
log

(
Tu2

2V K

)
.

Our choice of δ0 implies that f(u)K/T 6 exp(−3/2), and thus

f(u) <
T

K
and log

(
T

Kf(u)

)
> 3/2 . (9)

In particular, for n 6 f(u) it holds that

g(n) = log

(
T

Kn

(
1 + log2

(
T

Kn

)))
.

It appears that f(u) is the right place where to split the probability of Equation (8): defining

kl+(p, q) := kl(p, q)I{p6q}, we write

P
(
∃1 6 n 6 T, µ̂a∗,n 6 µ⋆ − u and kl(µ̂a∗,n, µ

⋆) > g(n)/n
)
6

P
(
∃1 6 n 6 f(u), kl+(µ̂a∗,n, µ

⋆) > g(n)/n
)

︸ ︷︷ ︸
A1

+P
(
∃f(u) 6 n 6 T, µ̂a∗,n 6 µ⋆ − u

)
︸ ︷︷ ︸

A2

.

(10)

Controlling terms A1 and A2 is a matter of deviation inequalities.

Step 1.1: Upper-bounding A1. The term A1, which involves self-normalized devation prob-

abilities, can be upper-bounded thanks to a ’peeling trick’ as in the proof of Theorem 5 from

Audibert and Bubeck (2009). We assume that f(u) > 1, for otherwise A1 = 0. We use the

grid f(u)/βℓ+1 6 n 6 f(u)/βℓ, where the real β > 1 will be chosen later. We write

A1 6

+∞∑

ℓ=0

P

(
∃f(u)
βℓ+1

6 n 6
f(u)

βℓ
, kl+(µ̂a∗,n, µ

⋆) > γℓ

)

︸ ︷︷ ︸
Aℓ

1

, (11)

6
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where

γℓ =

log

(
Tβℓ

Kf(u)

(
1 + log2

(
T

Kf(u)

))

f(u)/βℓ
.

Thanks to Doob’s maximal inequality (see Lemma 4 in Appendix A),

Aℓ
1 6 exp

(
− f(u)

βℓ+1
γℓ

)
= e−ℓ log(β)/β−C/β ,

where

C := log

(
T

Kf(u)

(
1 + log2

(
T

Kf(u)

)))
. (12)

Plugging this last inequality into (11), together with the numerical inequality of Lemma 3 (see

Appendix A), we get

A1 6

+∞∑

ℓ=0

e−ℓ log(β)/β−C/β =
1

1− e− log(β)/β
e−C/β

6
e

elog(β)/β − 1
e−C/β

6 2emax
(
β, β/(β − 1)

)
e−C/β .

But thanks to Equation (9),

C = log

(
T

Kf(u)

(
1 + log2

(
T

Kf(u)

)))
> log

(
T

Kf(u)

)
>

3

2
.

It is now time to choose β := C/(C − 1), so that β 6 2C and β/(β − 1) = C . Together with the

definition of f , this choice yields

A1 6 4e2Ce−C = 4e2
log

(
T

Kf(u)

(
1 + log2

(
T

Kf(u)

)))

1 + log2

(
T

Kf(u)

) Kf(u)

T
, (13)

and therefore

A1 6 4e2
Kf(u)

T
=

16e2V K

Tu2
log

(√
T

2V K
u

)
(14)

as, for all x > 1,

log
(
x
(
1 + log2(x)

))

1 + log2(x)
6 1 .

Step 1.2: Upper-bounding A2. The term A2 is more simple to handle, as it does not involve self-

normalized deviations. Thanks to the maximal inequality (recalled in Equation (33) of Appendix A)

and thanks to the Pinsker-like inequality (1),

A2 6 e−u2f(u)/2V =
2V K

Tu2
. (15)
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Putting Equations (7) to (15) together, we obtain that

E
[
µ⋆ − Ua∗(t)

]
6 δ0 +

∫ +∞

δ0

16e2V K

Tu2
log

(√
T

2V K
u

)
+

2V K

Tu2
du . (16)

It remains only to conclude with some calculus:

∫ +∞

δ0

16e2V K

Tu2
log

(√
T

2V K
u

)
du =

[
−16e2V K

Tu
log

(
e

√
T

2V K
u

)]+∞

δ0

=
16e2

√
V√

22
log
(
e
√
11
)
√

K

T
.

Similarly, ∫ +∞

δ0

2V K

Tu2
du = 2

√
V

22

√
K

T
,

and replacing δ0 by its value we obtain from Equation (16) the following relation:

E
[
µ⋆ − Ua∗(t)

]
6

√
V

(√
22 +

16e2√
22

log
(
e
√
11
)
+

2√
22

)√
K

T
.

Summing over t from K to T − 1, this yields:

A 6
√
V

(√
22 +

16e2√
22

log
(
e
√
11
)
+

2√
22

)√
KT . (17)

Step 2: Upper-bounding B. Term B is of different nature, since typically UAt+1
(t) > µAt+1

.

However, as for the term A, we first reduce the problem to the upper-bounding of a probability:

B 6

T−1∑

t=K

δ0 +

∫ +∞

δ0

P
(
UAt+1

(t)− µAt+1
> u

)
du

6 Tδ0 +

∫ +∞

δ0

T−1∑

t=K

P
(
UAt+1

(t)− µAt+1
> u

)
du . (18)

The event
{
UAt+1

(t) − µAt+1
> u

}
is typical if NAt+1

(t) is small, and corresponds to a deviation

of the sample mean otherwise. In order to handle this correctly, we first get rid of the randomness

of NAt+1
(t) by the pessimistic trajectorial upper bound from Bubeck and Liu (2013)

T−1∑

t=K

I{
UAt+1

(t)−µAt+1
>u
} 6

T∑

n=1

K∑

a=1

I{
Ua,n−µa>u

} .

In addition, we simplify the upper bound thanks to our assumption (1) that some Pinsker type

inequality is available:

Ua,n := sup

{
µ ∈ I : kl

(
µ̂a,n, µ

)
6

g(n)

n

}
6 Ba,n := µ̂a,n +

√
2V

g(n)

n
. (19)
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Hence, B can be upper-bounded as

B 6 Tδ0 +
K∑

a=1

∫ +∞

δ0

T∑

n=1

P(Ba,n − µa > u)du . (20)

Then, we need only to upper bound
∑T

n=1 P(Ba,n−µa > u) for each arm a ∈ {1, . . . ,K}. We cut

the sum at the critical sample size n(u) where the event
{
Ba,n − µa > u

}
becomes atypical: for

u > δ0, let n(u) be the integer such that

n(u) =

⌈
8V

u2
log

(
Tu2

8V K

)⌉
.

For n > n(u) it holds that √
2V

g(n)

n
6

u√
2
. (21)

Indeed, as log(1 + x2) 6 x for all x > 0, we have

2V
g(n)

n
6

4V

n
log+

(
T

Kn

)
,

also observe that h(x) := log
(
x/ log(x)

)
/ log(x) is such that h(x) 6 1 for x > 11/4, and thus for

n > n(u) and u > δ0

2V
g(n)

n
6

4V

n(u)
log+

(
T

Kn(u)

)
6

u2

2
h

(
Tu2

8V K

)
6

u2

2
.

Therefore, cutting the sum in (20) at n(u), we obtain:

T∑

n=1

P(Ba,n − µa > u) 6 n(u)− 1 +

T∑

n=n(u)

P
(
µ̂a,n − µa > u−

√
2V g(n)/n

)

6 n(u)− 1 +

T∑

n=n(u)

P

(
µ̂a,n − µa > u

(
1− 1/

√
2
))

6
8V

u2
log

(
Tu2

8V K

)
+

T∑

n=n(u)

P(µ̂a,n − µa > cu) , (22)

where c := 1 − 1/
√
2. It remains to integrate Inequality (22) from u = δ0 to infinity. The first

summand involves the same integral as we have already met in the upper bound of term A1:

∫ +∞

δ0

8V

u2
log

(
Tu2

8V K

)
du = 16

√
V

22
log

(
e

√
11

4

)√
T

K
.

For the remaining summand, Inequality (33) yields

T∑

n=n(u)

P(µ̂a,n − µa > cu) 6

T∑

n=n(u)

e−
u2c2n
2V 6

1

e
u2c2

2V − 1
.

9
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Thus, as ex − 1 > x for all x > 0,

∫ +∞

δ0

1

e
u2c2

2V − 1
du 6

∫ +∞

δ0

2V

u2c2
du =

2

c2

√
V

22

√
T

K
,

Putting everything together starting from Inequality (22), we have proved that

∫ +∞

δ0

T∑

n=1

P(Ba,n − µa > u)du 6

√
V

22

(
16 log

(
e

√
11

4

)
+

2

c2

)√
T

K
.

By Equation (20), replacing δ0 by its value finally yields

B 6
√
V

(
√
22 +

16√
22

log

(
e

√
11

4

)
+

2√
22c2

)
√
KT . (23)

Conclusion of the proof. It just remains to plug Inequalities (17) and (23) into Equation (6):

A+B 6
√
V

(
2
√
22 +

16e2√
22

log
(
e
√
11
)
+

2√
22

+
16√
22

log

(
e

√
11

4

)
+

2√
22c2

)
√
KT

6 76
√
V KT ,

which concludes the proof.

5. Proof of Theorem 2

The analysis of asymptotic optimality shares many elements with the minimax analysis, with some

differences however. The decomposition of the regret into two terms A and B is similar, but lo-

calized on a fixed sub-optimal arm a ∈ {1, . . . ,K}: we analyze the number of draws of a and not

directly the regret (and we do not need to integrate the deviations at the end). We proceed roughly as

in the proof of Theorem 1 for term A, which involves the deviations of an optimal arm. For term B,

which stands for the behavior of the sub-optimal arm a, a different (but classical) argument is used,

as one cannot simply use the Pinsker-like Inequality (1) if one wants to obtain the correct constant

(and thus asymptotic optimality).

Decomposition of E
[
Na(T )

]
. If arm a is pulled at time t + 1, then by definition of the strategy

Ua∗(t) 6 Ua(t) for any index a∗ of an optimal arm. Thus, for any fixed δ to be chosen later,

{
At+1 = a

}
⊆
{
µ∗ − δ > Ua(t)

}
∪ {µ∗ − δ < Ua(t) and At+1 = a

}

⊆
{
µ∗ − δ > Ua∗(t)

}
∪ {µ∗ − δ < Ua(t) and At+1 = a

}
.

As a consequence,

E
[
Na(T )

]
6 1 +

T−1∑

t=K

P
(
Ua∗(t) 6 µ∗ − δ

)

︸ ︷︷ ︸
A

+
T−1∑

t=K

P
(
µ∗ − δ < Ua(t) and At+1 = a

)

︸ ︷︷ ︸
B

, (24)

and it remains to bound each of these terms.
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Step 1: Upper-bounding A. As in the proof of Theorem 1, we write

P
(
Ua∗(t) 6 µ∗ − δ

)
6

P
(
∃1 6 n 6 f(δ), kl+(µ̂a∗,n, µ

⋆) > g(n)/n
)

︸ ︷︷ ︸
A1

+P
(
∃f(δ) 6 n 6 T, µ̂a∗,n 6 µ⋆ − δ

)
︸ ︷︷ ︸

A2

,

(25)

where we use the same function

f(δ) =
2V

δ2
log

(
Tδ2

2KV

)
.

Thanks to the Inequality (13) that we saw in the proof of Theorem 1, we obtain that

A1 6 4e2
log

(
T

Kf(δ)

(
1 + log2

(
T

Kf(δ)

)))

log

(
T

Kf(δ)

) f(δ)

log

(
T

Kf(δ)

)K

T
6

16e2

δ2
2V K

T
.

Here, we used that for all x > e3/2, since the condition δ2 > 22V K/T implies that f(δ)K/T 6

e−3/2,

log
(
x
(
1 + log2(x)

))

log(x)
6 2 and

log(x)

log
(
x/ log(x)

) 6 2 ,

and that

f(δ)

log

(
T

Kf(δ)

) =
2V

δ2

log

(
Tδ2

2V K

)

log

(
Tδ2

2V K
1

log
(
Tδ2/(2V K)

)
) .

Thanks to the maximal inequality recalled in Appendix A as Equation (33), it holds that

A2 6 e−δ2f(δ)/(2V ) =
2V K

Tδ2
. (26)

Putting Equations (25) to (26) together yields:

A 6 (16e2 + 1)
2V K

δ2
. (27)

Step 2: Upper-bounding B. Thanks to the definition of Ua(t) it holds that

{
µ∗ − δ < Ua(t) and At+1 = a

}
⊆
{
kl
(
µ̂a(t), µ

∗ − δ
)
6 g
(
Na(t)

)
/Na(t) and At+1 = a

}

11
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Together with the following classical argument for regret analysis in bandit models, this yields:

B 6

T−1∑

t=K

P
(
kl
(
µ̂a(t), µ

∗ − δ
)
6 g
(
Na(t)

)
/Na(t) and At+1 = a

)

6

T∑

n=1

P
(
kl(µ̂a,n, µ

∗ − δ) 6 g(n)/n
)

6

T∑

n=1

P

(
kl(µ̂a,n, µ

∗ − δ) 6 log
(
T/K

(
1 + log2(T/K)

))
/n

)
, (28)

as it holds g(n) 6 g(1). Now, let n(δ) be the integer defined as

n(δ) =




log
(
T/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)




.

Then, for n > n(δ),

log
(
T/K

(
1 + log2(T/K)

))
/n 6 kl(µa + δ, µ∗ − δ) .

We cut the sum in (28) at n(δ), so that

B 6 n(δ)− 1 +

T∑

n=n(δ)

P
(
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
)

6

log
(
T/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)
+

T∑

n=n(δ)

P
(
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
)
. (29)

Recall that by assumption δ < (µ⋆ − µa)/3, using the inclusion
{
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
}
⊆ {µ̂a,n > µa + δ} ,

together with Inequality (33), we obtain that

T∑

n=n(δ)

P
(
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
)

6

T∑

n=n(δ)

P
(
µ̂a,n > µa + δ

)

6

∞∑

n=1

e−nδ2/(2V ) =
1

eδ2/(2V ) − 1
6

2V

δ2
,

and Equation (29) yields

B 6
log(T )

kl(µa + δ, µ∗ − δ)
+

log
(
1/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)
+

2V

δ2
. (30)

Conclusion of the proof. It just remains to plug Inequalities (27) and (30) into Equation (24):

E
[
Na(T )

]
6

log(T )

kl(µa + δ, µ∗ − δ)
+

log
(
1/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)
+ (16e2 + 2)

2V K

δ2
+ 1 ,

and we obtain Equation (5). Choosing δ of order 1/ loglog(T )1/2 yields the asymptotic optimality.

12
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6. Conclusion and Perspectives

We have proved that the kl-UCB++ algorithm is both minimax- and asymptotically-optimal for the

exponential distribution families described in Section 2. So far, this algorithm requires the horizon

T as a parameter: to keep the proofs clear and simple, we have deferred to future work the analysis

of an anytime variant. We believe, though, that obtaining such an extension should be possible by

using the tools developed in Degenne and Perchet (2016). In addition, we have focused in this paper

on asymptotic optimality without trying to derive explicit finite-time bounds: we believe that this

would have impaired the clarity and simplicity of the reasoning. But it is certainly a challenging and

important objective to design a general strategy that would, in addition to minimax- and asymptotic

optimality, would also reach the important notion of finite-time instance near optimality of Lattimore

(2015).

From a more technical point of view, it may be possible to suppress the extra log2 exploration

term in the definition of the confidence bonus g in Equation (3). This is carried out in Garivier et al.

(2016a) using some particularities of the Gaussian distributions; using an improved Chernoff bound

such as Talagrand (1995) may allow considering more general cases. Finally, we defer the consider-

ation of general bounded probability distributions (with non-parametric upper-confidence bounds)

to future work.
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Appendix A. Some Technical Lemmas

Lemma 3 For all β > 1 we have

1

elog(β)/β − 1
6 2max

(
β, β/(β − 1)

)
. (31)

Proof Inequality (31) is equivalent to

elog(β)/β − 1 >
1

2β
min(1, β − 1) .

If β > 2, then

elog(β)/β − 1 > elog(2)/β − 1 >
log(2)

β
>

1

2β
.

Otherwise, if 1 < β < 2, as the function β 7→ log(β)/(β − 1) is non-increasing one gets

β

β − 1

(
elog(β)/β − 1

)
>

log(β)

β − 1
> log(2) > 1/2 .
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Lemma 4 (Maximal Inequality) Let N and M be two real numbers in R
+ × R+, let γ be a real

number in R
+∗, and let µ̂n be the empirical mean of n random variables i.i.d. according to the

distribution νb′−1(µ). Then

P
(
∃N 6 n 6 M, kl+(µ̂n, µ) > γ

)
6 e−Nγ . (32)

Proof If γ > kl(µ̄−, µ) or µ̂n > µ the Inequality (32) is trivial. Else, there exist two real numbers

z < µ and λ < 0 such that

γ = kl(z, µ) = λz − ϕµ(λ) ,

where ϕµ denotes the the log-moment generating function of νb′−1(µ). Since on the event
{
∃N 6

n 6 M, kl+(µ̂n, µ) > γ
}

one has at the same time

µ̂n 6 µ , λµ̂n − ϕµ(λ) > λz − ϕµ(λ) = γ and λnµ̂n − nϕµ(λ) > Nγ ,

we can write that

P
(
∃N 6 n 6 M, kl+(µ̂n, µ) > γ

)
6 P

(
∃N 6 n 6 M, λnµ̂n − nϕµ(λ) > Nγ

)

6 exp(−Nγ) ,

by Doob’s maximal inequality for the exponential martingale exp
(
λnµ̂n − nϕµ(λ)

)
.

As a simple consequence of this Lemma 4 and Inequality (1), it holds that:

for every x 6 µ, P(∃N 6 n 6 M, µ̂n 6 x) 6 e−N(x−µ)2/(2V ) , (33)

for every x > µ, P(∃N 6 n 6 M, µ̂n > x) 6 e−N(x−µ)2/(2V ) . (34)
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Sébastien Bubeck and Che-Yu Liu. Prior-free and prior-dependent regret bounds for thompson

sampling. In Advances in Neural Information Processing Systems, pages 638–646, 2013.

Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for sequential allocation

problems. Advances in Applied Mathematics, 17(2):122–142, 1996.

14

http://www.jstor.org/stable/1427934


KL-UCB++
ALGORITHM
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