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Abstract

We propose the kl-UCB++ algorithm for regret minimization in stochastic bandit models with

exponential families of distributions. We prove that it is simultaneously asymptotically optimal

(in the sense of Lai and Robbins’ lower bound) and minimax optimal. This is the first algorithm

proved to enjoy these two properties at the same time. This work thus merges two different lines of

research, with simple proofs involving no complexity overhead.

Keywords: Stochastic multi-armed bandits, regret analysis, upper confidence bound (UCB), mini-

max optimality, asymptotic optimality.

1. Introduction

For regret minimization in stochastic bandit problems, two notions of time-optimality coexist. On

the one hand, one may consider a fixed model: the famous lower bound by Lai and Robbins (1985)

showed that the regret of any consistent strategy should grow at least as C(µ) log(T )
(
1−o(1)

)
when

the horizon T goes to infinity. Here, C(µ) is a constant depending solely on the model. A strategy

with a regret upper-bounded by C(µ) log(T )
(
1− o(1)

)
will be called in this paper asymptotically-

optimal. Lai and Robbins provided a first example of such a strategy in their seminal work. Later,

Garivier and Cappé (2011) and Maillard et al. (2011) provided finite-time analysis for variants of

the UCB algorithm (see Agrawal (1995); Katehakis and Robbins (1995); Auer et al. (2002a)) which

imply asymptotic optimality. Since then, other algorithms like Bayes-UCB (Kaufmann et al., 2012)

and Thompson Sampling (Korda et al., 2013) have also joined the family.

On the other hand, for a fixed horizon T one may assess the quality of a strategy by the greatest

regret suffered in all possible bandit models. If the regret of a bandit strategy is upper-bounded by

C ′
√
KT (the optimal rate: see Auer et al. (2002b) and Cesa-Bianchi and Lugosi (2006)) for some

numeric constant C ′, this strategy is called minimax-optimal. The MOSS strategy by Audibert and Bubeck

(2009) was the first proved to be minimax-optimal.

Hitherto, as far as we know, no algorithm was proved to be at the same time asymptotically-

and minimax-optimal. Two limited exceptions may be mentioned: the case of two Gaussian arms is

treated in Garivier et al. (2016a); and the Optimally Confident UCB algorithm of Lattimore (2015)

is proved to be minimax-optimal and almost problem-dependent optimal for Gaussian multi-armed

bandit problems.

c© 2017 P. Ménard & A. Garivier.
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Contributions. In this work, we put forward the kl-UCB++ algorithm, a slightly modified version

of kl-UCB+ algorithm discussed in Garivier et al. (2016a) as an empirical improvement of UCB,

and analyzed in Kaufmann (2016). This bandit strategy is designed for some exponential distribu-

tion families, including for example Bernoulli and Gaussian laws. We prove that it is at the same

time asymptotically- and minimax-optimal. This work thus merges the progress which has been

made in different directions towards the understanding of the optimism principle, finally reconcil-

ing the two notions of time-optimality. We present a general yet simple proof, using and improving

the best elements of the above-cited sources without any additional complexity. To this end, we

develop new deviation inequalities, improving the analysis of the different terms contributing to the

regret.

The paper is organized as follows. In Section 2, we introduce the setting and assumptions

required for the main results, Theorems 1 and 2, which are presented in Section 3. We give the

entire proofs of these results in Sections 4 and 5, with only a few technical lemmas proved in

Appendix A. We conclude in Section 6 with some brief references to possible future prospects.

2. Notation and Setting

Exponential families. We consider a simple stochastic bandit problem with K arms indexed by

a ∈ {1, . . . ,K}, with K > 2. Each arm is assumed to be a probability distribution of some

canonical one-dimensional exponential family νθ indexed by θ ∈ Θ. The probability law νθ is

assumed to be absolutely continuous with respect to a dominating measure ρ on R, with a density

given by

dνθ
dρ

(x) = exp(xθ − b(θ)), where b(θ) = log

∫

R

exθdρ(x) and Θ =
{
θ ∈ R : b(θ) < +∞

}
.

It is well-known that b is convex, two times differentiable on Θ and that b′(θ) = E(νθ) and

b′′(θ) = V (νθ), respectively the mean and the variance of the distribution νθ. The family can thus

be parametrized by the mean µ = b′(θ), for µ ∈ I = b′(Θ) := (µ̄−, µ̄+). The Kullback-Leibler

divergence between two distributions is KL(νθ, νθ′) = b(θ′)− b(θ)− b′(θ)(θ′− θ). This permits to

define the following divergence on the set of arm expectations: if µ = E(νθ) and µ′ = E(νθ′) then

kl(µ, µ′) := KL(νθ, νθ′) = b∗(µ)− b∗(µ′)− b∗′(µ′)(µ − µ′) ,

where b∗ is the Fenchel conjugate of b. For a minimax analysis, we need to restrict the set of means

to bounded interval: we suppose that each arm νθ satisfies µ = b′(θ) ∈ [µ−, µ+] ⊂ I for two fixed

real numbers µ+, µ−. Our analysis requires some kind of Pinsker inequality; we therefore assume

that the variance is bounded in the exponential family: there exists V > 0 such that

sup
µ∈I

b′′
(
b′
−1

(µ)
)
= sup

µ∈I
V
(
νb′−1(µ)

)
6 V < +∞ .

This implies that for all µ, µ′ ∈ I ,

d(µ, µ′) >
1

2V
(µ − µ′)2 . (1)

In the sequel, we denote by F the set of bandit problems ν satisfying these assumptions. This

setting includes in particular Bernoulli bandits, with V = 1/4 and kl(µ, µ′) = µ log(µ/µ′) + (1 −
µ) log

(
(1 − µ)/(1 − µ′)

)
(by convention, 0 log 0 = 0 log 0/0 = 0). This also includes (bounded)

Gaussian bandits with known variance σ2, with the choice V = σ2 and kl(µ, µ′) = (µ−µ′)2/(2σ2).
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Regret. At each round 1 6 t 6 T , the player pulls an arm At and receives an independent draw

Yt of the distribution νAt . This reward is the only piece of information available to the player. The

best mean is µ⋆ = maxa=1,...,K µa. We denote by Na(T ) =
∑T

t=1 I{At=a} the number of draws of

arm a up to and including time T . In this work, the goal is to minimize the expected regret

RT = Tµ⋆ − E

[
T∑

t=1

Yt

]
= E

[
T∑

t=1

(
µ⋆ − µAt

)
]
=

K∑

a=1

(
µ∗ − µa

)
E
[
Na(T )

]
.

Lai and Robbins (1985) proved if a strategy is uniformly efficient, that is if it is such that under

any bandit model of a sufficiently rich family (such as an exponential family described above)

RT = o(Tα) for every α > 0, then it needs to draw any suboptimal arm a at least as often as

E
[
Na(T )

]
>

log(T )

kl(µa, µ∗)

(
1− o(1)

)
.

In light of the previous equality, this directly implies an asymptotic lower bound on RT / log(T ).
On the other side, a straightforward adaptation of the the proof of Theorem A.2 of Auer et al.

(2002b) shows that there exists a constant C ′ depending only on the considered family F of distri-

butions such that

sup
ν∈F

RT > C ′min
(√

KT, T
)
,

where the supremum is taken over all bandit problems ν in F . Note that the notion of minimax-

optimality is defined here up to a multiplicative constant, in contrast to the definition of (problem-

dependent) asymptotic optimality. For a discussion on the minimax and asymptotic lower bounds,

we refer to Garivier et al. (2016b) and references therein.

3. The KL-UCB++ Algorithm

We denote by µ̂a,n the empirical mean of the first n rewards from arm a. The empirical mean of

arm a after t rounds is

µ̂a(t) = µ̂a,Na(t) =
1

Na(t)

t∑

s=1

Ys I{As=a} .

The KL-UCB++ algorithm is a slight modification of algorithm KL-UCB+ of Garivier and Cappé

(2011) and of the KL-UCB-H+ analyzed in Kaufmann (2016). It uses the exploration function g
given by

g(n) = log+

(
T

Kn

(
log2+

(
T

Kn

)
+ 1

))
, (2)

where log+(x) := max
(
log(x), 0

)
.
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Initialization: Pull each arm of {1, ..,K} once.

For t = K to T − 1, do

1. Compute for each arm a the quantity

Ua(t) = sup

{
µ ∈ I : kl

(
µ̂a(t), µ

)
6

g
(
Na(t)

)

Na(t)

}
. (3)

2. Play At+1 ∈ argmaxa∈{1,..,K} Ua(t).

The following results state that the Kl-UCB++ algorithm is simultaneously minimax- and asymptotically-

optimal.

Theorem 1 (Minimax optimality) For any family F satisfying the assumptions detailed in Sec-

tion 2, and for any bandit model ν ∈ F , the expected regret of the Kl-UCB++ algorithm is upper-

bounded as

RT 6 76
√
V KT + (µ+ − µ−)K . (4)

Theorem 2 (Asymptotic optimality) For any bandit model ν ∈ F , for any suboptimal arm a and

any δ such that 22V K/T 6 δ2 6 (µ∗ − µa)
2/9,

E
[
Na(T )

]
6

log(T )

kl(µa + δ, µ∗ − δ)
+Oδ

(
loglog(T )

)
(5)

(see the end of the proof in Section 5 for an explicit bound). Therefore,

lim sup
T→∞

Ea

[
Na(T )

]

log(T )
6

1

kl(µa, µ∗)
. (6)

Theorem 1 and 2 are proved in Section 4 and 5 respectively. The main differences between the two

proofs are discussed at the beginning of Section 5.

4. Proof of Theorem 1

This proof merges merges ideas presented in Bubeck and Liu (2013) for the analysis of the MOSS

algorithm and from the analysis of kl-UCB in Cappé et al. (2013) (see also Kaufmann (2016)). It is

divided into the following steps:

Decomposition of the regret. Let a∗ be the index of an optimal arm. Since by definition of the

strategy Ua∗(t) 6 UAt+1
(t) for all t > K − 1, the regret can be decomposed as follows:

RT 6 K(µ+ − µ−) +

T−1∑

t=K

E
[
µ∗ − Ua∗(t)

]

︸ ︷︷ ︸
A

+

T−1∑

t=K

E
[
UAt+1

(t)− µAt+1

]

︸ ︷︷ ︸
B

. (7)

We define δ0 =
√

22V K/T ; since the bound (4) is otherwise trivial, we assume in the sequel that

δ0 6 1.

4
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Step 1: Upper-bounding term A. Term A is concerned with the optimal arm a∗ only. Two words

of intuition: since Ua∗(t) is meant to be an upper confidence bound for µ∗, this term should not be

too large, at least as long as the the confidence level controlled by function g is large enough – but

when the confidence level is low, the number of draws is large and deviations are unlikely.

Upper-bounding term A boils down to controlling the probability that µ∗ is under-estimated at

time t. Indeed,

E
[
µ∗ − Ua∗(t)

]
6 δ0 +

∫ +∞

δ0

P
(
Ua∗(t) 6 µ∗ − u

)
du , (8)

and we need to upper bound the left-deviations of the mean of arm a∗. On the event {Ua∗(t) 6

µ∗ − u}, we have that µ̂a∗(t) 6 Ua∗(t) 6 µ∗ − u < µ∗, and by definition of Ua∗(t) it holds that

kl
(
µ̂a∗(t), µ

∗
)
>

g
(
Na∗(t)

)

Na∗(t)
.

Consequently,

P
(
Ua∗(t) 6 µ∗ − u

)
6 P

(
µ̂a∗(t) 6 µ∗ − u and kl

(
µ̂a∗(t), µ

∗
)
> g
(
Na∗(t)

)
/Na∗(t)

)

6 P
(
∃1 6 n 6 T, µ̂a∗,n 6 µ∗ − u and kl(µ̂a∗,n, µ

∗) > g(n)/n
)
. (9)

For small values of n, the dominant term is given by kl(µ̂a∗,n, µ
∗) > g(n)/n, whereas for large

n the event µ̂a∗,n 6 µ∗ − u is quite unlikely. This is why we split the probability in two terms,

proceeding as follows. Let f be the function defined, for u > δ0, by

f(u) =
2V

u2
log

(
Tu2

2V K

)
.

By definition of δ0, f(u)K/T 6 exp(−3/2), and thus

f(u) <
T

K
and log

(
T

Kf(u)

)
> 3/2 . (10)

In particular, for n 6 f(u) it holds that

g(n) = log

(
T

Kn

(
1 + log2

(
T

Kn

)))
.

It appears that f(u) is the right place where to split the probability of Equation (9): defining

kl+(p, q) := kl(p, q)I{p6q}, we write

P
(
∃1 6 n 6 T, µ̂a∗,n 6 µ∗ − u and kl(µ̂a∗,n, µ

∗) > g(n)/n
)
6

P
(
∃1 6 n 6 f(u), kl+(µ̂a∗,n, µ

∗) > g(n)/n
)

︸ ︷︷ ︸
A1

+P
(
∃f(u) 6 n 6 T, µ̂a∗,n 6 µ∗ − u

)
︸ ︷︷ ︸

A2

.

(11)

Controlling terms A1 and A2 is a matter of deviation inequalities.

Step 1.1: Upper-bounding A1. The self-normalized probability A1 can be upper-bounded thanks

5
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to a ’peeling trick’. We assume that f(u) > 1, for otherwise A1 = 0. We use the grid f(u)/βl+1 6

n 6 f(u)/βl, where the real β > 1 will be chosen later. We write

A1 6

+∞∑

l=0

P

(
∃f(u)
βl+1

6 n 6
f(u)

βl
, kl+(µ̂a∗,n, µ

∗) > γl

)

︸ ︷︷ ︸
Al

1

, (12)

where

γl =

log

(
Tβl

Kf(u)

(
1 + log2

(
T

Kf(u)

))

f(u)/βl
.

Thanks to Doob’s maximal inequality (see Lemma 4 in Appendix A),

Al
1 6 exp

(
− 1

β
log

(
Tβl

Kf(u)

(
1 + log2

(
T

Kf(u)

))))
= e−l log(β)/β−C/β ,

where

C := log

(
T

Kf(u)

(
1 + log2

(
T

Kf(u)

)))
. (13)

Plugging this last inequality into (12), together with the numerical inequality of Lemma 3 (see

Appendix A), we get

A1 6

+∞∑

l=0

e−l log(β)/β−C/β
6

1

1− e− log(β)/β
e−C/β

6
e

elog(β)/β − 1
e−C/β

6 2emax
(
β, β/(β − 1)

)
e−C/β .

But thanks to Equation (10),

C = log

(
T

Kf(u)

(
1 + log2

(
T

Kf(u)

)))
> log

(
T

Kf(u)

)
>

3

2
.

It is now time to choose β := C/(C − 1), so that β 6 2C and β/(β − 1) = C . This choice yields

A1 6 4e2Ce−C = 4e2
log

(
T

Kf(u)

(
1 + log2

(
T

Kf(u)

)))

1 + log2

(
T

Kf(u)

) Kf(u)

T
, (14)

and therefore

A1 6 4e2
Kf(u)

T
=

16e2V K

Tu2
log

(√
T

2V K
u

)
(15)

6
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as, for all x > 1,

log
(
x
(
1 + log2(x)

))

1 + log2(x)
6 1 .

Step 1.2: Upper-bounding A2. The term A2 is more simple to handle, as it does not involve self-

normalized deviations. Thanks to the maximal inequality recalled in Equation (34) of Appendix A,

A2 6 e−u2f(u)/2V =
2V K

Tu2
. (16)

Putting Equations (8) to (16) together, we obtain that

E
[
µ∗ − Ua∗(t)

]
6 δ0 +

∫ +∞

δ0

16e2V K

Tu2
log

(√
T

2V K
u

)
+

2V K

Tu2
du . (17)

It remains only to conclude with some calculus:

∫ +∞

δ0

16e2V K

Tu2
log

(√
T

2V K
u

)
du =

[
−16e2V K

Tu
log

(
e

√
T

2V K
u

)]+∞

δ0

=
16e2

√
V√

22
log
(
e
√
11
)
√

K

T
.

Similarly, ∫ +∞

δ0

2V K

Tu2
du = 2

√
V

22

√
K

T
,

and replacing δ0 by its value we obtain from Equation (17) the following relation:

E
[
µ∗ − Ua∗(t)

]
6

√
V

(√
22 +

16e2√
22

log
(
e
√
11
)
+

2√
22

)√
K

T
.

Summing over t from K to T − 1, this yields:

A 6
√
V

(√
22 +

16e2√
22

log
(
e
√
11
)
+

2√
22

)√
KT . (18)

Step 2: Upper-bounding term B. Term B is of different nature, since typically UAt+1
(t) >

µAt+1
. However, as for the term A, we first reduce the problem to the upper-bounding of a proba-

bility:

B 6

T−1∑

t=K

δ0 +

∫ +∞

δ0

P
(
UAt+1

(t)− µAt+1
> u

)
du

6 Tδ0 +

∫ +∞

δ0

T−1∑

t=K

P
(
UAt+1

(t)− µAt+1
> u

)
du . (19)

7
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The event
{
UAt+1

(t) − µAt+1
> u

}
is typical if NAt+1

(t) is small, and corresponds to a deviation

of the sample mean otherwise. In order to handle this correctly, we first get rid of the randomness

of NAt+1
(t) by the pessimistic trajectorial upper bound

T−1∑

t=K

I{
UAt+1

−µAt+1
>u
} 6

T∑

n=1

K∑

a=1

I{
Ua,n−µa>u

} .

In addition, we simplify the upper-bound thanks to our assumption (1) that some Pinsker type in-

equality is available:

Ua,n 6 Ba,n := µ̂a,n +

√
2V

g(n)

n
. (20)

Hence, B can be upper-bounded as

B 6 Tδ0 +

K∑

a=1

∫ +∞

δ0

T∑

n=1

P(Ba,n − µa > u)du . (21)

Then, we need only to upper bound
∑T

n=1 P(Ba,n−µa > u) for each arm a ∈ {1, . . . ,K}. We cut

the sum at the critical sample size n(u) where the event
{
Ba,n − µa > u

}
becomes atypical: for

u > δ0, let n(u) be the integer such that

n(u) =

⌈
8V

u2
log

(
Tu2

8V K

)⌉
.

For n > n(u) it holds that √
2V

g(n)

n
6

u√
2
. (22)

Indeed, as log(1 + x2) 6 x for all x > 0, we have

2V
g(n)

n
6

4V

n
log+

(
T

Kn

)
.

Observe that h(x) := log
(
x/ log(x)

)
/ log(x) is such that h(x) 6 1 for x > 11/4, and thus for

n > n(u) and u > δ0

2V
g(n)

n
6

4V

n(u)
log+

(
T

Kn(u)

)
6

u2

2
h

(
Tu2

8V K

)
6

u2

2
.

Therefore, cutting the sum in (21) at n(u), we obtain:

T∑

n=1

P(Ba,n − µa > u) 6 n(u)− 1 +

T∑

n=n(u)

P
(
µ̂a,n − µa > u−

√
g(n)/n

)

6 n(u)− 1 +

T∑

n=n(u)

P

(
µ̂a,n − µa > u

(
1− 1/

√
2
))

6
8V

u2
log

(
Tu2

8V K

)
+

T∑

n=n(u)

P(µ̂a,n − µa > cu) , (23)

8
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where c := 1 − 1/
√
2. It remains to integrate Inequality (23) from u = δ0 to u = 1. The first

summand involves the same integral as we have already met in the upper bound of term A1:

∫ +∞

δ0

8V

u2
log

(
Tu2

8V K

)
du = 16

√
V

22
log

(
e

√
11

4

)√
T

K
.

For the remaining summand, Inequality (34) yields

T∑

n=n(u)

P(µ̂a,n − µa > cu) 6
T∑

n=n(u)

e−
u2c2n
2V 6

1

e
u2c2

2V − 1
.

Thus, as ex − 1 > x for all x > 0,

∫ +∞

δ0

1

e
u2c2

2V − 1
du 6

∫ +∞

δ0

2V

u2c2
du =

2

c2

√
V

22

√
T

K
,

Putting everything together starting from Inequality (23), we have proved that

∫ +∞

δ0

T∑

n=1

P(Ba,n − µa > u)du 6

√
V

22

(
16 log

(
e

√
11

4

)
+

2

c2

)√
T

K
.

By Equation (21), replacing δ0 by its value finally yields

B 6
√
V

(
√
22 +

16√
22

log

(
e

√
11

4

)
+

2√
22c2

)
√
KT . (24)

Conclusion of the proof. It just remains to plug Inequalities (18) and (24) into Equation (7):

A+B 6
√
V

(
2
√
22 +

16e2√
22

log
(
e
√
11
)
+

2√
22

+
16√
22

log

(
e

√
11

4

)
+

2√
22c2

)
√
KT

6 76
√
V KT ,

which concludes the proof.

5. Proof of Theorem 2

The analysis of asymptotic optimality shares many elements with the minimax analysis, with some

differences however. The decomposition of the regret into two terms A and B is similar, but lo-

calized on a fixed sub-optimal arm a ∈ {1, . . . ,K}: we analyze the number of draws of a and not

directly the regret (and we do not need to integrate the deviations at the end). We proceed roughly as

in the proof of Theorem 1 for term A, which involves the deviations of an optimal arm. For term B,

which stands for the behavior of the sub-optimal arm a, a different (but classical) argument is used,

as one cannot simply use the Pinsker-like Inequality (1) if one wants to obtain the correct constant

(and thus asymptotic optimality).

9
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Decomposition of E
[
Na(T )

]
. If arm a is pulled at time t + 1, then by definition of the strategy

Ua∗(t) 6 Ua(t) for any index a∗ of an optimal arm. Thus,

{
At+1 = a

}
⊆
{
µ∗ − δ > Ua(t)

}
∪ {µ∗ − δ < Ua(t) and At+1 = a

}

⊆
{
µ∗ − δ > Ua∗(t)

}
∪ {µ∗ − δ < Ua(t) and At+1 = a

}
.

As a consequence,

E
[
Na(T )

]
6 1 +

T−1∑

t=K

P
(
Ua∗(t) 6 µ∗ − δ

)

︸ ︷︷ ︸
A

+

T−1∑

t=K

P
(
µ∗ − δ < Ua(t) and At+1 = a

)

︸ ︷︷ ︸
B

, (25)

and it remains to bound each of these terms.

Step 1: Upper-bounding term A. As in the proof of Theorem 1, we write

P
(
Ua∗(t) 6 µ∗ − δ

)
6

P
(
∃1 6 n 6 f(δ), kl+(µ̂a∗,n, µ

∗) > g(n)/n
)

︸ ︷︷ ︸
A1

+P
(
∃f(δ) 6 n 6 T, µ̂a∗,n 6 µ∗ − δ

)
︸ ︷︷ ︸

A2

,

(26)

where we use the same function

f(δ) =
2V

δ2
log

(
Tδ2

2KV

)
.

Thanks to the Inequality (14) that we saw in the proof of Theorem 1, we obtain that

A1 6 4e2
log

(
T

Kf(δ)

(
1 + log2

(
T

Kf(δ)

)))

log

(
T

Kf(δ)

) f(δ)

log

(
T

Kf(δ)

)K

T
6

16e2

δ2
2V K

T
.

Here, we used that for all x > 1

log
(
x
(
1 + log2(x)

))

log(x)
6 2 and

log(x)

log
(
x/ log(x)

) 6 2 ,

and that

f(δ)

log

(
T

Kf(δ)

) =
2V

δ2

log

(
Tδ2

2V K

)

log

(
Tδ2

2V K
1

log
(
Tδ2/(2V K)

)
) .

Thanks to the maximal inequality recalled in Appendix A as Equation (34), it holds that

A2 6 e−δ2f(δ)/(2V ) =
2V K

Tδ2
. (27)

10
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Putting Equations (26) to (27) together yields:

A 6 (16e2 + 1)
2V K

δ2
. (28)

Step 2: Upper-bounding term B. Thanks to the definition of Ua(t) it holds that

{
µ∗ − δ < Ua(t) and At+1 = a

}
⊆
{
kl
(
µ̂a(t), µ

∗ − δ
)
6 g
(
Na(t)

)
/Na(t) and At+1 = a

}

Together with the following classical bandit reasoning, this yields:

B 6

T−1∑

t=K

P
(
kl
(
µ̂a(t), µ

∗ − δ
)
6 g
(
Na(t)

)
/Na(t) and At+1 = a

)

6

T∑

n=1

P
(
kl(µ̂a,n, µ

∗ − δ) 6 g(n)/n
)

6

T∑

n=1

P

(
kl(µ̂a,n, µ

∗ − δ) 6 log
(
T/K

(
1 + log2(T/K)

))
/n

)
, (29)

as function g is non-increasing. Now, let n(δ) be the integer defined as

n(δ) =




log
(
T/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)




.

Recall that by assumption δ < (µ∗ − µa)/3. Then, for n > n(δ),

log
(
T/K

(
1 + log2(T/K)

))
/n 6 kl(µa + δ, µ∗ − δ) .

We cut the sum in (29) at n(δ), so that

B 6 n(δ)− 1 +

T∑

n=n(δ)

P
(
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
)

6

log
(
T/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)
+

T∑

n=n(δ)

P
(
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
)
. (30)

Using the inclusion
{
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
}
⊆ {µ̂a,n > µa + δ} ,

together with Inequality (34), we obtain that

T∑

n=n(δ)

P
(
kl(µ̂a,n, µ

∗ − δ) 6 kl(µa + δ, µ∗ − δ)
)

6

T∑

n=n(δ)

P
(
µ̂a,n > µa + δ

)

6

∞∑

n=1

e−nδ2/(2V ) =
1

eδ
2/(2V ) − 1

6
2V

δ2
,

11
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and Equation (30) yields

B 6
log(T )

kl(µa + δ, µ∗ − δ)
+

log
(
1/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)
+

2V

δ2
. (31)

Conclusion of the proof. It just remains to plug Inequalities (28) and (31) into Equation (25):

E
[
Na(T )

]
6

log(T )

kl(µa + δ, µ∗ − δ)
+

log
(
1/K

(
1 + log2(T/K)

))

kl(µa + δ, µ∗ − δ)
+ (16e2 + 2)

2V K

δ2
+ 1 ,

which concludes the proof.

6. Conclusion and Perspectives

We have proved that the kl-UCB++ algorithm is both minimax- and asymptotically-optimal for the

exponential distribution families described in Section 2. So far, this algorithm requires the horizon

T as a parameter: to keep the proofs clear and simple, we have deferred to future work the analysis

of an anytime variant. We believe, though, that obtaining such an extension should be possible by

using the tools developed in Degenne and Perchet (2016). Similarly, concerning the distribution-

dependent bounds, we have focused in this paper on asymptotic optimality without trying to derive

explicit finite-time bounds: we believe that this would have impaired the clarity of the reasoning,

while adding very little value.

From a more technical point of view, it may be possible to suppress the extra log2 exploration

term in the definition of the confidence bonus g in Equation (2). This is carried out in Garivier et al.

(2016a) using some particularities of the Gaussian distributions; using an improved Chernoff bound

such as Talagrand (1995) may allow considering more general cases. Finally, we defer the consider-

ation of general bounded probability distributions (with non-parametric upper-confidence bounds)

to future work.
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formatique) Excellence program. The authors acknowledge the support of the French Agence Na-

tionale de la Recherche (ANR), under grants ANR-13-BS01-0005 (project SPADRO) and ANR-13-

CORD-0020 (project ALICIA).

References

Rajeev Agrawal. Sample mean based index policies with o(log n) regret for the multi-armed bandit

problem. Advances in Applied Probability, 27(4):1054–1078, 1995. ISSN 00018678. URL

http://www.jstor.org/stable/1427934.
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Appendix A. Some Technical Lemmas

Lemma 3 For all β > 1 we have

1

elog(β)/β − 1
6 2max

(
β, β/(β − 1)

)
. (32)

Proof Inequality (32) is equivalent to

elog(β)/β − 1 >
1

2β
min(1, β − 1) .

If β > 2, then

elog(β)/β − 1 > elog(2)/β − 1 >
log(2)

β
>

1

2β
.

Otherwise, if 1 < β < 2, as the function β 7→ log(β)/(β − 1) is non-increasing one gets

β

β − 1

(
elog(β)/β − 1

)
>

log(β)

β − 1
> log(2) > 1/2 .

Lemma 4 (Maximal Inequality) Let N and M be two real numbers in R
+ × R+, let γ be a real

number in R
+∗, and let µ̂n be the empirical mean of n random variables i.i.d. according to the

distribution νb′−1(µ). Then

P
(
∃N 6 n 6 M, kl+(µ̂n, µ) > γ

)
6 e−Nγ . (33)

Proof If γ > kl(µ̄−, µ) or µ̂n > µ the Inequality (33) is trivial. Else, there exist two real numbers

z < µ and λ < 0 such that

γ = kl(z, µ) = λz − ϕµ(λ) ,

where ϕµ denotes the the log-moment generating function of νb′−1(µ). Since on the event
{
∃N 6

n 6 M, kl+(µ̂n, µ) > γ
}

one has at the same time

µ̂n 6 µ , λµ̂n − ϕµ(λ) > λz − ϕµ(λ) = γ and λnµ̂n − nϕµ(λ) > Nγ ,

we can write that

P
(
∃N 6 n 6 M, kl+(µ̂n, µ) > γ

)
6 P

(
∃N 6 n 6 M, λnµ̂n − nϕµ(λ) > Nγ

)

6 exp(−Nγ) ,

by Doobs maximal inequality for the exponential martingale exp
(
λnµ̂n − nϕµ(λ)

)
.

As a simple consequence of this Lemma 4 and Inequality (1), it holds that:

for every x 6 µ, P(∃N 6 n 6 M, µ̂n 6 x) 6 e−N(x−µ)2/(2V ) , (34)

for every x > µ, P(∃N 6 n 6 M, µ̂n > x) 6 e−N(x−µ)2/(2V ) . (35)
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