Philippe Besnard

Sylvie Doutre

Van Hieu Ho

Dominique Longin

SESAME -A System for Specifying Semantics in Abstract Argumentation

Keywords: Abstract argumentation, argumentation semantics, logical encoding

This is a report on an implemented system that allows the user to specify an argumentation semantics and that returns a logical encoding in the form of a parameterized propositional formula. When applied to a subset S of a given argumentation graph G, the instantiated formula is satisfiable if and only if S is an extension for G according to the argumentation semantics specified by the user.

Introduction

This paper is a report on SESAME (SEmantics Specification for Abstract arguMEntation), a system that allows the user to specify an argumentation semantics and that returns a logical encoding in the form of a parameterized propositional formula [START_REF] Besnard | Checking the Acceptability of a Set of Arguments[END_REF]. When applied to a given argumentation graph G = (A , R), for S ⊆ A , the instantiated formula is satisfiable if and only if S is an extension for G according to the argumentation semantics specified by the user.

The principle of such an encoding was introduced in [START_REF] Besnard | Checking the Acceptability of a Set of Arguments[END_REF] (see also [START_REF] Walicki | Finding Kernels or Solving SAT[END_REF][START_REF] Besnard | Encoding Argument Graphs in Logic[END_REF], see [START_REF] Egly | Answer-Set Programming Encodings for Argumentation Frameworks[END_REF] for an ASP variant) where a propositional formula σ (A ,R),S is defined that turns out to be satisfiable if and only if S is a σ -extension of the argumentation graph (A , R). That is, the formula σ (A ,R),S encodes the argumentation semantics σ .

Let us consider e.g. the stable semantics [START_REF] Minh | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-person Games[END_REF] and construct σ (A ,R),S for σ = stable.

Definition 1. Given an argumentation graph G = (A , R), a stable extension S ⊆ A is a set that satisfies the following two conditions:

1. there does not exist two arguments a and b in S such that aRb; 2. for each argument a ∈ S, there exists b ∈ S such that bRa.

That a set of arguments S satisfies the first condition amounts to: for all a in S, for all b attacking a, it is not the case that b is in S. In symbols, ∀a ∈ S ∀bRa b ∈ S

The statement b ∈ S can be encoded2 through identifying b with a propositional symbol (letting the propositional symbol b to be read "b is in S"), hence an encoding for the statement that S satisfying condition 1. is

a∈S bRa ¬b (1)
As to the second condition for S to be a stable extension, it can be expressed by: for all a in A , if a is not in S then there exists some b attacking a such that b is in S.

∀a ∈ A a ∈ S ⇒ ∃bRa b ∈ S
The statement b ∈ S is again to be encoded via identifying b with a propositional symbol, and, similarly, a ∈ S is encoded as a. Hence, an encoding for the statement that S satisfies condition 2. is

a∈A ¬a → bRa b (2)
Conjoining (1) and (2), we obtain a subformula (of σ (A ,R),S) expressing that S meets conditions 1. and 2. for being a stable extension:

a∈S bRa ¬b ∧ a∈A ¬a → bRa b (3)
There remains to introduce the set Φ S of literals expressing that all elements of S are in S and that all elements not in S fail to be in S, as follows

Φ S def = {a | a ∈ S} ∪ {¬a | a ∈ A \ S}
and all this leads us to a formula encoding stable extensions:

σ (A ,R),S = a∈S bRa ¬b ∧ a∈A ¬a → bRa b ∧ Φ S (4)
Thus, the system requires the user to input an argumentation semantics as a combination of principles (see [START_REF] Baroni | On Principle-based Evaluation of Extension-based Argumentation Semantics[END_REF] for the notion) -excluding Φ S which is transparent to the user.

Notation. Quantifying over attacks relative to an argument can easily be turned into quantifying over membership in R + (•) and R -(•) according to the next definition:

R + (a) def = {b ∈ A | aRb}; R -(a) def = {b ∈ A | bRa}.
Actually, the formula encoding stable extensions can be rewritten in many ways, e.g.

σ (A ,R),S = a∈S   a ∧ b∈R -(a) ¬b   ∧ a∈A   ¬a → b∈R -(a) b   ∧ {¬a | a ∈ A \ S} (5)

Logical Encoding of Argumentation Semantics

For a given semantics, σ (A ,R),S represents a class of formulas each of which is induced from σ (A ,R),S by considering a particular argumentation graph (A , R) and S ⊆ A . It just takes to unfold σ (A ,R),S according to the actual values taken by A , R and S.

Example 1. As to σ =stable, for A = {d, e, f } with {eR f , f Rd, f R f } (see Figure 1), for the case S = {d, e} which is a stable extension, instantiating σ (A ,R),S (using the version of Equation (5) for readability reasons) yields the satisfiable formula: In σ (A ,R),S , all the atomic formulas encode a statement of the form "the argument a is in the set X" where a is a variable denoting an argument of A and X is a variable denoting a subset of A . These are the only primitive statements that can appear in the semantics specified by the user. In the semantics σ , such statements can be conjuncted, negated, etc, arguments can be quantified over, sets of arguments can be maximized, etc.

a∈S a ∧ b∈R -(a) ¬b (d ∧ ¬ f) ∧ (e ∧ ⊤) ∧ a∈A ¬a → b∈R -(a) b ¬d → f ∧ ¬e → ⊥ ∧ ¬ f → (e ∨ f) ∧ {¬a | a ∈ A \S}
Most importantly, S denotes a distinguished set: S denotes the subset of A to be tested for being a σ -extension.

Introducing the System

The main step in specifying an argumentation semantics via SESAME is developing a decomposition tree (from the grammar given in Section 3.1). This can be done by the user, by clicking upon the buttons in the left part of the screen (they are called development buttons -see Figure 2). When the user clicks upon one of these buttons, the current non-terminal3 is expanded according to the derivation labelling the button.

As an illustration, when the user clicks upon the button principle , a scroll menu is displayed that indicates what chains are available to replace principle , namely "it isn't the case that principle " or " principle and principle " or . . . (see Figure 3).

After the user has selected her choice, the system updates the current expression (in semi-natural language) of the decomposition tree displayed in the main white frame. The formula 4 to be generated (it is displayed in the lower white frame) is duly updated. For example, "it is not the case that principle " gives rise to the formula ¬ principle (see Figure 4) and " principle and principle " gives rise to principle ∧ principle .

Assume for example that the current non-terminal is classical-principle . As the user clicks upon the development button labelled classical-principle , a scroll menu is displayed (see Figure 7) which indicates that classical-principle can be replaced by " set is conflict-free" or " set satisfies admissibility" or " set satisfies reinstatement". After choosing one of these three options, the user will eventually have to specify set by clicking upon the development button labelled set (see Figure 2) etc.

Grammar

The range of argumentation semantics that the user can specify is given by means of the grammar below. Moreover, the way the user can specify an argumentation semantics is constrained as discussed in Section 2: The grammar only accepts primitive statements of (non-)membership in X for some variable X denoting a set of arguments. An example is for all a and b such that aRb, if a is in S then b is not in S.

A counter-example is the same semantics, when expressed as follows:

for all a in S, if b is in S then aRb fails.

The latter does not conform with the grammar since it resorts to a statement (i.e. aRb) that fails to be a membership statement as required. 5 Let us repeat that all the primitive A and S are parameters, all the other non-logical terminals in the grammar are variables: a, b,. . . , y, z, S 1 , S 2 ,. . . In particular, a, b, . . . , y, z is not a list of arguments of A . principle → all quantified-upon , principle

Features of the System

Scroll Menus for Development Buttons

As development buttons correspond to non-terminals of the grammar, the items in the scroll menu attached to the button are the grammar rule(s) expanding the non-terminal. For instance, the scroll menu for argument displays the list a, b, . . . , y, z and the scroll menu for set displays an initial series of the list S 1 , S 2 , . . . Also, the scroll menu for classical-principle displays three items (see Figure 7). As an exception, not all options in the scroll menu for principle are grammar rules expanding principle . The extra options can be viewed as macros explicited in order to help the user. For instance, the grammar allows the user to specify that a subset of A is maximal for satisfying principle . A casual user is not expected to figure out how to express this through the grammar. So, the scroll menu for principle includes the items: The grammar allows the user to specify ℜ + (a) ⊆ ℜ -(b)∪(A \S) and other set-inclusion statements but only in a convoluted way. The system is to alleviate the burden on the user by providing her with appropriate items. Hence the scroll menu for principle includes: complex-set is a subset of complex-set This is why there is a development button labelled complex-set whose scroll menu is:

domain A \ complex-set complex-set ∪ complex-set complex-set ∩ complex-set
and there is a development button labelled domain whose scroll menu displays: set ℜ + argument ℜ -argumentt Also, the scroll menu for principle factors the three cases attack-quantification , set-quantification , and inclusion-quantification by means of the two items "for all quantified-upon " and "there exists quantified-upon " where quantified-upon is to be expanded to either argument ℜ argument or argument ∈ set or set ⊆ set .

Current Non-terminal: Highlighted Development Button

At any time, the non-terminal to be developed next is highlighted (blue inverse video). By default, the order in which the non-terminals are developed is depth-first, left to right. However, the browsing buttons (see Figure 8) allow the user to override the default order and to freely choose the next non-terminal to be developed. Also, depending on which non-terminal is highlighted, a development button is enabled but the other development buttons are disabled (shadow display).

The 'undo' and 'redo' Buttons

Immediately above the main white frame there is a series of buttons, of which the leftmost two are undo and redo (see Figure 9). They allow the user to navigate through any step between the current state of the decomposition tree and its initial state. Of course, undo goes backward one step and redo goes forward one step (up to the current state). The system achieves syntactical checking as it ensures that the specification entered by the user conforms with the grammar (e.g., the system makes it impossible that the input involves a statement of the form "the subset X of A is in the argument a"). Yet, there is no semantical check and it is largely possible for the user to input some dubious semantics (e.g., a "semantics" requiring that all self-attacking arguments are in S).

Conclusion and Perspectives

We have shortly described SESAME, a system (see www.irit.fr/SESAME) implemented in Java. It allows the user (guided by a simple BNF grammar) to specify an argumentation semantics σ , for which the system generates a propositional formula σ (A ,R),S that turns out to be satisfiable if and only if S is a σ -extension of the argumentation graph (A , R). Such an argumentation semantics must conform to the grammar, and this may require some ingenuity from the user. The reason is that there are usually many ways to specify an argumentation semantics but the user must find out how to express hers in a way accepted by the grammar. To some extent, the system alleviates the burden on the user by allowing the user not to conform strictly to the rules of the grammar (but the system ensures that the user conforms with the language generated by the grammar). When instantiated by a specific argumentation graph (A , R) and set S, the formula generated by SESAME may be fed to a SAT solver. Of course, such an approach is not meant to compete with optimized systems e.g. from ICCMA [START_REF]Systems Descriptions of the 1st Int. Competition[END_REF]. However, the ICCMA argumentation graphs benchmark may provide interesting instantiations allowing new semantics to be tested on a wide and diverse range of small argumentation graphs.

Moreover, we plan to extend the functionalities of the system so that, for example, recursive semantics of various kinds [START_REF] Baroni | Semantics of Abstract Argument Systems[END_REF] can be specified (as to now, classical semantics captured by SESAME include grounded, complete, preferred, semi-stable, stage, ideal).

Figure 1 .

 1 Figure 1. The argumentation graph (A , R) of Example 1

Figure 2 .

 2 Figure 2. The home screen

Figure 3 .

 3 Figure 3. The principle 'It is not the case that' is selected

Figure 4 .

 4 Figure 4. After a principle has been selected, the corresponding formula (lower white frame) is updated

Figure 5 .

 5 Figure 5. The principle 'classical-principle' is selectedstatements to be encoded must be of the kind a is in X where a is a variable referring to an argument and X is either A or S or a variable referring to a subset of the arguments. semantics ::= principle principle ::= classical-principle | ¬ principle | principle operator principle | attack-quantification principle | membership-quantification principle | inclusion-quantification principle | argument ∈ set classical-principle ::= set is conflict-free | set satisfies admissibility | set satisfies reinstatement attack-quantification ::= quantifier argument ℜ argument membership-quantification ::= quantifier argument ∈ set inclusion-quantification ::= quantifier set ⊆ set operator ::= ∧ | ∨ | → quantifier ::= | set ::= A | S | S 1 | S 2 | . . . argument ::= a | b | c | . . . | x | y | z

Figure 6 .

 6 Figure 6. A classical-principle must be chosen

Figure 7 .

 7 Figure 7. A classical-principle is being chosen set is maximal wrt principle set is minimal wrt principle set is the intersection of all subsets of A that satisfy principle

Figure 8 .

 8 Figure 8. The buttons allowing to browse among non-terminals of the main white frame

Figure 9 .

 9 Figure 9. The 'undo' and 'redo' buttons

Corresponding Author: Sylvie Doutre, University of Toulouse 1, Toulouse, France; E-mail: sylvie.doutre@irit.fr.

Logical encoding of a statement "the argument b is in the set X" is denoted ϕ (b∈X) in[START_REF] Besnard | Encoding Argument Graphs in Logic[END_REF] for genericity.

The non-terminals are the phrases enclosed between and (see the grammar).

It is rather a pseudo-formula containing items such as principle as long as the user is not finished with specifying the argumentation semantics of hers.

Even when aRb is expressed as b ∈ R + (a) or as a ∈ R -(b) because neither R + (a) nor R -(b) is a variable.

Let us repeat that Φ S is not part of the user's specification. Moreover, following the generic notation,Φ S = {ϕ (a∈S) | a ∈ S} ∪ {¬ϕ (a∈S) | a ∈ A \ S}.

Acknowledgements. This work benefited from the support of the AMANDE project (ANR-13-BS02-0004) of the French National Research Agency (ANR).