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Abstract

We will show in this paper that gravity, in flat spacetime, must be described by a gravitomagnetic
theory with the gravitational mass as Lorentz invariant and not equivalent to the inertial mass. We
can then discover the origin of inertia and the nature of the inertial rest mass if we extend the principle
of relativity to all kinds of motion by accepting the principle of General Covariance and the principle
of Equivalence. Thus, we can prove that:

1. The external inertial forces, felt by an accelerating body, are inductive effects of the entire Universe
while the internal inertial forces depend on the internal structure of the body. In a free fall the
internal inertial forces are canceled due to the principle of Equivalence and the body feels only
the external inertial forces. That’s why all bodies fall at the same rate in a gravitational field.

2. The inertial rest mass of a body depends on the distribution of the matter in the Universe and this
seems very important for dark matter and dark energy.The inertial mass of a charged particles
in the subatomic world can take any value.

3. The gravitational forces affect the spacetime metric and the Schwarzschild metric is a consequence
of the new theory.

Keywords: gravitomagnetism , relative acceleration , Mach’s principle , origin of inertia , nature of
inertial rest mass , dark matter , dark energy

1 Introduction

The origin of inertial forces is a problem which has been of great concern to many thinkers since the time
of Newton, but which so far has escaped a satisfactory solution. So, there is space for a new attempt.
Inertial forces appear in a non-inertial frame of reference. But what determines an inertial frame?

The first answer comes from Descartes and Newton, according to which, an inertial frame of reference
is a frame that moves with constant velocity, with respect to the absolute space and the motion is absolute.
The inertial forces, such as the centrifugal force, must arise from acceleration with respect to the absolute
space. This idea implies that space is an absolute physical structure with properties of its own and the
inertia is an intrinsic property of the matter.

The second answer comes from Leibniz, Berkeley and Mach and is known as Mach’ principle, according
to which, an inertial frame of reference is a frame that moves with constant velocity, with respect to the
rest of the matter in the Universe, and the motion is relative. The inertial forces, such as the centrifugal
force, are more likely caused by acceleration, with respect to the fixed stars. This idea implies that the
properties of space arise from the matter contained therein and are meaningless in empty space.
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2 GRAVITOMAGNETIC THEORY

The distinction between Newton’s and Mach’s considerations, is not one of metaphysics but of physics,
for if Mach were right then a large mass could produce small changes in the inertial forces observed in its
vicinity, whereas if Newton were right then no such effect could occur [1]. This seems to be very important
when we consider subjects such as dark matter and dark energy.

The idea that the only meaningful motion of a particle, is motion relative to other matter in the
Universe, has never found its complete expression in a physical theory. The Special theory of relativity
eliminated absolute rest from physics, but acceleration remains absolute in this theory. Alfred Einstein was
inspired by Mach’s principle. The General theory of relativity, attempted to continue this relativization
and interpret inertia considering that it is the gravitational effect of the whole Universe, but as pointed
out by Einstein, it failed to do so. Einstein showed that the gravitational field equations of General
relativity imply that a body, in an empty Universe, has inertial properties [2].

The principle of Equivalence is an essential part of General relativity. But although the principle
of Equivalence has been confirmed experimentally to high precision, the gravitational field equations of
General relativity have not as yet been tested so decisively. Thus, it is not a theory fully confirmed
experimentally and competing theories cannot be ruled out [3]. As Richard Feynman writes in Lectures
on gravitation: “...perhaps if we consider alternative theories which do not seems a priori justified, and
we calculate what things would be like if such a theory were true, we might all of sudden discover that’s
way it really is.”

2 Gravitomagnetic theory

The first step in order to explain the inertial forces, is to accept that the gravitational
forces must be described by a gravitomagnetic theory. Why should we do this? Let’s do
a thought experiment. Let us have a system of two non spinning bodies with gravitational masses and
positive electric charges, in a region of free space where there are no external forces. We suppose that the
two bodies are at rest in an inertial frame of reference S under equilibrium conditions, i.e. the force of
gravitational attraction balances that of electrostatic repulsion. But what is observed by another inertial
frame of reference S′, moving with uniform velocity relative to the frame S? Let us imagine that if the
bodies collide, they will explode. It is impossible for one observer to see an explosion and for another to
not see it. Therefore, the equilibrium must be a frame-independent condition.

In order for equilibrium to be a frame-independent condition, it is necessary that the gravitational
forces, in flat spacetime, to have exactly the same transformation law as that of the Lorentz force. But
this does not happen with gravity as it is described by the General theory of relativity. The linear
approximation of the General Relativity, which is only valid for weak gravitational fields, gives us an
equation analogous to the Lorentz force but the analogy is not perfect [4]. For this reason we accept
that gravity must be described, in flat spacetime, by a gravitomagnetic theory with equations
which have the same mathematical form as those of the electromagnetic theory with the
gravitational mass as a Lorentz invariant.

According to Richard Feynman, we can reconstruct the complete electrodynamics using the Lorentz
transformations (for coordinates, velocities, potentials, forces) and the following series of remarks [5][6]:

1. The Coulomb potential at a distance r from a stationary point-charge q in vacuum is: ϕe =
1

4πε0

q

r

2. An electric point-charge produces a scalar potential ϕe and a vector potential ~Ae, which together

form a four-vector, Ae =
(ϕe

c
, ~Ae

)

3. The potentials produced by a point-charge moving in any way, depend only upon the velocity and
position at the retarded time.
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2 GRAVITOMAGNETIC THEORY

where ε0 is the vacuum permittivity. Of course we need to know how to get the Coulomb’s law from
the scalar potential. Therefore, if we want to obtain a gravitomagnetic theory, with equations
that have the same mathematical form, as those of the electromagnetic theory, first we must
accept that the gravitational mass is a Lorentz invariant and second that the same series
of remarks must be met for gravity. We already have the first remark, that is, the gravitational

potential at a distance r from a stationary gravitational point-mass m in vacuum is, ϕg = −G
m

r
where G

is the gravitational constant, but this is only the one remark. Therefore, we need the other two, as well.
We will obtain them with the following two principles:

Principle 1

A gravitational point-mass produces a scalar potential ϕg and a vector potential

~Ag, which together form a four-vector, Ag =
(ϕg

c
, ~Ag

)

Principle 2

The potentials produced by a gravitational point-mass moving in any way, depend
only upon the velocity and position at the retarded time.

So, the potentials produced by a gravitational point-mass m moving with any velocity have the
same mathematical form as the Lienard-Wiechert potentials for an electric point-charge moving with
any velocity, but with a negative sign,

ϕg = −G

[

m

r − ~r~v/c

]

and ~Ag = −G

c2

[

m~v

r − ~r~v/c

]

=
1

c2
[ϕg~v] (2.1)

where ~r is the vector from the gravitational point-mass to the point where the potential is evaluated, c is
the speed of light in vacuum and the quantities r, ~r and ~v (the velocity of the point-mass) in the square
bracket are to have their values at the retarded time. Starting from the potentials, in order to find the
fields, we have the equations

~Eg = −~∇ϕg −
∂ ~Ag

∂t
(2.2)

~Bg = ~∇× ~Ag (2.3)

When a gravitational mass m moves with velocity ~v in the above fields, it feels the force,

~Fg = m( ~Eg + ~v × ~Bg) (2.4)

where ~Eg is the gravitational field and ~Bg the gravitomagnetic field.
So we expect that there are gravitomagnetic radiations propagating in vacuum at the speed of light

but with a significant difference compared to electromagnetic radiations. As I. Ciufolini and J. A. Wheeler
write in “Gravitation and Inertia” [7], an isolated electric source can radiate electric dipole radiation, with
power proportional to the square of the second time derivative of the electric dipole moment de ≡

∑

i qix
i,

that is, Le,dipole =
2

3
d̈e

2
=

2

3
(
∑

i qia
i)2, where a dot denotes first time derivative and two dots second

time derivative. However, an isolated gravitational source cannot radiate gravitational dipole
radiation, but quadrupole and radiation of higher polarity. The reason is simple. The electric
dipole moment can move around with respect to the center of mass but the gravitational dipole moment
dg ≡

∑

i mix
i is identical in location with the center off mass, and due to the law of conservation of

momentum, cannot accelerate or radiate ḋg =
∑

imiẋi =
∑

i pi = 0.
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2 GRAVITOMAGNETIC THEORY

For the quantum field theory, the gravitomagnetic theory must be described in flat
spacetime by a spin-1 gauge field, because it is just like electromagnetic theory. Let’s see how
this can happen. It is well known that the free Dirac Lagrangian density for a particle [8]

L = ih̄cΨ̄γµ∂µΨ−min−0Ψ̄Ψ (2.5)

where min−0 the inertial rest mass of the particle, is invariant under the transformation

Ψ → eiθΨ (2.6)

where θ is a real number. But the Lagrangian density is not invariant under the following transformations

Ψ → eiθ(x)Ψ (2.7)

where θ(x) is now function of x. Under the local phase transformation we get

L′ = L − h̄c(∂µθ)Ψ̄γµΨ (2.8)

If we define
θ(x) = − q

h̄c
λe(x)−

m

h̄c
λg(x) (2.9)

where q the electric charge and m the gravitational mass of the particle, the equation (2.8) becomes

L′ = L+ [q(∂µλe) +m(∂µλg)]Ψ̄γµΨ (2.10)

Now, if we demand that the complete Lagrangian must be invariant under local phase transformation, we
are forced to add something to soak up the extra term

L = [ih̄cΨ̄γµ∂µΨ−min−0Ψ̄Ψ]− (Ψ̄γµΨ)[qAe +mAg] (2.11)

where the vectors qAe and mAg are transformed under the local gauge transformation according to the
rule

qAe → qAe + q∂µλe and mAg → mAg +m∂µλg (2.12)

Thus, the complete Lagrangian becomes

L = [ih̄Ψ̄γµ∂µΨ−min−0Ψ̄Ψ]− (Ψ̄γµΨ)(qAe +mAg)−
1

16π
FµνFµν −

1

16π
GµνGµν (2.13)

where
Fµν ≡ ∂µAν

e − ∂νAµ
e and Gµν ≡ ∂µAν

g − ∂νAµ
g (2.14)

The complete Lagrangian (2.13) is now locally invariant by introducing the electromagnetic field Ae and
the gravitomagnetic field Ag. Both fields must be mass-less, otherwise the invariance will be lost.

In order for like masses to attract and opposites to repel, the opposite of electric charges,
we will accept that the gravitational mass is an imaginary number. We can do this because,
as we will show below in equations (4.15) and (4.31), any measurable quantity, such as the
inertial mass, the momentum and the kinetic energy, is the product of two gravitational
masses and therefore is a real number. The graviatational mass will appear as a square in any
Feynman diagram, via the coupling constant, because always two vertices are involved. So, it will
change the sign of the energy corresponding to this diagram so that likes attract and unlikes
repel in gravitomagnetism. However, for simplicity, in what follows the gravitational mass continues
to be used as if it were a real number.

Now having a gravitomagnetic theory, just like the electromagnetic theory, we have the law of induc-
tion, given by equation (2.2). Therefore, if we can apply the laws of physics to a reference frame that is
accelerating relative to the fixed stars, we expect an induced gravitational field to appear in that frame.
This gravitational field may be the cause of inertial forces. However, in order to apply the laws of physics
to an accelerating frame of reference, we need to extend the principle of relativity. For this reason we will
follow the fundamental idea of the relativity of all kinds of motion.
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3 GENERAL RELATIVITY OF MOTION

3 General relativity of motion

According to Richard Tolman, the fundamental principles of General theory of relativity, i.e. the principle
of General Covariance and the principle of Equivalence, may be regarded as based on the fundamental
idea of the relativity of all kinds of motion [9]. In accordance with this idea we can detect and measure the
motion of a given body, relative to other bodies, but cannot assign any meaning to its absolute motion.
Therefore, an observer inside an accelerated rocket cannot distinguish whether the rocket is accelerated
and the remainder of the Universe is at rest or whether the rocket is at rest and the remainder of the
Universe is accelerated in the opposite direction.

According to R. Tolman, in order to ensure the relativity of all kinds of motion we need the principle
of General Covariance and the principle of Equivalence. We need the principle of General Covariance
because the laws of physics should have the same mathematical form in all frames of reference since
otherwise the difference in form could provide a criterion for judging the absolute motion. We need the
principle of Equivalence, because the fact that the expression of the equations of physics in a form which
is independent of the reference frame does not in general prevent a change in their numerical content
when we change from one reference frame to another and it is only by relating such changes in numerical
content to conceivable changes in gravitational field that we are able to eliminate criteria for absolute
motion and to preserve the idea of the relativity of all kinds of motion. So, we accept the next principles:

Principle 3 - The principle of General Covariance

The laws of physics have the same mathematical form in all frames of reference.
In inertial frames of reference the laws of physics reduce to simpler mathematical
forms which agree with the laws of Special theory of relativity.

Principle 4 - The principle of Equivalence

Physics in a non accelerating frame S, with a uniform gravitational field where
all the released bodies fall with acceleration ~g, is equivalent to physics in a frame
without gravity but with translational acceleration ~a = −~g and velocity zero with
respect to the inertial frame in which the non accelerating frame S is at rest.

or,

Physics in a local frame freely falling in a gravitational field is equivalent to physics
in an inertial frame without gravity.

Using the Special theory of relativity we are able to describe what physical effects are observed by an
observer at rest in a uniformly accelerated frame of reference. The most well-known of them, apart
from the inertial forces, are [10]:

1. Redshift or blueshift of a light ray moving parallel to the direction of the acceleration.

2. Varying coordinate speed of light; fixed local relative speed of light.

3. Spacetime is endowed with a metric.

4. Maximum proper time as the law of motion of freely moving bodies.

According to the principle of Equivalence the same effects must occur in a gravitational field . Therefore,
the spacetime is endowed with a metric and the gravitational field affects the spacetime metric so that,
the maximum proper time is the law of motion of a freely moving body in a gravitational field. The two
above physical effects are so important that we will elevate them to physical principles:
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3 GENERAL RELATIVITY OF MOTION

Principle 5 - The Principle of Spacetime Metric

Spacetime is endowed with a metric. The spacetime interval between two events
is: ds2 = gµνdx

µdxν where gµν is the metric tensor.

Principle 6 - The Principle of Geodesic Motion or of Maximum Proper Time

A freely moving body always moves along a geodesic: δ
´

ds = 0

If the ratio of gravitational mass m to the inertial rest mass min−0 of a freely moving perticle K:
m

min−0
,

is the same for all freely moving particles, the geodesic equation is

min−0
d2xµ

ds2
+mΓµ

νσ

dxν

ds

dxσ

ds
= 0 (3.1)

where Γµ
νσ the Christoffel symbol. However, if the gravitational field is so weak that the spacetime is

nearly flat, according to the gravitomagnetic theory, the equation of motion of the particle K is

min−0
d2x

′µ

ds2
=

m

c
Gµ

ν

dx′ν

ds
(3.2)

where Gµ
ν is the gravitomagnetic tensor. Therefore, if the gravitational field is so weak that the spacetime

is nearly flat, the term: mΓµ
νσ

dxν

ds

dxσ

ds
must reduce to the term: −m

c
Gµ

ν
dxν

ds
, that is

mΓµ
νσ

dxν

ds

dxσ

ds
−→ −m

c
Gµ

ν

dxν

ds
(3.3)

According to C. Duarte, who examines this subject in the paper entitled “The classical geometrization of
the electromagnetism” [11], for a weak gravitational field the metric tensor is

gµν =









1 + 2φg/c
2 Ag1/c Ag2/c Ag3/c

Ag1/c −1 0 0
Ag2/c 0 −1 0
Ag3/c 0 0 −1









So, the relation (3.3) shows us that the components of the metric tensor must depend on the components
of the gravitational four-potential and thus the metric tensor will have as many degrees of freedom as the
electromagnetic field. Therefore, gravity can described by a massless spin-1 gauge field.

We will derive later, using only the principles 5 and 6 and the equation ~Eg = −~∇ϕg − ∂ ~Ag/∂t, the
Schwarzschild metric but let us first discover the origin of inertia and the nature of the inertial rest mass
which will justify all the above that we accepted in the present and also in the previous chapter.

According to the principle of Equivalence, in a local frame freely falling in a gravitational field, the
gravitational field must exactly cancel the acceleration so that, no sign of either acceleration or gravitation
can be found by any physical means in this local frame. In order for this to happen, the total gravitational
field inside the free-falling frame must be zero. For this reason we accept the next principle:

Principle 7 - The Law of motion

The motion of a body is such that, in its proper frame, i.e. the frame where the
body is always at rest, the total force on the body is always zero.

6



4 INERTIA

According to the Law of motion, the force that accelerates a body and the inertial force
that the body feels in its proper frame are equal in magnitude but opposite in direction.

According to the principle of Equivalence, for an observer R accelerating relative to an inertial frame of
reference S, the fixed stars make free fall in the gravitational field that he perceives. Now the question
is: for the accelereted observer R, do the fixed stars that make free fall emit radiation field?
According to the principle of Equivalence, no sign of either acceleration or gravitation can be found by any
physical means in the free-falling stars. Because the radiation field is a sign of acceleration, the accelereted
observer must not observe any radiation field from the free-falling stars. In order for this to happen, the
fields of the free-falling stars must be like the fields of the same stars if they were always moving in a
straight line with constant speed, and the reason is simple, the fields also make free fall in the gravitational
field just like the stars. So, the instantaneous potentials of the free falling stars must be exactly the same
as the potentials of the same stars if they were always moving in a straight line with constant speed, equal
to the instantaneous speed of the inertial frame S relative to the accelereted observer R. Therefore,
we can find the instantaneous potentials of the fixed stars for the accelerating observer R
at time t simply by the Lorentz transformations, using as the velocity the instantaneous
velocity of the inertial frame S relative to the observer R at time t. Having the potentials we
can find the gravitational field perceived by the accelereted observer R.

According to the local-flatness theorem, the metric in the immediate neighborhood of a point P is, to
a close approximation, the Minkowski spacetime metric and the laws of Special theory of relativity are
valid there [12]. So, everywhere locally the laws of Special theory of relativity are valid. We
now have all the tools we need to search for the origin of inertia.

4 Inertia

4.1 Inertial forces

Let’s make now a thought experiment, the lab frame experiment. We suppose that we use a space station,
which is far from any massive body, as a laboratory. We will call the local inertial frame where the space
station is always at rest, the lab frame. The lab frame, as a local inertial frame, is only expected to
function over a small region of space. We assume that the distribution of matter in the Universe is such
that the gravitational field in the lab frame is zero. This means that the gravitational scalar potential
ϕg, of the entire Universe, has the same value everywhere in the lab frame, and so,

~∇ϕg = 0 (4.1)

We also suppose that the Universe expands symmetrically in all directions, with respect to the lab frame,
so that the gravitomagnetic vector potential due to one part of the mass-current, is canceled out by
the vector potential due to another part of the mass-current, owing to its symmetry. Therefore, the
gravitomagnetic vector potential ~Ag from the entire Universe in the lab frame is zero,

~Ag = 0 (4.2)

We suppose that we have a rocket that is so small that we can always consider that the spacetime
is flat on it and so, we can apply the laws of special relativity. The rocket, which is initially at rest
in the lab frame, begins to accelerate making translatory motion along the x axis. We have shown
in the previous section, that we can find the potentials of the free falling stars for the
accelerating observer R and therefore for the accelerating rocket, simply with the Lorentz
transformations. Therefore, when the instantaneous velocity of the rocket is v in the positive x-direction
as measured in the lab frame, the Lorentz transformations which give the gravitational scalar potential

7



4.1 Inertial forces 4 INERTIA

ϕ′

g and the gravitomagnetic vector potential ~A′

g in the rocket, in terms of the potentials ϕg and ~Ag in the
lab frame, are:

ϕ′

g = γ(v)(ϕg − vAg−x), A′

g−y = Ag−y

A′

g−x = γ(v)(Ag−x − v

c2
ϕg), A′

g−z = Ag−z, γ(v) =
1

√

1− v2

c2

(4.3)

Therefore, using vector notation, the potentials inside the rocket are

ϕ′

g = γ(v)ϕg (4.4)

~A′
g = − 1

c2
γ(v)ϕg~v = − 1

c2
ϕ′

g~v (4.5)

As the rocket accelerates, the potentials inside the rocket change. As we said, the rocket is so small that
we can always consider that the spacetime is flat on it and so, we can apply the laws of special relativity.
Hence, according to equation (2.2) an induced gravitational field appears now inside the rocket which is

~E′
g = − ~∇′ϕ′

g −
∂ ~A′

g

∂t′
(4.6)

where ∂t′ is the time interval, in the rocket frame.
The gravitomagnetic field, inside the rocket, is zero because all the fixed stars make translatory motion

in respect to the rocket and so,
~B′

g = ~∇′ × ~A′
g = 0 (4.7)

The γ(v) factor is the same everywhere within the rocket. So, from the equation (4.4), the scalar
potential ϕ′

g is always the same everywhere within the rocket and therefore,

~∇′ϕ′

g = 0 (4.8)

Hence, the gravitational field within the rocket becomes

~E′

g = −
∂ ~A′

g

∂t′
(4.9)

The vector potential is also the same everywhere within the rocket. Therefore, an induced uniform
gravitational field appears within the accelerated rocket, whereas in the lab frame there is
no gravitational field. If a test-body K with gravitational mass m, is at rest inside the rocket, will
experience a gravitational force,

~F ′
g = m~E′

g = −
∂
(

m~A′

g

)

∂t′
(4.10)

If we assume now that the gravitational scalar potential ϕg is independent of time (that’s why we call the

stars, fixed stars) substituting for ~A′

g from equation (4.5) into equation (4.10), we get

~F ′
g = −

(

− 1

c2
mϕg

)

∂ [γ(v)~v]

∂t′
= −

(

− 1

c2
mϕg

)

γ3(v)
d~v

dt′
(4.11)

If we recall now that the gravitational scalar potential is negative, it is obvious from equation (4.11) that
the induced gravitational force on the test body K resists changes in its velocity. It is an inertial force!
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4.1 Inertial forces 4 INERTIA

We will call the inertial force which is given by equations (4.10), external gravitational
inertial force ~F ′

inert because it is due to the acceleration with respect to the fixed stars. So,

~F ′

inert =
~F ′

g = −
∂
(

m~A′

g

)

∂t′
(4.12)

So, inertial frame is a local frame that moves with uniform velocity relative to the lab frame or better,
relative to to the fixed stars or a local frame free-falling in a gravitational field.

In addition to the external inertial force, there is also an internal inertial force. This is
a well known effect which has the name radiation reaction [13] [14]. We do not know exactly the
mechanism that causes it but we know that it exists. The picture is something like this: We can think
that a body consists of many particles. When the body is at rest or it’s moving at uniform velocity, every
particle exerts a force on every other, but the forces all balance in pairs, so that there is no net force.
However, when the body is being accelerated, the internal forces will no longer be in balance, because of
the fact that the influences take time to go from one particle to another. With acceleration, if we look
at the forces between the various particles of the body, action and reaction are not exactly equal, and
the body exerts a force on itself that tries to hold back the acceleration. We will call this self-force,
internal inertial force, because it depends on the internal structure of the body.

According to the principle of Equivalence, when a body makes free fall, the gravitational field exactly
cancels the acceleration of the body so that, no sign of either acceleration or gravitation can be found by
any physical means, inside the body. Therefore, because the internal inertial force is a sign of acceleration,
it should be canceled when the body makes free fall. So we conclude that: When a body makes free
fall in a gravitational field, the internal structure of the body plays no role and thus, only
the external gravitational inertial force acts on the body.

We can obtain some very important results for non-relativistic velocities, before moving on and con-
sidering the subject in the relativistic domain. So, for non-relativistic velocities, from equation (4.11),
the external gravitational inertial force on the accelerating test-body K is

~F ′

inert = −
(

− 1

c2
mϕg

)

d~v

dt
=

(

− 1

c2
mϕg

)

(−~a) (4.13)

where dt is the time interval in the lab frame and ~a is the acceleration with respect to the lab frame. Let’s
imagine now, that the test-body K is a body without internal structure and thus, when it
is accelerated by a force ~F , it does not feel any internal inertial force but only the external
gravitational inertial force. According to the Law of motion of principle 7, in the proper frame of the
test-body K, the total force on the body is zero. Therefore, the force ~F that accelerates the test-body K
with acceleration ~a, must be

~F = −~F ′

inert =

(

− 1

c2
mϕg

)

~a = min~a (4.14)

The equation (4.14) is Newton’s Second Law, for non-relativistic velocities, which obviously
results from the Law of Motion. Therefore, the inertial mass min of the test-body K, for
non-relativistic velocities, is (this equation will change a bit for relativistic velocities so that the
inertial mass is a Lorentz invariant)

min =

(

− 1

c2
mϕg

)

(4.15)

We will call the inertial mass of the test-body K gravitational inertial mass and its momentum, gravita-
tional momentum, because they are due to the gravitational potential of the rest of the Universe.

We must emphasize that the gravitational inertial mass of a body is just a part (a
coefficient) of the inertial force and thus only appears when the body is accelerated. It
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

makes no sense when the body is moving uniformly. So, the gravitational inertial mass of a
body, without internal structure, is not an intrinsic property of the body but is proportional
to the gravitational scalar potential of the entire Universe.

It’s noteworthy that if we consider that the density of matter is roughly uniform throughout space,
then the most distant matter dominates the gravitational scalar potential. This is because, although
the influence of matter decreases with the distance, the amount of matter goes up as the square of the
distance. Therefore, the distant matter is of predominant importance, while local matter has only a very
small effect.

Let’s suppose now that a test-body of gravitational mass m, makes free fall in the gravitational field of
a massive body which has spherically symmetric gravitational mass M with M ≫ m, in a region of space
where the gravitational scalar potential from the rest of the Universe is ϕg. As we have shown, when
a body makes a free fall in a gravitational field only the external gravitational inertial force
acts on the body. Therefore, for non-relativistic velocities, Newton’s Law of Universal Gravitation and
Newton’s Second Law gives for the magnitude of the radial acceleration of the test-body,

G
Mm

r2
=

(

− 1

c2
mϕg

)

a (4.16)

where r is the distance of the test-body from the center of the massive body. It is obvious that
the gravitational mass m of the test-body is canceled in equation (4.16). Therefore, the
acceleration of a free-falling body is independent of its gravitational mass and so, all bodies
fall at the same rate in a gravitational field. This is a fundamental experimental result that
was tested with great accuracy with the Eötvös experiment. In Einstein’s General relativity, the above
experimental result is interpreted by accepting the equivalence of gravitational and inertial mass.

4.2 Relativistic momentum and the nature of the inertial rest mass

Let’s continue the lab frame experiment, to find out the momentum and the nature of the inertial rest
mass of a body for relativistic velocities. Let’s suppose that in the area of the lab frame, a local inertial
frame S which has in common with the lab frame the x, x′ axis, moves along the x-axis with uniform
velocity V relative to the lab frame.

We suppose that a test-body K of gravitational mass m, electric charge q and no internal structure,
which is initially at rest on the x-axis of the lab frame, begins to accelerate along the x-axis due to
the electric field Ee−x of an electric point charge B, which is always stationary on the x-axis. There
are no other electric charges or currents in the vicinity. Let’s suppose that when the test-body K has
instantaneous velocity v relative to the lab frame, has instantaneous velocity w relative to the frame S
and therefore, the frame S has instantaneous velocity (−w) relative to the instantaneous rest frame of the
test-body K.

Because the velocity of the test-body K is along a line passing through the charge B, i.e. the x-axis,
no magnetic force is exerted on the test-body K in the lab frame, in the frame S and its instantaneous
rest frame.

When the test-body K is accelerated along the x-axis relative to the lab frame, from its point of
view, the fixed stars are accelerated, along the x-axis and the gravitomagnetic vector potential from them
changes and causes the external gravitational inertial force which, according to equation (4.12), is

F ′

inert−x = −
∂
(

mA′

g−x

)

∂t′
(4.17)

where ∂t′ is the time interval in the proper frame of the test-body K.
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

When the test-body K has instantaneous velocity v along the x-axis, relative to the lab frame, the
gravitational scalar potential ϕ′

g and the gravitomagnetic vector potential A′

g−x in the proper frame of
the test-body K, according to equations (4.4) and (4.5), are

ϕ′

g = γ(v)ϕg (4.18)

A′

g−x = γ(v)

(

− 1

c2
ϕg

)

v = − 1

c2
ϕ′

gv (4.19)

The accelerated test-body K feels in its proper frame the external gravitational inertial force and the
electric force F ′

x that accelerates it, which is

F ′

x = qE′

e−x (4.20)

According to the Law of motion, in the proper-frame of the test-body K the total force on
it is zero. Therefore,

F ′

x = −F ′

inert−x ⇔ F ′

x =
∂
(

mA′

g−x

)

∂t′
(4.21)

The electric force has the same value in the proper frame of the accelerated test-body K as in
its instantaneous rest frame. Therefore, if the force accelerating the test body K in its instantaneous
rest frame is defined as the partial derivative of its kinetic gravitational momentum with respect to time
in that frame, we have

∂~p′g−x

∂t′
=

∂
(

mA′

g−x

)

∂t′
(4.22)

We use the same time in both frames since according to the clock postulate, the time interval
in the proper frame of the test-body K, is equal to the time interval in its instantaneous
rest frame. By integration, we get

p′g−x = mA′

g−x + C (4.23)

where C is a constant. However, the kinetic gravitational momentum of the test-body K in its instanta-
neous rest frame is zero. So, if this is not the kinetic momentum, what momentum is it?

In Lagrangian mechanics we have three momentums. In the frame S for example, the canonical
gravitational momentum ~P ′′

g of the test-body K is the sum of its kinetic gravitational momentum and
its potential gravitational momentum in the frame S,

~P ′′
g = ~p′′g +m ~A′′

g (4.24)

where the double-prime indicates physical quantities in the frame S. Hence, the momentum given by
equation (4.23) must be the potential gravitational momentum of the test-body K in its instantaneous
rest frame. Therefore, we conclude that, the force that acceletate the test-body K, in its
instantaneous rest frame, must be defined as the partial derivative of the canonical gravi-
tational momentum of the test-body K with respect to time, in order to give us only the
potential gravitational momentum. So, we must define the force that accelerates a body as

~F ≡ ∂ ~P

∂t
(4.25)

So, the potential gravitational momentum of the test-body K in its instantaneous rest frame is given
from the equation (4.23). According to the Lorentz transformations (4.3), in the frame S, which has
instantaneous velocity (−w) relative to the instantaneous rest frame of the test-body K, its potential
gravitational momentum is

m ~A′′
g−x = γ(w)m(A′

g−x +
w

c2
ϕ′

g) (4.26)
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

By substituting for A′

g−x anf ϕ′

g from the equations (4.18) and (4.19) into equation (4.26), we get

m ~A′′
g−x = γ(w)γ(v)

(

− 1

c2
mϕg

)

v + γ(w)γ(v)

(

− 1

c2
mϕg

)

(−w) (4.27)

By rearranging we get

γ(w)γ(v)

(

− 1

c2
mϕg

)

v = γ(w)γ(v)

(

− 1

c2
mϕg

)

(w) +m ~A′′
g−x (4.28)

Comparing the equation (4.28) with the equation (4.24) we get the canonical gravitational
momentum

~P ′′

g−x = γ(w)γ(v)

(

− 1

c2
mϕg

)

v (4.29)

and the kinetic gravitational momentum of the test-body K in the frame S,

p′′g−x = γ(w)γ(v)

(

− 1

c2
mϕg

)

w = γ(w)min−g0w (4.30)

where min−g0 the gravitational inertial rest mass of the test-body K,

min−g0 = γ(v)

(

− 1

c2
mϕg

)

= − 1

c2
mϕ′

g (4.31)

Let us now find out what is the gravitational inertial rest mass of the test-body K and
whether it is a Lorentz invariant. Let’s suppose that we want to find the gravitational potential
energy of the entire Universe relative to the test-body K, when it moves with velocity ~v relative to the
lab frame. The instantaneous sum of the gravitational four-potentials of all the bodies in the Universe is
also a four-vector, the total gravitational four-potential:

Ag =
(ϕg

c
, ~Ag

)

(4.32)

and the four-velocity of the test-body K is: U = γ(v)(c, ~v).
We know that the quantity we are looking for must depend on both U and Ag, and it is a scalar. The

product mUAg has physical dimensions of energy and it is a scalar, because the gravitational mass is a
scalar, and the product of two four-vectors is a Lorentz invariant, i.e. a scalar. Evaluating the product
mUAg in the rest frame of the test-body K,

mUAg = m(c, o)
(ϕg′

c
, ~A′

g

)

= mϕ′

g (4.33)

we obtain the gravitational potential energy of the entire Universe relative to the test-body K, which is
the very thing we wanted and is a Lorentz invariant, i.e. all observers agree on its value at any instant of
the test-body’s history. Comparing the equation (4.33) with the equation (4.31) we get

min−g0 = − 1

c2
mUAg (4.34)

So, the gravitational inertial rest mass of a body without internal structure, is not an
intrinsic property of the body but is proportional to the gravitational potential energy of
the entire Universe relative to the body, and is a Lorentz invariant.
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

Since the gravitational inertial rest mass of the test-body K is a Lorentz invariant, we
can define its kinetic gravitational four-momentum in the usual way

Pg = min−g0U = (min−gc, ~pg) = (Eg/c, ~pg) (4.35)

So, during a collision, if the kinetic gravitational four-momentum is conserved in one inertial frame, it is
conserved in any inertial frame [15].

In the Special Theory of relativity the inertial rest mass of a body should have the same
numerical value when the body is at rest in all inertial frames. This is an experimental
result. However, from equation (4.31) we can see that the rest mass of the test-body K depends on its
velocity relative to the lab frame and therefore, does not have the same value when it is at rest in different
inertial frames, because different inertial frames move with different velocities relative to the lab frame.
Nevertheless, we will prove that because of the vast and expanding Universe, the rest mass
of a body has practically the same value when it is at rest in all inertial frames.

In order to prove the above, we will consider a simple no-relativistic model of the Universe [16]. The
retarded gravitational scalar potential ϕg−1 of the entire Universe in position 1 which is the position of
the lab frame, is given from the integral over all the observable Universe

ϕg−1 = −G

ˆ

[ρ]

r12
dV2 (4.36)

where the element of volume dV2 in position 2, is at a distance r12 from the lab frame and the density of
matter [ρ] of the volume element dV2, is the value at the retarded time (t− r12/c). According to Hubble’s
law, the galaxies are moving away with speeds proportional to their distance r12 from the lab frame

v = H0r12 (4.37)

where H0 is the Hubble constant. We assume that matter receding with velocity greater than that of light
makes no contribution to the scalar potential, so that the integral in equation is taken over the spherical
volume of the Hubble radius c/H0 which is approximately 14.4 billion light years. If we now assume
that the density is uniform, not only in space but also in time, equation (4.36) gives

ϕg−1 = −2πGρ(c/H0)
2 (4.38)

According to equation (4.38), the 99 per cent of the gravitational scalar potential arises from matter
further away than 109 light-years. If we now take into account that the very distant matter
moves with relativistic velocities and the density of matter was much higher in the past, we
conclude that the 99,99 per cent of the gravitational scalar potential arises from matter further away than
1010 light-years. Therefore, practically the 99,99 percent of the gravitational scalar potential arises from
matter moving with speeds that are 99,99 percent of the speed of light. Thus, because of the relativistic
velocity-addition law, practically, the velocity of the very distant matter relative to the test-body K is
almost independent of the velocity of the test-body K relative to the lab frame. It is like the speed of light
that is the same for all the observers. Therefore, from equation (4.31) it follows that practically
the gravitational inertial rest mass of a body has the same value when the body is at rest
in all inertial frames. So, the equations (4.31) and (4.30) becomes

min−g0 ≈
(

− 1

c2
mϕg

)

and p′′g−x ≈ γ(w)

(

− 1

c2
mϕg

)

w (4.39)

If the frame S is at rest in the lab frame, the equation (4.30) has the product of two Lorentz factors γ(v).
The first Lorentz factor is caused by the motion of the test body K relative to the lab frame and the
second is caused by the relativity of the time measurements and so, we come to equation (4.39) again.
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4.3 Zero rest mass 4 INERTIA

Let us now consider, what happens if there are other electrical charges, with such a
distribution and motion that the electric scalar potential ϕe in the lab frame is not zero but is the same
everywhere, so that ~∇ϕe = 0 and the magnetic vector potential ~Ae is zero. Since the equations of
electromagnetism have the same mathematical form as the equations of gravitomagnetism, we will only
state the important results. Let’s suppose that the test-body K is accelerated in the lab frame along the
x-axis just like in the previous study. So, when the instantaneous velocity of the test-body K relative to
the frame S is w and relative to the lab frame is v, the kinetic gravitoelectric momentum of the test-body
K in the frame S, will be

p′′ge−x = γ(w)γ(v)

[

− 1

c2
(mϕg + qϕe)

]

w = γ(w)min−ge0w (4.40)

and its gravitoelectric inertial rest mass min−ge0 will be a Lorentz invariant.
Let’s suppose that there are n electric charges, each at a different distance ri from the test-body K,

as measured in the lab frame. For non relativistic velocities, the gravitoelectric inertial rest mass of the
the test-body K in the lab frame, is

min−ge0 = min−g0 −
1

c2

(

1

4πε0

n
∑

i=1

qqi
ri

)

(4.41)

Finally, the Special theory of relativity will give us the rest mass of a body with internal
structure, a composite body. If we apply the conservation of the kinetic four-momentum in an inelastic
collision where n free moving particles without internal structure, collide and create a composite body M
which is at rest in the lab frame, the rest mass min−0 of the composite body M in the lab frame is

min−0 =

i=n
∑

i=1

min−ge0i + T/c2 + Efield/c
2 (4.42)

where min−ge0i is the gravitoelectric rest mass of each particle that makes up the composite body M,
T is the kinetic energy of the relative motion of all the particles and Efield is the potential energy of
the interaction of all the particles [17]. The rest mass min−0 of the composite body M, is also a
Lorentz invariant as is well known from the Special theory of relativity [18].

4.3 Zero rest mass

Let us now imagine, using classical physics, that we have an accelerating particle A of gravitational
mass m, electric charge q and without internal structure, inside a thin spherical shell of radius R with
charge q uniformly distributed on its surface. The electric scalar potential inside the spherical shell is

given by the well known equation, ϕe =
1

4πε0

q

R
. The gravitoelectric rest mass of the particle A, according

to equation (4.41), is

min−ge0 = min−g0 −
1

c2
1

4πε0

q2

R
(4.43)

From equation (4.43) we can see that the gravitoelectric rest mass of the particle A becomes zero when
the radius take the value Rcritical. From equation (4.43) we get for Rcritical,

min−g0 =
1

c2
1

4πε0

q2

Rcritical

⇐⇒ Rcritical =
1

c2
1

4πε0

q2

min−g0
(4.44)

If the particle A is an electron Rcritical ≈ 2, 81 × 10−15m and if is a proton Rcritical ≈ 1, 53 × 10−18m.
Therefore, the effect of the electric scalar potential on the inertial rest mass of a particle, becomes
significant in the subatomic world. This can be tested experimentally by measuring the inertial mass of
moving electrons in a magnetic field if we put the whole device in a negatively charged box.
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5 THE SCHWARZSCHILD METRIC

5 The Schwarzschild metric

We will derive now the spacetime metric outside of a static and spherically symmetric body B of gravita-
tional mass M. We will consider the freely motion of a test-body A, of gravitational mass m with m ≪ M ,
in the radial direction of the gravitational field of the body B. We will follow a method based on a paper
of F. Tangherlini [19][20]. The equation of motion of the test-body A, is obtained from the principle 6 of
geodesic motion:

δ

ˆ

ds = 0 (5.1)

where, from the principle 5:
ds2 = gµνdx

µdxν (5.2)

By well-known arguments, we may bring the spacetime interval outside of a static and spherically sym-
metric body into the standard Schwarzschild form [21]:

ds2 = g00(r)c
2dt2 + g11(r)dr

2 − r2(dθ2 + sin2θdϕ2) (5.3)

The scalar functions g00 and g11, are functions only of the radial coordinate r. The metric (5.3) should
give us to infinity the Minkowski metric in spherical coordinates

ds2 = c2dt2 − dr2 − r2(dθ2 + sin2θdϕ2) (5.4)

Therefore, we must have the boundary conditions

lim
r→∞

g00(r) → 1 lim
r→∞

g11(r) → −1 lim
r→∞

g00(r)g11(r) → −1 (5.5)

For purely radial motion of the test-body A, the spacetime interval becomes

ds2 = g00(r)c
2dt2 + g11(r)dr

2 (5.6)

From the principle of geodesic motion we have

δ

ˆ

ds = 0 ⇒ δ

ˆ

√

gµν
dxµ

dτ

dxν

dτ
dτ = 0 ⇒ δ

ˆ √
Ldτ = 0 (5.7)

The L may be termed a ‘lagrangian’. So, the lagrangian is

L = gµν
dxµ

dτ

dxν

dτ
(5.8)

It is more convenient, however, instead of δ
´

ds = 0 to take δ
´

ds2 = 0, which is, with L from eq. (5.8)

δ

ˆ

Ldτ = 0 (5.9)

For purely radial motion the lagrangian becomes

L = g00c
2

(

dt

dτ

)2

+ g11

(

dr

dτ

)2

(5.10)

Using the calculus of variation, we obtain the Euler-Lagrange equations with ṫ = dt/dτ and ṙ = dr/dτ

d

dτ

(

∂L

∂ṫ

)

− ∂L

∂t
= 0, and

d

dτ

(

∂L

∂ṙ

)

− ∂L

∂r
= 0 (5.11)
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5 THE SCHWARZSCHILD METRIC

Since the Lagrangian does not depend on time, we have ∂L/∂t = 0. Hence, from the first of the
equations (5.11), arise that ∂L/∂ṫ = const. Therefore, the term ∂L/∂ṫ, is a conserved quantity. Performing
the differentiation in the equation (5.10), using the fact that the metric function g00(r) doesn’t depend
on ṫ and the relation ds2 = c2dτ2, where dτ is the proper time, we obtain

∂L

∂ṫ
= 2g00c

2 dt

dτ
= const. ⇒ g00

dt

ds
= k0 (5.12)

Equation (5.12) is a first integral for the equation of motion of the test-body A and states that the energy
(per unit mass) k0 is a constant of the motion (the energy conservation law). We can have a second first
integral, for the equation of motion in the radial direction, by dividing the equation (5.6) by ds2

1 = g00c
2

(

dt

ds

)2

+ g11

(

dr

ds

)2

(5.13)

Equation (5.13) expresses the invariant relation between energy and momentum (per unit mass). Elimi-
nating dt/ds from equation (5.13), using the first integral of equation (5.12), we get

1 =
c2k20
g00

+ g11

(

dr

ds

)2

(5.14)

Dividing the equation (5.14) by g11 we get

1

g11
=

c2k20
g00g11

+

(

dr

ds

)2

(5.15)

Since the metric tensor, in our case, is diagonal, one should have

g00 =
1

g00
and g11 =

1

g11
(5.16)

So, the equation (5.15) becomes

g11 = c2k20(g
00g11) +

(

dr

ds

)2

(5.17)

The scalar functions g00 and g11, are functions of only r and r is a function of only s. So, by differentiation
of the equation (5.17) in respect to s, using the chain rule, we get

g11,r
dr

ds
= c2k20

(

g00g11
)

,r
dr

ds
+ 2

dr

ds

d2r

ds2
(5.18)

where a comma denotes ordinary differentiation. Cancelling
dr

ds
we get

d2r

ds2
= −c2k20

2

(

g00g11
)

,r +
1

2
g11,r (5.19)

Equation (5.19) is the Tangherlini equation for purely radial motion [19]. Using the relation
ds2 = c2dτ2, we get

d2r

dτ2
= −c4k20

2

(

g00g11
)

,r +
c2

2
g11,r (5.20)

From equation (5.20) we can see that because of the k0 term, the radial acceleration depends
on the energy which the test-body A had initially, i.e. the radial velocity with which the
test-body A was launched.
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However, is well known that the electric force on a charge is strictly independent of the
charge’s velocity [22]. Therefore, the same is true for the gravitational force on a gravitational mass.
Hence, the proper acceleration of the test-body A, in the radial direction of the gravitational field of the
body B, is strictly independent of the radial velocity with which the test-body A was launched [23]. For
non-relativistic velocities, the proper acceleration and the radial acceleration are equal. Therefore, for
non-relativistic velocities, the radial acceleration of the test-body A is strictly independent
of it’s velocity. For this to happen the following equation must hold

g00g11 = const. (5.21)

Since the scalar functions g00(r) and g11(r) are velocity independent, equation (5.21) must
also hold for relativistic velocities.

We must emphasize that only if gravity is described by a gravitomagnetic theory the
proper acceleration of the test-body A is strictly independent of it’s velocity [24]. Using the
boundary conditions (5.5), the equation (5.21) becomes

g00g11 = −1 (5.22)

and using the equations (5.16) we get

g11 = − 1

g00
(5.23)

Therefore, the equation (5.3) for the spacetime interval outside of the body B, can be
written in the form

ds2 = g00c
2dt2 − g00

−1dr2 − r2(dθ2 + sin2θdϕ2) (5.24)

From equations (5.23) and (5.16), we get
g11 = −g00 (5.25)

Finally, using the equations (5.21) and (5.25), the Tangherlini equation becomes

d2r

dτ2
= −c2

2
g00,r (5.26)

According to the principle of consistency, when the test-body A moves with non-relativistic velocity v ≪ c,
in a weak and static gravitational field, equation (5.26) must be reduced to the equation

d2r

dt2
= − m

min−g0

dϕgB

dr
(5.27)

where ϕgB is the gravitational scalar potential of the body B and min−g0 the gravitational inertial rest
mass of the test-body A. So, when dt ≈ dτ , comparing the equations (5.26) and (5.27), we get

dg00
dr

=
2m

c2min−g0

dϕgB

dr
(5.28)

The gravitational inertial rest mass of the test-body A, according to the way of deriving
equation (4.31), does not depend on the body B that accelerate it. Hence, from equation (5.28)
by integration and using the boundary conditions (5.5), we obtain

g00 = 1− m

c2min−g0

2GM

r
(5.29)
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Therefore, the equation (5.24) for the spacetime interval outside of the body B, becomes

ds2 =

(

1− m

min−g0

2GM

c2r

)

c2dt2 − dr2
(

1− m

min−g0

2GM

c2r

) − r2(dθ2 + sin2θdϕ2) (5.30)

In the International System of Units, the ratio of the gravitational mass to the gravitational
rest mass of the test body A in our region of space is equal to unity, and so equation (5.30)
becomes the Schwarzschild metric

ds2 =

(

1− 2GM

c2r

)

c2dt2 − dr2

1− 2GM

c2r

− r2(dθ2 + sin2θdϕ2) (5.31)

So, the new theory is in agreement with all past experiments and observations. In another
region in our Galaxy or in the Universe, the ratio of gravitational to inertial rest mass will not be equal
to unity. There the phenomena will be the same qualitatively but not quantitatively.

6 Some ideas about the dark matter and the dark energy

6.1 Dark matter

From equation (4.31), it follows that the inertial mass of a star depends on the gravitational scalar
potential of the entire Universe, i.e. the inertial mass of a star depends on the distribution of matter in
the Universe. In the Universe there are planets, stars, galaxies, clusters of galaxies and so on. Therefore,
the position where a star is located, affects the inertial mass of the star. In places with higher density of
matter the inertial mass of a star will be greater than the inertial mass of an identical star, in a place with
lower density of matter. Moreover, if we think that the gravitational scalar potential and vector potential
satisfy the wave equation and travel at the speed of light through space, they must behave like the light
that bends when traveling near a large gravitational mass. Therefore, the gravitational potential of the
entire Universe is more concentrated in places with higher densities of matter. Hence, this is a second
reason why in places with higher density of matter the inertial mass of a star will be greater than the
inertial mass of an identical star, in a place with lower density of matter.

So, the inertial mass of a star near the center of a galaxy is greater than the inertial
mass of an identical star at the edges of that galaxy. Therefore, stars at the edges of a rotating
spiral galaxy, are moving faster than Newtonian physics predicts by assuming that the inertial mass is
the same everywhere. This seems to be very important for the problem of dark matter.

6.2 Dark energy

Let us now consider the light emitted by atoms on the surface of a static, spherically symmetric star
of gravitational mass M. We assume that an atom of gravitational mass m and gravitational rest mass
min−g0, which emits light, is at a distance rem from the center of the star. From equation (5.30) arises
the equation relating the proper time dτem at the point of emission, with the proper time dτ∞ at infinity
where is the point of observation [25]

dτ∞ =
dτem

√

1−
2GMm

c2remmin−g0

(6.1)
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So, the frequency of the light observed by an observer, at the point of observation, will be

f∞ = fem

√

1−
2GMm

c2remmin−g0
(6.2)

Equation (6.2) describes the redshift of light emitted by an atom in a gravitational field and received by
an observer who is very far away, essentially at infinity. As the Universe expands, the density of
matter decreases and therefore, the gravitational inertial mass of an atom decreases over
time. Therefore, as it emerges from equation (6.2), the light emitted by the atoms of two identical
supernovas Ia at different times in the history of the Universe, will have different red shift. The atoms of
a younger (most recent) supernova will have smaller gravitational rest mass than the atoms of an older
supernova. Hence, the light emitted by the atoms of a younger supernova Ia will have larger
red shift than the light emitted by the atoms of an older supernova Ia. This phenomenon
has been observed, but the inability to explain it has led to the theory that the Universe expands in an
accelerating way, because of dark energy.

Conclusions

In this paper we have described a new theory for gravity which has all the principles of Einstein’s General
theory of relativity, except the equivalence of gravitational and inertial mass. The Schwarzschild metric
is one of its consequences and therefore agrees with all previous experiments and observations. However,
the new theory goes further and exlpain the origin of inertia and the nature of the inertial rest mass which
seems very important for dark matter, dark energy, nuclear and particle physics. The new theory is
fully consistent with Mach’s principle. Due to the similarity of gravitational and electric forces
we need to check whether the electric forces also affects the spacetime metric. Finally, if the inertial
mass can take any value, as the new theory shows, then a future technology can make space
travel an easy affair !!!
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