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Abstract

If equilibrium is to be a frame-independent condition, it is necessary for all non-electromagnetic
forces to have precisely the same transformation law as that of the Lorentz-force. Therefore, gravity
must be described by a gravitomagnetic theory just like the electromagnetic theory, with the gravita-
tional mass as a Lorentz invariant. If acceleration is to be relative, we must accept the Principle of
General Covariance and the Equivalence Principle. Using the above we prove that:

1. The external inertial forces, felt by an accelerating body, are inductive effects of the entire Universe
and are real and not fictitious forces.

2. The internal inertial forces depend on the internal structure of the body, but in a free fall they are
canceled due to the Principle of Equivalence and the body feels only the external inertial forces.
That’s why all bodies fall at the same rate in a gravitational field.

3. The inertial rest mass of a body depends on the distribution of the matter in the Universe and
this seems very important for dark matter and dark energy.

4. The gravitational field affects the spacetime metric and a freely moving particle moves along a
geodesic.

5. The Schwarzschild metric is a consequence of the new theory and therefore the new theory agrees
with all past experiments and observations.

Keywords: gravitomagnetism , relative acceleration , Mach’s principle , origin of inertia , nature of
inertial rest mass , dark matter , dark energy

1 Introduction

The origin of inertial forces is a problem which has been of great concern to many thinkers since the time
of Newton, but which so far has escaped a satisfactory solution. So, there is space for a new attempt.
Inertial forces appear in a non-inertial frame of reference. But what determines an inertial frame?

The first answer comes from Descartes and Newton, according to which, an inertial frame of reference
is a frame that moves with constant velocity, with respect to the absolute space and the motion is absolute.
The inertial forces, such as the centrifugal force, must arise from acceleration with respect to the absolute
space. This idea implies that space is an absolute physical structure with properties of its own and the
inertia is an intrinsic property of the matter.

The second answer comes from Leibniz, Berkeley and Mach and is known as Mach’ principle, according
to which, an inertial frame of reference is a frame that moves with constant velocity, with respect to the
rest of the matter in the Universe, and the motion is relative. The inertial forces, such as the centrifugal
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2 GRAVITOMAGNETIC THEORY

force, are more likely caused by acceleration, with respect to the fixed stars. This idea implies that the
properties of space arise from the matter contained therein and are meaningless in empty space.

The distinction between Newton’s and Mach’s considerations, is not one of metaphysics but of physics,
for if Mach were right then a large mass could produce small changes in the inertial forces observed in its
vicinity, whereas if Newton were right then no such effect could occur [1]. This seems to be very important
when we consider subjects such as dark matter and dark energy.

The idea that the only meaningful motion of a particle, is motion relative to other matter in the
Universe, has never found its complete expression in a physical theory. The Special theory of relativity
eliminated absolute rest from physics, but acceleration remains absolute in this theory. Alfred Einstein was
inspired by Mach’s principle. The General theory of relativity, attempted to continue this relativization
and interpret inertia considering that it is the gravitational effect of the whole Universe, but as pointed
out by Einstein, it failed to do so. Einstein showed that the gravitational field equations of General
relativity imply that a body, in an empty Universe, has inertial properties [2].

The Principle of Equivalence is an essential part of General relativity. But although the Principle
of Equivalence has been confirmed experimentally to high precision, the gravitational field equations of
General relativity have not as yet been tested so decisively. Thus, it is not a theory fully confirmed
experimentally and competing theories cannot be ruled out [3]. Moreover, as pointed out by Henri
Poincare, if equilibrium is to be a frame-independent condition, it is necessary for all forces of non-
electromagnetic origin to have precisely the same transformation law as that of the Lorentz-force [4]. But
this does not happen with gravity as it is described by General relativity.

It is the purpose of this paper to show the origin of inertia. To achieve this we will first accept that
gravity is described by a gravitomagnetic theory with the gravitational mass as a Lorentz invariant, so
that the gravitomagnetic force has precisely the same transformation law as that of the Lorentz-force.
Second we will accept that all kinds of motion must be relative, and for this to be true we must accept
the Principle of General Covariance and the Equivalence Principle. From the Equivalence Principle it
follows that the gravitational field affects the spacetime metric and that a freely moving particle always
moves along a geodesic. However, we will show that we can also find the motion of a freely moving body
in a gravitational field using forces which is a great deal simpler. Using only the above, we can derive the
Schwarzschild metric without the field equations of General relativity. Therefore, the new theory, which
is full consistent with the Mach’s principle, agrees with all past experiments and observations, but also
goes further and reveals to us the origin of inertia and the nature of the inertial rest mass of a body,
which seems very important for dark matter, dark energy, nuclear and particle physics.

2 Gravitomagnetic theory

In an inertial frame of reference S, let’s have a system of two non spinning bodies with gravitational
masses and positive electric charges, in a region of free space where there are no external forces. We
suppose that the two bodies are at rest in the inertial frame S, under equilibrium conditions, i.e. the
force of gravitational attraction balances that of electrostatic repulsion. But what is observed by another
inertial frame of reference S′, moving with uniform velocity relative to the frame S? Let’s imagine that if
the bodies collide, they will explode. It is impossible for one observer to see an explosion and for another
to not see it. Therefore, the equilibrium must be a frame-independent condition.

In order for equilibrium to be a frame-independent condition, it is necessary the gravitational force to
have precisely the same transformation law as that of the Lorentz-force. For this reason we accept that:

• Gravity should be described by a gravitomagnetic theory with equations which have the
same mathematical form as those of the electromagnetic theory with the gravitational
mass as a Lorentz invariant.
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2 GRAVITOMAGNETIC THEORY

According to Richard Feynman, we can reconstruct the complete electrodynamics using the Lorentz
transformations (for coordinates, velocities, potentials, forces) and the following series of remarks [5][6]:

1. The Coulomb potential at a distance r from a stationary point-charge q in vacuum is: ϕe =
1

4πε0

q

r

2. An electric point-charge produces a scalar potential ϕe and a vector potential ~Ae, which together

form a four-vector, Ae =
(ϕe

c
, ~Ae

)

3. The potentials produced by a point-charge moving in any way, depend only upon the velocity and
position at the retarded time.

where ε0 is the vacuum permittivity. Of course we need to know how to get the Coulomb’s law from
the scalar potential. Therefore, if we want to obtain a gravitomagnetic theory, with equations that
have the same mathematical form, as those of the electromagnetic theory, first we must accept that the
gravitational mass is a Lorentz invariant and second that the same series of remarks must be met for
gravity. We already have the first remark, that is, the gravitational potential at a distance r from a

stationary gravitational point-mass m in vacuum is, ϕg = −G
m

r
where G is the gravitational constant,

but this is only the one remark. Therefore, we need the other two, as well. We will obtain them with the
following two principles:

Principle 1

A gravitational point-mass produces a scalar potential ϕg and a vector potential

~Ag, which together form a four-vector, Ag =
(ϕg

c
, ~Ag

)

Principle 2

The potentials produced by a gravitational point-mass moving in any way, depend
only upon the velocity and position at the retarded time.

So, the potentials produced by a gravitational point-mass m moving with any velocity have the
same mathematical form as the Lienard-Wiechert potentials for an electric point-charge moving with
any velocity, but with a negative sign,

ϕg = −G

[

m

r − ~r~v/c

]

and ~Ag = −
G

c2

[

m~v

r − ~r~v/c

]

=
1

c2
[ϕg~v] (2.1)

where ~r is the vector from the gravitational point-mass to the point where the potential is evaluated, c is
the speed of light in vacuum and the quantities r, ~r and ~v (the velocity of the point-mass) in the square
bracket are to have their values at the retarded time. Starting from the potentials, in order to find the
fields, we have the equations

~Eg = −~∇ϕg −
∂ ~Ag

∂t
(2.2)

~Bg = ~∇× ~Ag (2.3)

When a gravitational mass m moves with velocity ~v in the above fields, it feels the force,

~Fg = m( ~Eg + ~v × ~Bg) (2.4)

where ~Eg is the gravitational field and ~Bg the gravitomagnetic field.

3



3 GENERAL RELATIVITY OF MOTION

So, we have now a gravitomagnetic theory, with equations that have the same mathematical form
as those of the electromagnetic theory. Therefore, we expect that there are gravitomagnetic waves that
propagate in vacuum with the speed of light but with one important difference. An isolated electric
source can radiate electric dipole radiation, with power proportional to the square of the second time
derivative of the electric dipole moment. However, an isolated gravitational source cannot radiate
gravitational dipole radiation, but quadrupole and radiation of higher polarity. The reason
is simple. The electric dipole moment can move around with respect to the center of mass but the
gravitational dipole moment is identical in location with the center off mass, and due to the law of
conservation of momentum, cannot accelerate or radiate [7].

3 General relativity of motion

We will follow now, the fundamental idea of the relativity of all kinds of motion. In accordance
with this idea we can detect and measure the motion of a given body, relative to other bodies, but cannot
assign any meaning to its absolute motion. The rotational motion of a rigid body, as a whole, cannot be
relative because different parts of the rotating body perceive different motion of the rest of the Universe.
However, we can consider that a rotating rigid body consists of a large number of sufficiently small parts
and the circular motion of each small part separately is relative. Therefore, following the fundamental
idea, an observer inside a rocket which is accelerated, cannot distinguish whether the rocket is accelerated
and the remainder of the Universe is at rest or whether the rocket is at rest and the remainder of the
Universe is accelerated in the opposite direction. Acceleration, as well as velocity, is relative. So, we are
looking for the principles that will ensure the fundamental idea of the relativity of all kinds of motion.

In order for all kinds of motion to be relative, the laws of physics should have the same mathematical
form in all frames of reference since otherwise the difference in form could provide a criterion for judging
the absolute motion. For this reason we accept the next principle:

Principle 3 - The Principle of General Covariance

The laws of physics have the same mathematical form in all frames of reference.
In inertial frames of reference the laws of physics reduce to simpler mathematical
forms which agree with the laws of Special theory of relativity.

The above principle is not enough to preserve the idea of the relativity of all kinds of motion. This
arises from the fact that the expression of the equations of physics in a form which is independent of the
frame of reference does not in general prevent a change in their numerical content when we change from
one frame of reference to another [8].

Let’s make now a thought experiment, the lab frame experiment, to find out the next
principle we need. We suppose that we use a space station, which is far from any massive body, as a
laboratory. We will call the local inertial frame where the space station is always at rest, the lab frame.
The lab frame, as a local inertial frame, is only expected to function over a small region of
space. An observer L is at rest in the lab frame. We assume that the distribution of matter in
the Universe is such that the gravitational field in the lab frame is zero. This means that the
gravitational scalar potential ϕg, of the entire Universe, has the same value everywhere in the lab frame,
and so,

~∇ϕg = 0 (3.1)

We also suppose that the Universe expands symmetrically in all directions, with respect to the lab frame,
so that the gravitomagnetic vector potential due to one part of the mass-current, is canceled out by
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3 GENERAL RELATIVITY OF MOTION

the vector potential due to another part of the mass-current, owing to its symmetry. Therefore, the
gravitomagnetic vector potential ~Ag from the entire Universe in the lab frame is zero,

~Ag = 0 (3.2)

This would also happen if all the bodies of the Universe were at rest, relative to the lab frame. So, we
can say that the lab frame is at rest relative to the Universe, or at rest relative to the fixed stars.

We suppose now that in the region of the lab frame, an observer R is at rest in a uniformly accel-
erated reference frame R, that is, the observer R feels a constant force in its instantaneous rest frame.
The instantaneous rest frame of an accelerating body is the inertial frame of reference in
which the body is instantaneously at rest. Therefore, the observer R undergoes a constant proper
acceleration, that is, a constant acceleration relative to its instantaneous rest frame. Since we accept that
acceleration is relative, from the point of view of the observer R, the lab frame and the fixed stars are
accelerated relative to him. Therefore, from equation (2.2) expressed in a form which is the same for all
frames of reference, for the observer R an induced gravitational field appears in the uniformly accelerated
frame R. So, from the point of view of the observer R, he is at rest in a frame with a gravitational field.

From the point of view of the observer L (lab frame), the observer R is accelerated while the lab frame
is a local frame without gravity and inertial forces, an inertial frame. We assume that the gravitational
forces between the accelerated reference frame R and the space station are negligible. Therefore, the
observer L using the Special theory of relativity is able to describe what physical effects are
observed by the observer R in the uniformly accelerated frame R due to the acceleration
relative to the lab frame. This is the well known study of a uniformly accelerated reference frame, in
Special relativity. So, some of the well known physical effects, that observed by the observer R due to the
acceleration, except of course of the inertial force, are [9]:

1. Redshift or blueshift of a light ray moving parallel to the direction of the acceleration.

2. Varying coordinate speed of light; fixed local relative speed of light.

3. Spacetime is endowed with a metric.

4. Maximum proper time as the law of motion of freely moving bodies.

5. Horizons.

However, since we accept that acceleration is relative, the observer R is permitted to believe that
he is the at rest in a frame with a gravitational field while the lab frame is accelerated. If the induced
gravitational field did not exist, the above physical effects would have to occur in the lab frame and not
in the frame R. However, the gravitational field exists and the above physical effects occur in the frame R
and not in the lab frame. The only explanation for the observer R, about what is happening to the frame
R, is that the above physical effects that occur in the frame R are due to the gravitational field and not
to the acceleration relative to the lab frame. In order for this to happen, the gravitational field
should be capable of causing all the above physical effects, with the same numerical values.
For this reason, we accept the next principle for an infinitesimal region of spacetime where we can assume
that, the gravitational field of a spherical massive body and of the accelerated frame R is uniform:

Principle 4 - The Principle of Equivalence

Physics in a non accelerating frame S, with a uniform gravitational field where
all the released bodies fall with acceleration ~g, is equivalent to physics in a frame
without gravity but with translational acceleration ~a = −~g and velocity zero with
respect to the inertial frame in which the non accelerating frame S is at rest.
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3 GENERAL RELATIVITY OF MOTION

According to the Principle of Equivalence all bodies fall at the same rate in a gravitational field.
However, we will return to the above phenomenon later.

Since the observer R is permitted to believe that he is at rest in a gravitational field, for him, everything
outside of the rocket, that is, the lab frame and the fixed stars, make free fall in the gravitational field.
However, none of the above physical effects occur in the lab frame although it is accelerated in the
gravitational field. The only explanation for the observer R, about what is happening to the
lab frame, is that the gravitational field must exactly cancel the acceleration of the lab frame
so that, no sign of either acceleration or gravitation can be found by any physical means in
the lab frame. So, we have an alternative expression of the equivalence principle:

Principle 4 - The Principle of Equivalence

Physics in a local frame freely falling in a gravitational field is equivalent to physics
in an inertial frame without gravity.

For this to happen, the total gravitational field inside the free-falling lab frame must be zero. Therefore,
when a body makes a free fall in the gravitational field of a stationary huge body, its acceleration relative
to the fixed stars is such that, the induced gravitational force that the body feels due to the acceleration
relative to the fixed stars, which is the inertial force as we will show, is equal in magnitude to the
gravitational force of the huge body but opposite in direction. For this reason we accept the next principle:

Principle 5 - The Law of motion

The motion of a body is such that, in its proper frame, i.e. the frame where the
body is always at rest, the total force on the body is always zero.

According to the Law of motion, the force that accelerates a body and the inertial force that the body
feels in its proper frame are equal in magnitude but opposite in direction.

Now the question is: for the observer R, do the fixed stars that make free fall emit radiation field ?
According to the Equivalence Principle, no sign of either acceleration or gravitation can be found by any
physical means in the free-falling stars. Because the radiation field is a sign of acceleration, the observer
R must not observe any radiation field from the free-falling stars. In order for this to happen, for
the observer R, the fields of the free falling stars must be like the fields of the same stars if
they were always moving in a straight line with constant speed, and the reason is simple,
the fields also make free fall in the gravitational field just like the stars. So, the fields of the
free falling stars are carried along convectively with the stars and thus, the potentials of the free falling
stars for the observer R at the time t, must be exactly the same as the potentials of the same stars if
they were always moving in a straight line with constant speed, equal to the instantaneous speed of the
lab frame relative to the observer R at the time t. Therefore, we come to the conclusion that:

• We can find the instantaneous potentials of the free falling stars for the observer R at
the time t, simply with the Lorentz transformations, using as velocity the instantaneous
velocity of the observer R relative to the lab frame at the time t.

So, when the observer R is accelerated relative to the fixed stars, it is equivalent to say
either that the observer R is accelerated while the fixed stars are stationary, or that the
observer R is stationary in a gravitational field where all the stars and their fields make free
fall. So, with the Principle of General Covariance and the Principle of Equivalence we have
ensured the relativity of all kinds of motion. Acceleration, as well as velocity, is relative.
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4 INERTIA

Moreover, as we have seen from the physical effects observed by observer R, the Equivalence Principle
shows us that spacetime is endowed with a metric and the gravitational field affects the spacetime metric
so that, the maximum proper time is the law of motion of a freely moving body in a gravitational field.
The two above physical effects are so important that we will elevate them to physical principles:

Principle 6 - The Principle of Spacetime Metric

Spacetime is endowed with a metric. The spacetime interval between two events
is:

ds2 = gµνdx
µdxν

where gµν is the metric tensor.

Principle 7 - The Principle of Geodesic Motion or of Maximum Proper Time

A freely moving body always moves along a geodesic:

δ

ˆ

ds = 0

Finally, we need to remember that according to the local-flatness theorem, the metric in the immediate
neighborhood of a point P is, to a close approximation, the Minkowski spacetime metric and the laws of
Special theory of relativity are valid there [10].Therefore,

• Everywhere locally the laws of Special theory of relativity are valid.

So, in order for the equilibrium to be a frame-independent condition and the acceleration to be relative,
we now have a new theory of gravity, which, however, has all the principles of Einstein’s General theory
of relativity except the equivalence of gravitational and inertial mass. With General relativity the field
equations determine the curvature of spacetime, and the acceleration of a test particle is a consequence of
this curvature. With the new theory, the gravitomagnetic theory determines the fields and the curvature
of spacetime is a consequence of them. To obtain the equations of motion of a freely moving body in
a gravitational field, one can either use the geodetic equation or one can use the relativistic mechanics
properly modified due to the curvature of spacetime, that is, using forces as we will show later.

4 Inertia

4.1 Inertial forces

Let’s now continue the lab frame experiment to find out the inertial forces. We suppose that a
test-body K of gravitational mass m, which is initially at rest in the lab frame, begins to
accelerate making translational motion along the x-axis of the lab frame. We have shown in
the previous section, that we can find the potentials of the free falling stars for the observer R, simply
with the Lorentz transformations. Therefore, when the instantaneous velocity of the test-body K is v
in the positive x-direction as measured in the lab frame, the Lorentz transformations which give the
gravitational scalar potential ϕ′

g and the gravitomagnetic vector potential ~A′

g in the instantaneous local

rest frame of the test-body K, in terms of the potentials ϕg and ~Ag in the lab frame, are:

ϕ′

g = γ(v)(ϕg − vAg−x), A′

g−y = Ag−y

A′

g−x = γ(v)(Ag−x −
v

c2
ϕg), A′

g−z = Ag−z, γ(v) =
(

√

1− v2/c2
)

−1
(4.1)
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4.1 Inertial forces 4 INERTIA

Let’s recall that the gravitomagnetic vector potential ~Ag from the entire Universe in the
lab frame is zero. Therefore, the potentials in the instantaneous local rest frame of the test-body K in
vector form are,

ϕ′

g = γ(v)ϕg (4.2)

~A′
g = −

1

c2
γ(v)ϕg~v = −

1

c2
ϕ′

g~v (4.3)

As the test-body K accelerates, the potentials in its proper local frame change. We now assume that
the test-body K and its proper local frame are so small that we we can consider that the
spacetime is flat in the proper local frame and so we can apply there the laws of Special
relativity. So, according to eq. (2.2), due to the acceleration relative to the fixed stars the test-body K
feels an induced gravitational field

~E′
g = − ~∇′ϕ′

g −
∂ ~A′

g

∂t′
(4.4)

where ∂t′ is the time interval in the proper frame of the test-body K, that is, the proper time. According
to the clock postulate, the time interval in the proper frame of the test-body K, is equal
to the time interval in its instantaneous rest frame. The gravitomagnetic field in the proper local
frame of the test-body K is zero, because the additional motion of the fixed stars relative to the test-body
K is translational motion and so,

~B′
g = ~∇′ × ~A′

g = 0 (4.5)

The proper local frame of the test-body K is so small that we can assume that the Lorentz factor γ(v)
has the same value everywhere. The same happens with the scalar potential ϕ′

g because of equation (4.2)
and therefore,

~∇′ϕ′

g = 0 (4.6)

Hence, the induced gravitational field that the test-body K feels, becomes

~E′

g = −
∂ ~A′

g

∂t′
(4.7)

Therefore an induced gravitational force will be exerted on the test-body K

~F ′
g = m~E′

g = −

∂
(

m~A′

g

)

∂t′
(4.8)

If we assume now that the gravitational scalar potential ϕg is independent of time (that’s why we call the

stars, fixed stars) substituting for ~A′

g from equation (4.3) into equation (4.8), we get

~F ′
g = −

(

−
1

c2
mϕg

)

∂ [γ(v)~v]

∂t′
= −

(

−
1

c2
mϕg

)

γ3(v)
d~v

dt′
(4.9)

If we recall now that the gravitational scalar potential is negative, it is obvious from equation (4.9) that
the induced gravitational force on the test body K resists changes in its velocity. It is an inertial force!

We will call the inertial force which is given by equations (4.8), external gravitational
inertial force ~F ′

inert because it is due to the acceleration with respect to the fixed stars. So,

~F ′

inert =
~F ′

g = −

∂
(

m~A′

g

)

∂t′
(4.10)
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4.1 Inertial forces 4 INERTIA

In addition to the external inertial force, there is also an internal inertial force. This is
a well known effect which has the name radiation reaction [11] [12]. We do not know exactly the
mechanism that causes it but we know that it exists. The picture is something like this: We can think
that a body consists of many particles. When the body is at rest or it’s moving at uniform velocity, every
particle exerts a force on every other, but the forces all balance in pairs, so that there is no net force.
However, when the body is being accelerated, the internal forces will no longer be in balance, because of
the fact that the influences take time to go from one particle to another. With acceleration, if we look
at the forces between the various particles of the body, action and reaction are not exactly equal, and
the body exerts a force on itself that tries to hold back the acceleration. We will call this self-force,
internal inertial force, because it depends on the internal structure of the body.

According to the Equivalence Principle, when a body makes free fall, the gravitational field exactly
cancels the acceleration of the body so that, no sign of either acceleration or gravitation can be found by
any physical means, inside the body. Therefore, because the internal inertial force is a sign of
acceleration, it should be canceled when the body makes free fall. So, we come to the conclusion
that:

• When a body makes free fall in a gravitational field, the internal structure of the body
plays no role and thus, only the external gravitational inertial force acts on the body.

We can obtain now, some very important results for non-relativistic velocities, before
moving on and considering the subject in the relativistic domain. So, for non-relativistic
velocities, from equation (4.9), the external gravitational inertial force on the accelerating test-body K is

~F ′

inert = −

(

−
1

c2
mϕg

)

d~v

dt
=

(

−
1

c2
mϕg

)

(−~a) (4.11)

where dt is the time interval in the lab frame and ~a is the acceleration with respect to the lab frame. Let’s
imagine now, that the test-body K is a body without internal structure and thus, when it
is accelerated by a force ~F , it does not feel any internal inertial force but only the external
gravitational inertial force. According to the Law of motion of principle 5, in the proper frame of the
test-body K, the total force on the body is zero. Therefore, the force ~F that must be exerted on the test
body K to accelerate it with acceleration ~a, is

~F = −~F ′

inert =

(

−
1

c2
mϕg

)

~a = min~a (4.12)

The equation (4.12) is Newton’s Second Law, for non-relativistic velocities, which obviously
results from the Law of Motion. Therefore, the inertial mass min of the test-body K, for
non-relativistic velocities, is

min =

(

−
1

c2
mϕg

)

(4.13)

We will call the inertial mass of the test-body K gravitational inertial mass and its momentum, gravita-
tional momentum, because they are due to the gravitational potential of the rest of the Universe.

So, the gravitational inertial mass of a body, without internal structure, is not an intrinsic
property of the body but is proportional to the gravitational scalar potential of the entire
Universe. It’s noteworthy that if we consider that the density of matter is roughly uniform throughout
space, then the most distant matter dominates the gravitational scalar potential. This is because, although
the influence of matter decreases with the distance, the amount of matter goes up as the square of the
distance. Therefore, the distant matter is of predominant importance, while local matter has only a very
small effect on the gravitational inertial mass of a body.
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Let’s suppose now that a test-body of gravitational mass m, makes free fall in the gravitational field of
a massive body which has spherically symmetric gravitational mass M with M ≫ m, in a region of space
where the gravitational scalar potential from the rest of the Universe is ϕg. As we have shown, when
a body makes a free fall in a gravitational field only the external gravitational inertial force
acts on the body. Therefore, for non-relativistic velocities, Newton’s Law of Universal Gravitation and
Newton’s Second Law gives for the magnitude of the radial acceleration of the test-body,

G
Mm

r2
=

(

−
1

c2
mϕg

)

a (4.14)

where r is the distance of the test-body from the center of the massive body. It is obvious that the
gravitational mass m of the test-body is canceled in equation (4.14).

• Therefore, the acceleration of a free-falling body is independent of its gravitational
mass and so, all bodies fall at the same rate in a gravitational field.

This is a fundamental experimental result that was tested with great accuracy with the Eötvös exper-
iment. We must emphasize that this was a free fall experiment. It’s noteworthy that James Hartle writes
for the Eötvös experiment [13]:

“The masses are free to move in the direction perpendicular to both the fiber and the rod.
Gravity is the only force acting in this “twisting direction” along which the masses are effec-
tively freely falling. Any difference between the acceleration of the two masses would cause
the pendulum to twist.”

In Einstein’s General relativity, the above experimental result is interpreted by accepting the equivalence
of gravitational and inertial mass.

4.2 Relativistic momentum and the nature of the inertial rest mass

Let’s continue the lab frame experiment, to find out the relativistic momentum and the nature of the
rest mass of a body. We suppose that in the lab frame a test-body K of gravitational mass m,
electric charge q and no internal structure, which is initially at rest on the x-axis, begins to
accelerate along the x-axis due to the electric field Ee−x of an electric point charge B, which
is always stationary on the x-axis. There are no other electric charges or currents in the vicinity.

Let’s suppose that in the area of the lab frame, a local inertial frame S which has in common with
the lab frame the x, x′ axis, moves along the x-axis with uniform velocity V relative to the lab frame. We
assume that when the test-body K has instantaneous velocity v relative to the lab frame, has instantaneous
velocity w relative to the frame S and therefore, the frame S has instantaneous velocity (−w) relative to
the instantaneous rest frame of the test-body K. All the above velocities are along the x-axis and
therefore parallel.

Because the velocity of the test-body K is along a line passing through the charge B, i.e. the x-axis,
no magnetic force is exerted on the test-body K in the lab frame and in the frame S. The same happens
of course in its instantaneous rest frame, because it is at rest there.

When the test-body K has instantaneous velocity v relative to the lab frame, from
the point of view of the test-body K, the fixed stars are accelerated, along the x-axis and the
gravitomagnetic vector potential from them changes and causes the external gravitational inertial force
which, according to equation (4.10), is

F ′

inert−x = −
∂
(

mA′

g−x

)

∂t′
(4.15)

10



4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

where ∂t′ is the time interval in the proper frame of K. The gravitomagnetic vector potential A′

g−x in the
proper frame of the test-body K, according to equations (4.2) and (4.3), is

A′

g−x = γ(v)

(

−
1

c2
ϕg

)

v = −
1

c2
ϕ′

gv (4.16)

The accelerated test-body K feels in its proper frame the external gravitational inertial force and the
electric force F ′

x that accelerates it,

F ′

x = qE′

e−x = q

(

−
∂ϕ′

e

∂x′
−

∂A′

e−x

∂t′

)

(4.17)

where ϕ′

e the electric scalar potential and A′

e−x the magnetic vector potential of the electric charge B.
According to the Law of motion in the proper-frame of the test-body K the total force

on it is zero. Therefore,
F ′

x = −F ′

inert−x (4.18)

The electric force has the same value in the proper frame of the accelerated test-body K as
it does in its instantaneous rest frame. Hence, the electric force that accelerates the test body K in
its instantaneous rest frame is

F ′

x = qE′

e−x (4.19)

and since the electric charge is a Lorentz invariant, the same electric force in the local frame S, is

F ′′

x = qE′′

e−x = q

(

−
∂ϕ′′

e

∂x′′
−

∂A′′

e−x

∂t′′

)

(4.20)

where the double-prime indicates physical quantities in the frame S. It is well known from the Lorentz
transformations that the longitudinal component of the electric field has the same value in the lab frame,
in the frame S and in the instantaneous rest frame of the test-body K [14]. So,

Ee−x = E′

e−x = E′′

e−x (4.21)

Hence, the electric force that accelerate the test-body K has the same value in its instantaneous rest frame
as it does in the frame S,

F ′

x = F ′′

x (4.22)

Therefore, the equation (4.18) becomes
F ′′

x = −F ′

inert−x (4.23)

From the point of view of an observer at rest in the inertial frame S, the test-body
K is accelerated by an electric force and its momentum changes. But which momentum? In
Lagrangian mechanics we have three momentums. The canonical gravitational momentum of the test-
body K in the frame S, is the sum of its kinetic gravitational momentum and its potential gravitational
momentum in the frame S,

~P ′′
g = ~p′′g +m ~A′′

g (4.24)

We define the force ~F that accelerates a body moving with velocity ~v, as the total derivative
of the canonical momentum ~P of the body with respect to time:

~F ≡
d~P

dt
=

∂ ~P

∂t
+

d~r

dt
· ~∇~P =

∂ ~P

∂t
+ ~v · ~∇~P (4.25)

for a reason that will soon become apparent.
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

In the local frame S, where the test-body K is accelerated by the electric force F ′′

x along the x-axis,
the total derivative results in the partial derivative with respect to time, for a reason that we will explain
below. So, in the frame S,

F ′′

x =
∂P ′′

g−x

∂t′′
+

∂P ′′

g−x

∂x′′
∂x′′

∂t′′
=

∂P ′′

g−x

∂t′′
(4.26)

Therefore, using the equations (4.15) and (4.26), the equation (4.23): F ′′

x = −F ′

inert−x, becomes

∂P ′′

g−x

∂t′′
=

∂
(

mA′

g−x

)

∂t′
(4.27)

where ∂t′′ is the time interval in the inertial frame S and ∂t′ the time interval in the accelerated proper
frame of the test-body K, i.e. the proper time. According to the clock postulate, the time interval
in the proper frame of the test-body K, is equal to the time interval in its instantaneous
rest frame. Therefore, from the Lorentz transformation, since the frame S has velocity (−w) relative to
the instantaneous rest frame of the test-body K, we have,

t′′ = γ(w)
(

t′ + wx′/c2
)

(4.28)

From the above equation we get,

∂t′′

∂t′
= γ(w) and t′ =

1

γ(w)

(

t′′ − γ(w)
wx′

c2

)

(4.29)

From the last two equations, using the chain rule we can find the Lorentz transformation
of the differential operator ∂/∂t′ for constant x′ (condition for the formula of time dilation)

∂

∂t′
=

∂t′′

∂t′
∂

∂t′′
+

∂x′

∂t′
∂

∂x′
=

∂t′′

∂t′
∂

∂t′′
= γ(w)

∂

∂t′′
(4.30)

which is like the well known equation that relates the non-proper time interval dt′′ to the proper time
interval dt′ , dt′′ = γ(w)dt′, but for infinitesimal time intervals. The Lorentz factor γ(w) does not depend
on time because the instantaneous rest frame of the test-body K moves with uniform velocity relative to
the frame S. Therefore, using the equation (4.30), the equation (4.27) becomes

∂P ′′

g−x

∂t′′
=

∂
(

mA′

g−x

)

∂t′
= γ(w)

∂
(

mA′

g−x

)

∂t′′
=

∂
[

γ(w)mA′

g−x

]

∂t′′
(4.31)

Integrating and substituting for A′

g−x from equation (4.16) into equation (4.31), we get the
canonical gravitational momentum of the test-body K in the frame S

P ′′

g−x = γ(w)mA′

g−x = γ(w)γ(v)

(

−
1

c2
mϕg

)

v (4.32)

where the constant of integration is set to zero, for a reason that will soon become apparent. It is obvious
that the momentum in equation (4.32) cannot be the kinetic gravitational momentum of
the body K in the frame S. Recognizing now that the canonical gravitational momentum of the body
K may depend on position via ϕg, as well as time, and the position depend on time via v, we used the
total derivative in the new definition of force. But in our case, since the gravitational scalar potential
ϕg of the entire Universe has the same value everywhere in the local lab frame and also everywhere in
the local frame S, the canonical gravitational momentum does not depend on position and thus the total
derivative in equation (4.26) results in the partial derivative. But this may not always be the case.

12



4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

Let’s find out now the kinetic gravitational momentum of the test-body K in the inertial
frame S. As we said before, when the instantaneous rest frame of the body K moves with velocity v
relative to the lab frame, the frame S moves with velocity (−w) relative to the instantaneous rest frame of
the test-body K. The above velocities are parallel along the x-axis and therefore, we have two successive
Lorentz transformations along the x-axis. The coordinates (x′, t′) of the instantaneous rest frame of the
test-body K, which moves with velocity v relative to the lab frame, are related to the coordinates (x, t)
of the lab frame by the Lorentz transformations

x′ = γ(v) (x− vt) and t′ = γ(v)
(

t−
vx

c2

)

(4.33)

The coordinates (x′′, t′′) of the inertial frame S, which moves with velocity (−w) relative to the instanta-
neous rest frame of the test-body K, are related to the coordinates (x′, t′) of the instantaneous rest frame
of the test-body K by the Lorentz transformations

x′′ = γ(w) (x′ + wt′) and t′′ = γ(w)

(

t′ +
wx′

c2

)

(4.34)

If we now use the first Lorentz transformations as a definition of the prime variables and plug them into
the second Lorentz transformations, we have

x′′ = γ(w)γ(v)
(

x− vt+ wt−
wvx

c2

)

and t′′ = γ(w)γ(v)

(

t−
vx

c2
+

wx

c2
−

wvt

c2

)

(4.35)

Collect terms

x′′ = γ(w)γ(v)
[

x(1−
wv

c2
)− t(v − w)

]

and t′′ = γ(w)γ(v)
[

t(1−
wv

c2
)− x(

v

c2
−

w

c2
)
]

(4.36)

The coordinates (x′′, t′′) of the frame S, which moves at the same time with velocity V relative to the lab
frame, are related directly to the coordinates (x, t) of the lab frame by the Lorentz transformations

x′′ = γ(V ) (x− V t) and t′′ = γ(V )

(

t−
V x

c2

)

(4.37)

In order for the equations (4.36) and (4.37) to be equivalent, the following equations must be valid

γ(w)γ(v) (v − w) = γ(V )V and γ(w)γ(v)
[

1−
vw

c2

]

= γ(V ) (4.38)

If we divide the above two equations we get the relativistic parallel velocity-addition law,

V =
v − w

1− (vw/c2)
(4.39)

Multiplying the first of the equations (4.38) by

(

−
1

c2
mϕg

)

we get

γ(w)γ(v)

(

−
1

c2
mϕg

)

v − γ(w)γ(v)

(

−
1

c2
mϕg

)

w = γ(V )

(

−
1

c2
mϕg

)

V (4.40)

By rearranging and comparing with equation (4.32), we get a relationship for the canonical
gravitational momentum of the test-body K in the frame S

P ′′

g−x = γ(w)γ(v)

(

−
1

c2
mϕg

)

v = γ(w)γ(v)

(

−
1

c2
mϕg

)

w + γ(V )

(

−
1

c2
mϕg

)

V (4.41)
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

The potential gravitational momentum of the test-body K in the frame S, which moves at the
same time with velocity V relative to the lab frame, according to eq. (4.3), is the last term of eq. (4.41),

mA′′

g−x = γ(V )

(

−
1

c2
mϕg

)

V (4.42)

Comparing the eq. (4.42), (4.41) and (4.24) we get the kinetic gravitational momentum of
the test-body K in the frame S,

p′′g−x = γ(w)γ(v)

(

−
1

c2
mϕg

)

w = γ(w)min−g0w (4.43)

where min−g0 the gravitational inertial rest mass of the test-body K in the frame S,

min−g0 = γ(v)

(

−
1

c2
mϕg

)

= −
1

c2
mϕ′

g (4.44)

and ϕ′

g the gravitational scalar potential of the entire Universe, in the instantaneous rest frame of the
test-body K, according to equation (4.2). We’ll return to the above equation (4.44) below!

From equations (4.20) and (4.25) we get the equation of motion of the test-body K in
the frame S,

dP ′′

g−x

dt′′
=

d(p′′g−x +mA′′

g−x)

dt′′
= q

(

−
∂ϕ′′

e

∂x′′
−

∂A′′

e−x

∂t′′

)

(4.45)

which results from the Law of Motion. In the local inertial frame S, since the scalar potential of the
entire Universe has the same value everywhere, the momentum p′′g−x does not depend on position and
the potential A′′

g−x is constant. So, in the frame S, eq. (4.45) result in Newton’s Second Law.
Nothing changes in the previous study if the frame S is not an inertial frame (using instantaneous speeds).
So, eq. (4.45) applies in all frames of reference since it contains the inertial forces.

Let’s find out now the nature of the gravitational inertia rest mass of the test-body K.
Let’s suppose that we want to find the gravitational potential energy of the entire Universe relative to
the test-body K, when it moves with velocity ~v relative to the lab frame. The instantaneous sum of the
gravitational four-potentials of all the bodies in the Universe is also a four-vector, the total gravitational
four-potential:

Ag =
(ϕg

c
, ~Ag

)

(4.46)

and the four-velocity of the test-body K is: U = γ(v)(c, ~v).
We know that the quantity we are looking for must depend on both U and Ag, and it is a scalar. The

product mUAg has physical dimensions of energy and it is a scalar, because the gravitational mass is a
scalar, and the product of two four-vectors is a Lorentz invariant, i.e. a scalar. Evaluating the product
mUAg in the rest frame of the test-body K,

mUAg = m(c, o)
(ϕg′

c
, ~A′

g

)

= mϕ′

g (4.47)

we obtain the gravitational potential energy of the entire Universe relative to the test-body K, which is
the very thing we wanted and is a Lorentz invariant, i.e. all observers agree on its value at any instant of
the test-body’s history. Hence,

min−g0 = −
1

c2
mUAg (4.48)

So, the gravitational inertial rest mass of a body without internal structure, is not an
intrinsic property of the body but is proportional to the gravitational potential energy of
the entire Universe relative to the body, and is a Lorentz invariant!
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4.2 Relativistic momentum and the nature of the inertial rest mass 4 INERTIA

Since the gravitational inertial rest mass of the test-body K is a Lorentz invariant, we
can define its kinetic gravitational four-momentum in the usual way

Pg = min−g0U = (min−gc, ~pg) = (Eg/c, ~pg) (4.49)

So, during a collision, if the kinetic gravitational four-momentum is conserved in one inertial frame, it is
conserved in any inertial frame [15].

In the Special Theory of relativity the inertial rest mass of a body should have the same
numerical value when the body is at rest in all inertial frames. This is an experimental
result. However, from equation (4.44) we can see that the rest mass of the test-body K depends on its
velocity relative to the lab frame and therefore, does not have the same value when it is at rest in different
inertial frames, because different inertial frames move with different velocities relative to the lab frame.
Nevertheless, we will prove that because of the vast and expanding Universe, the rest mass
of a body has practically the same value when it is at rest in all inertial frames.

In order to prove the above, we will consider a simple no-relativistic model of the Universe [16]. The
retarded gravitational scalar potential ϕg−1 of the entire Universe in position 1 which is the position of
the lab frame, is given from the integral over all the observable Universe

ϕg−1 = −G

ˆ

[ρ]

r12
dV2 (4.50)

where the element of volume dV2 in position 2, is at a distance r12 from the lab frame and the density of
matter [ρ] of the volume element dV2, is the value at the retarded time (t− r12/c). According to Hubble’s
law, the galaxies are moving away with speeds proportional to their distance r12 from the lab frame

v = H0r12 (4.51)

where H0 is the Hubble constant. We assume that matter receding with velocity greater than that of light
makes no contribution to the scalar potential, so that the integral in equation is taken over the spherical
volume of the Hubble radius c/H0 which is approximately 14.4 billion light years. If we now assume
that the density is uniform, not only in space but also in time, equation (4.50) gives

ϕg−1 = −2πGρ(c/H0)
2 (4.52)

According to equation (4.52), the 99 per cent of the gravitational scalar potential arises from matter
further away than 109 light-years. If we now take into account that the very distant matter
moves with relativistic velocities and the density of matter was much higher in the past, we
conclude that the 99,99 per cent of the gravitational scalar potential arises from matter further away than
1010 light-years. Therefore, practically the 99,99 percent of the gravitational scalar potential arises from
matter moving with speeds that are 99,99 percent of the speed of light. Thus, because of the relativistic
velocity-addition law, practically, the velocity of the very distant matter relative to the test-body K is
almost independent of the velocity of the test-body K relative to the lab frame. It is like the speed of light
that is the same for all the observers. Therefore, from equation (4.44) it follows that practically
the gravitational inertial rest mass of a body has the same value when the body is at rest
in all inertial frames. So, the equations (4.44) and (4.43) becomes

min−g0 ≈

(

−
1

c2
mϕg

)

and p′′g−x ≈ γ(w)

(

−
1

c2
mϕg

)

w (4.53)

If the frame S is at rest in the lab frame, the equation (4.43) has the product of two Lorentz factors γ(v).
The first Lorentz factor is caused by the motion of the test body K relative to the lab frame and the
second is caused by the relativity of the time measurements and so, we come to equation (4.53) again.
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Let us now consider, what happens if there are other electrical charges, with such a
distribution and motion that the electric scalar potential ϕe in the lab frame is not zero but is the same
everywhere, so that ~∇ϕe = 0 and the magnetic vector potential ~Ae is zero. Since the equations of
electromagnetism have the same mathematical form as the equations of gravitomagnetism, we will only
state the important results. Let’s suppose that the test-body K is accelerated in the lab frame along the
x-axis just like in the previous study. So, when the instantaneous velocity of the test-body K relative to
the frame S is w and relative to the lab frame is v, the kinetic gravitoelectric momentum of the
test-body K in the frame S, will be

p′′ge−x = γ(w)γ(v)

[

−
1

c2
(mϕg + qϕe)

]

w = γ(w)min−ge0w (4.54)

and its gravitoelectric inertial rest mass min−ge0 will be a Lorentz invariant.
Let’s suppose that there are n electric charges, each at a different distance ri from the test-body K, as

measured in the lab frame. For non relativistic velocities, according to equations (4.54) and (4.44), the
gravitoelectric inertial rest mass of the the test-body K in the lab frame, is

min−ge0 = min−g0 −
1

c2

(

1

4πε0

n
∑

i=1

qqi
ri

)

(4.55)

Finally, the Special theory of relativity will give us the rest mass of a body with internal
structure, a composite body. If we apply the conservation of the kinetic four-momentum in an inelastic
collision where n free moving particles without internal structure, collide and create a composite body M
which is at rest in the lab frame, the rest mass min−0 of the composite body M in the lab frame is

min−0 =

i=n
∑

i=1

min−ge0i + T/c2 + Efield/c
2 (4.56)

where min−ge0i is the gravitoelectric rest mass of each particle that makes up the composite body M,
T is the kinetic energy of the relative motion of all the particles and Efield is the potential energy of
the interaction of all the particles [17]. The rest mass min−0 of the composite body M, is also a
Lorentz invariant as is well known from the Special theory of relativity [18].

4.3 Zero rest mass

Let us now imagine, using classical physics, that we have an accelerating particle A of gravitational
mass m, electric charge q and without internal structure, inside a thin spherical shell of radius R with
charge q uniformly distributed on its surface. The electric scalar potential inside the spherical shell is

given by the well known equation, ϕe =
1

4πε0

q

R
. The gravitoelectric rest mass of the particle A, according

to equation (4.55), is

min−ge0 = min−g0 −
1

c2
1

4πε0

q2

R
(4.57)

From equation (4.57) we can see that the gravitoelectric rest mass of the particle A becomes zero when
the radius take the value Rcritical. From equation (4.57) we get for Rcritical,

min−g0 =
1

c2
1

4πε0

q2

Rcritical

⇐⇒ Rcritical =
1

c2
1

4πε0

q2

min−g0

(4.58)

If we imagine that the particle A is like the proton Rcritical ≈ 1, 53 × 10−18m and if is like the electron
Rcritical ≈ 2, 81 × 10−15m. Therefore, the effect of the electric scalar potential on the inertial
rest mass of a particle, becomes significant in the subatomic world !!! And now the question
is: What happens if the inertial rest mass can become negative? Does repulsive force become attractive?
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5 SPACETIME METRIC

5 Spacetime metric

The Equivalence Principle shows us that, spacetime is endowed with a metric and the gravitational field
affects the spacetime metric. We will derive now the spacetime metric outside of a static, spherically
symmetric body B of gravitational mass M. We will consider the freely motion of a test-body A, of
gravitational mass m with m ≪ M , in the radial direction of the gravitational field of the body B. We
will follow a method based on a paper of F. Tangherlini [19][20][21].

The equation of motion of the test-body A, is obtained from the principle 7 of geodesic motion in
section 3:

δ

ˆ

ds = 0 (5.1)

where, from the principle 6:
ds2 = gµνdx

µdxν (5.2)

By well-known arguments we may bring the spacetime interval outside of a static, spherically symmetric
body into the standard Schwarzschild form [22]:

ds2 = g00(r)c
2dt2 + g11(r)dr

2
− r2(dθ2 + sin2θdϕ2) (5.3)

The scalar functions g00 and g11, are functions only of the coordinate distance or radial coordinate r. For
purely radial motion of the test-body A, the spacetime interval of equation (5.3), becomes

ds2 = g00(r)c
2dt2 + g11(r)dr

2 (5.4)

The metric (5.3) should give us to infinity the Minkowski metric in spherical coordinates

ds2 = c2dt2 − dr2 − r2(dθ2 + sin2θdϕ2) (5.5)

Therefore, we must have the boundary conditions

lim
r→∞

g00(r) → 1 lim
r→∞

g11(r) → −1 lim
r→∞

g00(r)g11(r) → −1 (5.6)

The equations of motion of the test-body A possess the well known first integral [23]:

g00
dt

ds
= k0 (5.7)

Equation (5.7) states that the energy (per unit mass) k0 is a constant of the motion (the energy conser-
vation law). We can have a second first integral, for the equation of motion in the radial direction, by
dividing the equation (5.4) by ds2

1 = g00c
2

(

dt

ds

)2

+ g11

(

dr

ds

)2

(5.8)

Equation (5.8) expresses the invariant relation between energy and momentum (per unit mass). Elimi-

nating
dt

ds
from equation (5.8), using the first integral of equation (5.7), we get

1 =
c2k2

0

g00
+ g11

(

dr

ds

)2

(5.9)

Since the metric tensor, in our case, is diagonal, one should have

g00 =
1

g00
and g11 =

1

g11
(5.10)
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Dividing the equation (5.9) by g11 we get

1

g11
=

c2k2
0

g00g11
+

(

dr

ds

)2

(5.11)

and using the equations (5.10) we get

g11 = c2k20(g
00g11) +

(

dr

ds

)2

(5.12)

The scalar functions g00 and g11, are functions of only r and r is a function of only s since dτ = ds/c
where dτ is the proper time. So, using the chain rule, we get

dg00

ds
=

dg00

dr

dr

ds
= g00,r

dr

ds
and

dg11

ds
=

dg11

dr

dr

ds
= g11,r

dr

ds
(5.13)

where a comma denotes ordinary differentiation. Using the relations (5.13) we differentiate the equation
(5.12) in respect to s and we obtain

g11,r
dr

ds
= c2k20

(

g00g11
)

,r
dr

ds
+ 2

dr

ds

d2r

ds2
(5.14)

Cancelling
dr

ds
we get

d2r

ds2
= −

c2k2
0

2

(

g00g11
)

,r +
1

2
g11,r (5.15)

Equation (5.15) is the Tangherlini equation for purely radial motion [21]. Using the relation
ds2 = c2dτ2 , we get the equation of motion of the test-body A in the form,

d2r

dτ2
= −

c4k2
0

2

(

g00g11
)

,r +
c2

2
g11,r (5.16)

From equation (5.16) we can see that because of the k0 term, the radial acceleration depends on the energy
which the test-body A had initially, i.e. the radial velocity with which the test-body A was launched.
However, the electric force on a charge is strictly independent of the charge’s velocity [24]. The same
happens with the gravitational force on a gravitational mass, because we accept that both forces are
described by equations with the same mathematical form. Therefore, the proper acceleration of
the test body A, in the radial direction of the gravitational field of the body B, is strictly
independent of the radial velocity with which the test-body A was launched. [25].

According to the principle of consistency, in the Newtonian limit, i.e. when the test-body A moves
with non-relativistic velocity v ≪ c, in a weak and static gravitational field, the equation (5.16) must
reduce to the Newtonian equation of motion of the test-body A, which is

d2ρ

dt2
= −

m

min−g0

dϕgB

dρ
= −

m

min−g0

d

dρ

(

−
GM

ρ

)

= −
m

min−g0

GM

ρ2
(5.17)

where ϕgB is the gravitational scalar potential of the body B and ρ is the radial distance or ‘physical’
proper distance. We use the gravitational rest mass min−g0 because the test-body A makes a free fall and
thus feels only the external gravitational inertial force. In the Newtonian limit, the proper acceleration,
the radial acceleration and the acceleration in equation (5.17), are all the same. So, in the Newtonian
limit the radial acceleration of the test-body A is strictly independent of it’s velocity. In order for this
to happen, the following equation must be valid

g00g11 = const. (5.18)
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Because the scalar functions g00(r) and g11(r) are independent of the speed, the equation
(5.18) must be valid also for relativistic velocities. Therefore, the radial acceleration of the
test-body A is strictly independent of the radial velocity with which it was launched. Because
of the boundary conditions (5.6), the equation (5.18) becomes

g00g11 = −1 (5.19)

Using the equations (5.10), we get

g11 = −
1

g00
(5.20)

Thus, the equation (5.3) for the spacetime interval outside of the body B, can be written
in the form

ds2 = g00c
2dt2 − g00

−1dr2 − r2(dθ2 + sin2θdϕ2) (5.21)

From equations (5.20) and (5.10), we get
g11 = −g00 (5.22)

Using the equations (5.18) and (5.22), the equation of motion of the test-body A (5.16), becomes

d2r

dτ2
= −

c2

2
g00,r (5.23)

So, in the Newtonian limit, where the time t is approximately equal to the proper time τ : dt ≈ dτ
and the coordinate distance r is approximately equal to the radial distance ρ : dr ≈ dρ, comparing the
equations (5.17) and (5.23), we get

−
c2

2

dg00
dr

= −
m

min−g0

dϕgB

dr
⇐⇒

dg00
dr

=
2m

c2min−g0

dϕgB

dr
(5.24)

As we have shown, the local matter has almost no effect on the rest mass of the test-body A. So, we
accept that the gravitational rest mass of the test-body A, is constant during the motion.
Hence, by integration and using the boundary conditions (5.6), we obtain for g00 and g11 from eq. (5.24),

g00 = 1 +
2m

c2min−g0
ϕgB = 1−

2m

c2min−g0

GM

r
(5.25)

Therefore, the equation (5.21) for the spacetime interval outside of the body B, becomes

ds2 =

(

1−
m

min−g0

2GM

c2r

)

c2dt2 −

(

1−
m

min−g0

2GM

c2r

)

−1

dr2 − r2(dθ2 + sin2θdϕ2) (5.26)

We must emphasize that, according to equation (4.44),

m

min−g0
= −

c2

ϕg
(5.27)

Therefore, the spacetime interval outside of the body B, is independent of the gravitational mass of the
test-body A. In the International system of units the ratio of the gravitational mass to the
gravitational rest mass of the test-body A, is equal to unity and so, the equation (5.26)
becomes the Schwarzschild metric

ds2 =

(

1−
2GM

c2r

)

c2dt2 −

(

1−
2GM

c2r

)

−1

dr2 − r2(dθ2 + sin2θdϕ2) (5.28)

19



6 DARK MATTER AND DARK ENERGY

To obtain any orbital motion of the test-body A in the gravitational field of the body B,
one can either follow the path of General relativity using the geodesic equation, or one can
use the relativistic mechanics. For the latter we will follow a method based on a paper of J. Wild
[26]. If we use the relativistic mechanics, we have to remember that the acceleration of the test-body A is
determined by the radial field of force diverging from the body B, and the gravitational mass of the body
B is defined, in suitable units, as the flux of this field through any closed surface outside it (Gauss’s law).
Thus, in flat spacetime, the flux of the gravitational field EgB of the body B through a spherical surface
of radius ρ centered on the body B is equal to 4πρ2EgB , but in curved spacetime the area of the same
spherical surface is not equal to 4πρ2. However, if we make a transformation of the coordinate ρ → r so
as to make the spherical surface always equal to 4πr2, then the magnitude of the field EgB is correctly
given by the equation EgB = −GM/r2. In addition, in relativistic mechanics we have to replace the time
dt by the proper time dτ = ds/c. By doing these, the equation (5.17) becomes

d2r

ds2
= −

m

min−g0

GM

c2r2
(5.29)

For motion of the test-body A in the θ = π/2 plane we have from equation (5.21)

g00c
2

(

dt

ds

)2

− g00
−1

(

dr

ds

)2

− r2
(

dφ

ds

)2

= 1 (5.30)

or
(

dr

ds

)2

+ g00r
2

(

dφ

ds

)2

− g00
2c2
(

dt

ds

)2

+ 1−
m

min−g0

2GM

c2r
= 0 (5.31)

With µ = (g00cdt/ds)
2, differentiation of equation (5.31) with respect to r, for purely radial motion

(dφ/ds = 0), gives

2
d2r

ds2
+

m

min−g0

2GM

c2r2
+

dµ

dr
= 0 (5.32)

Comparison with equation (5.29) shows that µ = constant. Thus, using,
m

min−g0
= 1 as in the Interna-

tional system of units, for easy comparison, equation (5.31) becomes

(

dr

ds

)2

+

(

1−
2GM

c2r

)

r2
(

dφ

ds

)2

−
2GM

c2r
= constant (5.33)

The above equation is a well known equation of General relativity that incorporates the general relativistic
analogues of energy conservation and angular momentum conservation and can also be obtained using the

geodesic equation [27]. The equation (5.33) and the equation: r2
dφ

ds
= constant, that gives the conser-

vation of the angular momentum, define the motion of a planet and also (with ds = 0) the gravitational
deflection of a light ray. It is then a textbook procedure to show that they lead to the well-known formula
for the precession of planetary orbits and the deflection of a light ray by the Sun [28].

6 Dark matter and dark energy

6.1 Dark matter

In the Universe there are planets, stars, galaxies, clusters of galaxies and so on. If we now think
that the gravitational scalar potential and the gravitomagnetic vector potential satisfy the
wave equation and they travel with the speed of light in space, they must behave like the
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6.2 Dark energy 6 DARK MATTER AND DARK ENERGY

light that bends when traveling near a large gravitational mass. Therefore, we conclude
that the gravitational potential of the entire Universe is more concentrated in places with
higher densities of matter. Hence, because the gravitational inertial rest mass of a star depends on
the gravitational scalar potential, it seems that the position where a star is located, affects the inertial
mass of the star. In places with higher density of matter the inertial mass of a star will be greater than
the inertial mass of an identical star, in a place with lower density of matter. So, the inertial mass of
a star near the center of a galaxy is greater than the inertial mass of an identical star at the
edges of that galaxy. Therefore, the stars at the edges of a rotating, spiral galaxy will have to move
faster than Newtonian physics predicts. This seems to be very important for the problem of dark matter.

6.2 Dark energy

Let us now consider the light emitted by atoms on the surface of a static, spherically symmetric star
of gravitational mass M. We assume that an atom of gravitational mass m and gravitational rest mass
min−g0, which emits light, is at a distance rem from the center of the star. From equation (5.26) arises
the equation relating the proper time dτem at the point of emission, with the proper time dτ∞ at infinity
where is the point of observation [29]

dτ∞ =
dτem

√

1−
2GMm

c2remmin−g0

(6.1)

So, the frequency of the light observed by an observer, at the point of observation, will be

f∞ = fem

√

1−
2GMm

c2remmin−g0

(6.2)

Equation (6.2) describes the redshift of light emitted by an atom in a gravitational field and received
by an observer who is very far away, essentially at infinity. As the Universe expands, the density
of matter decreases and so, according to equation (4.50), the gravitational inertial mass of
an atom decreases over time. Therefore, as it emerges from equation (6.2), the light emitted by the
atoms of two identical supernovas Ia at different times in the history of the Universe, will have different
red shift. The atoms of a younger (most recent) supernova will have smaller gravitational rest mass than
the atoms of an older supernova. Hence, the light emitted by the atoms of a younger supernova
Ia will have larger red shift than the light emitted by the atoms of an older supernova Ia.
This phenomenon has been observed, but the inability to explain it has led to the theory that the Universe
expands in an accelerating way, because of dark energy.

Conclusions

In this paper we have described a new theory which has all the hallmarks of Einstein’s General theory
of relativity, except the field equations and the equivalence of gravitational and inertial mass. The
Schwarzschild metric is one of its consequences and therefore agrees with all previous experiments and
observations. However, the new theory goes further and its other consequences are very important for
dark matter, dark energy, nuclear and particle physics. Due to the similarity of gravitational and electric
forces we have to check if the electric potential also affects the spacetime metric, by measuring the rate of
decay of unstable particles inside a spherical shell with charge uniformly distributed on its surface so that
the electric field inside to be zero while the electric potential is not zero. Finally, if the inertial mass can
take any value, as the new theory shows, then a future technology can make space travel an easy affair !!!
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