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Abstract

If equilibrium is to be a frame-independent condition, it is necessary the gravitational force to
have precisely the same transformation law as that of the Lorentz-force. Therefore, gravity should
be described by a gravitomagnetic theory with equations which have the same mathematical form as
those of the electromagnetic theory, with the gravitational mass as a Lorentz invariant. Using this
gravitomagnetic theory, in order to ensure the relativity of all kinds of translatory motion, we accept
the principle of covariance and the equivalence principle and thus we prove that,

1. The external inertial force, perceived by an accelerating body, is real gravitational force due to
induction effects from the entire Universe.

2. The internal inertial force, depends on the body’s internal structure, but in a free fall it is
canceled because of the equivalence principle and the body experiences only the external inertial
force. That is why all bodies, fall with the same acceleration.

3. The inertial mass of a body depends on the distribution of matter in the Universe and this seems
very important for the explanation of dark matter and dark energy.

4. The gravitational field affects the spacetime metric and all freely moving bodies follow geodesic
of the metric.

5. We can obtain the Schwarzschild metric and thus, the new theory is in agreement with all past
experiments and observations.

Keywords: Gravitomagnetism , Mach’ principle , origin of inertia , dark matter , dark energy.

1 Introduction

The origin of inertial forces is a problem which has been of great concern to many thinkers since the time
of Newton, but which so far has escaped a satisfactory solution. So, there is space for a new attempt.
According to Newton, the inertial forces, such as the centrifugal force, must arise from acceleration with
respect to the absolute space. This idea implies that space is an absolute physical structure with properties
of its own and the inertia is an intrinsic property of the matter. According to Mach’s principle, the inertial
forces, such as the centrifugal force, are more likely caused by acceleration, with respect to the mass of
the celestial bodies. This idea implies that the properties of space arise from the mater contained therein
and are meaningless in an empty space. The distinction between Newton’s and Mach’s considerations,
is not one of metaphysics but of physics, for if Mach were right then a large mass could produce small
changes in the inertial forces observed in its vicinity, whereas if Newton were right then no such effect
could occur [1]. This seems to be very important for subjects such as dark matter and dark energy.
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2 RELATIVISTIC GRAVITY

The idea that the only meaningful motion of a particle, is motion relative to other matter in the
Universe, has never found its complete expression in a physical theory. Alfred Einstein was inspired
by Mach’s principle. The General theory of relativity, attempted to interpret inertia considering that
it is the gravitational effect of the whole Universe, but as pointed out by Einstein, it failed to do so.
Einstein showed that the gravitational field equations of General relativity imply that a body, in an
empty Universe, has inertial properties [2]. The principle of equivalence is an essential part of General
relativity. But although the principle of equivalence has been confirmed experimentally to high precision,
the gravitational field equations of General relativity have not as yet been tested so decisively. Thus, it
is not a theory fully confirmed experimentally and competing theories cannot be ruled out [3].

Finally, as pointed out by Henri Poincare, if equilibrium is to be a frame-independent condition, it is
necessary for all forces of non-electromagnetic origin to have precisely the same transformation law as that
of the Lorentz-force [4]. But this does not happen with gravity as it is described by General relativity. In
order for this to happen, gravity should be described by a gravitomagnetic theory with equations which
have the same mathematical form as those of the electromagnetic theory with the gravitational mass as
a Lorentz invariant. Moreover, if we want to extend the principle of relativity to all kinds of motion,
we must accept the principle of covariance and the equivalence principle. According to the equivalence
principle the gravitational field should affect the spacetime metric and all the freely moving test bodies
follow geodesic of the metric. All of the above, are enough to obtain the Schwarzschild metric, without
the field equations of General relativity. So, the new theory will be in agreement with all past experiments
and observations. The relativity of acceleration together with the gravitomagnetic theory will show us
the origin of inertial forces and the origin of inertial mass. This is the main idea that we will describe in
this paper.

2 Relativistic Gravity

In an inertial reference frame K, let’s have a system of two non spinning bodies with gravitational masses
and positive electric charges, in a region of free space where there are no external forces. We suppose
that the two bodies are at rest in the inertial frame K, under equilibrium conditions, i.e. the force
of gravitational attraction balances that of electrostatic repulsion. But what is observed by another
inertial frame of reference K ′, moving with uniform velocity relative to the frame K? Let’s imagine that
if the bodies collide, they will explode. It is impossible for one observer to see an explosion and for
another to not see it. So, the equilibrium must be a frame-independent condition. In order for this to
happen, it is necessary the gravitational force to have precisely the same transformation law as that of
the Lorentz-force. So, gravity should be described by a gravitomagnetic theory with equations which
have the same mathematical form as those of the electromagnetic theory with the gravitational mass as
a Lorentz invariant.

According to Richard Feynman, we can reconstruct the complete electrodynamics using the Lorentz
transformations (for force, potential, velocity and co-ordinate) and the following series of remarks [5][6]:

1. The Coulomb potential for a stationary charge in vacuum is, ϕe =
1

4πε0

q

r

2. An electric charge produces a scalar potential and a vector potential, which together form a four-

vector, Ae =
(ϕe
c
,Ae

)
3. The potentials produced by a charge moving in any way, depend only upon the velocity and position

at the retarded time.

Of course we need to know how to get the Coulomb’s law from the scalar potential. So, if we want
to obtain a gravitomagnetic theory, where its equations have the same mathematical form, as those

2



2 RELATIVISTIC GRAVITY

of the electromagnetic theory, the same series of remarks must be met for gravity. We already have
the first remark, that is, the gravitational potential for a stationary gravitational mass m in vacuum is

ϕg = − 1

4πg0

m

r
where g0 =

1

4πG
and G is the Newton’s universal gravitational constant, but this is only

the one remark. So, we need the other two, as well. We will obtain them with the following two principles:

Principle 1

A gravitational mass produces a scalar potential and a vector potential, which

together form a four-vector, Ag =
(ϕg
c
,Ag

)
From principle 1, follows that the gravitational mass is an invariant quantity. As we will show later,

the inertial mass and the gravitational mass are different entities but all the bodies released
from the same point in a gravitational field, fall with the same acceleration.

Principle 2

The potentials produced by a gravitational mass moving in any way, depend only
upon the velocity and position at the retarded time.

So, the potentials produced by a gravitational point-mass m moving with any velocity have the same math-
ematical form as the Lienard-Wiechert potentials for an electric point-charge moving with any velocity,
but with a negative sign,

ϕg = − 1

4πg0

[
m

r − rv/c

]
(2.1)

Ag = − 1

c2
1

4πg0

[
mv

r − rv/c

]
=

1

c2
[ϕgv] (2.2)

where r is the vector from the gravitational point-mass to the point where the potential is evaluated, c is
the speed of light in vacuum and all the quantities in the square bracket are to have their values at the
retarded time. Starting from the potentials, in order to find the fields, we have the equations

Eg = −∇ϕg −
∂Ag

∂t
(2.3)

Bg = ∇×Ag (2.4)

The force, that a gravitational mass m experiences, when it moves with velocity v in the above fields is,

F g = m(Eg + v ×Bg) (2.5)

where Eg is the gravitational field and Bg the gravitomagnetic field.
So, we have now a gravitomagnetic theory, with equations that have the same mathematical form as

those of the electromagnetic theory. Therefore, we expect that there are gravitomagnetic waves that prop-
agate, in vacuum with the speed of light, and that they are described by equations which have the same
mathematical form as the corresponding equations for electromagnetic waves, but with one important
difference. An isolated electric source can radiate electric dipole radiation, with power proportional to
the square of the second time derivative of the electric dipole moment. However, an isolated gravitational
source cannot radiate gravitational dipole radiation, but quadrupole and radiation of higher polarity. The
reason is simple. The electric dipole moment can move around with respect to the center of mass but
the gravitational dipole moment is identical in location with the center off mass, and due to the law of
conservation of momentum, cannot accelerate or radiate [7].
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3 GENERAL RELATIVITY OF TRANSLATORY MOTION

3 General relativity of translatory motion

We will follow now, the fundamental idea of relativity of all kinds of translatory motion.
In accordance with this idea we can detect and measure the translatory motion of a given
body, relative to other bodies, but cannot assign any meaning to its absolute motion. So,
acceleration, as well as the velocity, is relative.

The rotational motion of a rigid body, as a whole, cannot be relative. Different parts of the rotating
body perceive different motion of the other bodies. Nevertheless, we can consider that a rotational rigid
body consists of an infinite number of point particles and the instantaneous velocity and acceleration of
every point particle separately, is relative.

In order for all kinds of translatory motion to be relative, the laws of physics should have the same
mathematical form when referred to different reference frames, which are in relative translatory motion,
since otherwise the difference in form could provide a criterion for judging the absolute motion. So, first
we accept the next principle,

Principle 3 - The principle of general relativity (The principle of covariance)

The laws of physics which are valid in an inertial reference frame, i.e. the laws
of Special theory of relativity, have the same mathematical form in all reference
frames which are in relative translatory motion.

However, it does not end with the above principle. We need one more principle to ensure the relativity of
all kinds of translatory motion. This arises from the fact that the expression of the equations of physics in
a form which is independent of the reference frame does not in general prevent a change in their numerical
content when we change from one reference frame to another and it is only by relating such changes in
numerical content to conceivable changes in gravitational field that we are able to eliminate criteria for
absolute motion and to preserve the idea of the relativity of all kinds of translatory motion [8]. Let’s
make now a thought experiment, the lab frame experiment, to make the above argument clear.

Let’s suppose that we have a space station, far from any massive body, that we use it as a laboratory.
We will call the local frame of the space station, lab frame. An observer L is at rest in the
lab frame. We assume that the distribution of matter in the Universe is such, that the gravitational
field in the lab frame is equal to zero. This means that the gravitational scalar potential ϕg , from
the entire Universe, has the same value everywhere in the lab frame, and so,

∇ϕg = 0 (3.1)

We also suppose that the Universe expands symmetrically in all directions, with respect to the lab frame,
so that the gravitational vector potential due to one part of the mass-current, is canceled out by the
vector potential due to another part of the mass-current, owing to its symmetry. This means that the
gravitational vector potential Ag from the entire Universe is equal to zero, everywhere in the lab frame,

Ag = 0 (3.2)

This would also happen if all the bodies of the Universe were at rest, relative to the laboratory. So, we
can say that the lab frame is at rest relative to the Universe, or at rest relative to the fixed stars.

Let’s suppose that in the lab frame, a small rocket starts to accelerate making translatory motion,
with constant proper acceleration, i.e. feels a constant force in its instantaneous rest frame. We will
call the local reference frame of the rocket, rocket frame. An observer R is at rest in
the rocket frame. According to the principle of general relativity we can apply the covariant laws of
gravitomagnetism in the rocket frame. Because we accept that acceleration is relative, the fixed stars are
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3 GENERAL RELATIVITY OF TRANSLATORY MOTION

accelerating relative to the rocket frame, in the same way for all parts of the rocket frame. Therefore,
according to the Faraday’s law for gravitomagnetism, the covariant laws of gravitomagnetism will give us
an induced uniform gravitational field in the rocket frame. We will consider this in detail, later.

So, the observer R is at rest in a local reference frame with a uniform gravitational field,
while the observer L is at rest in a local reference frame without gravity, that is, an inertial
reference frame. We assume that the gravitational forces between the rocket and the laboratory are
negligible. The observer L, who is at rest in a local inertia frame, using the Special theory of relativity
is able to describe what physical effects are observed by the observer R who is at rest in the accelerating
rocket frame. This is the well known study of a uniformly accelerated rigid reference frame, in Special
relativity. So, from the viewpoint of the observer L, the well known physical effects, which are observed
by the observer R, are [9]:

1. Redshift or blueshift of a light ray which moves parallel to the direction of the acceleration.

2. Varying coordinate speed of light; fixed local relative speed of light.

3. Spacetime is endowed with a metric.

4. Maximum proper time as the law of motion of freely moving bodies.

5. Horizons.

Because we accept that acceleration is relative, from the viewpoint of the observer R, who is at rest in the
rocket frame, it is the lab frame that makes accelerating motion, relative to the rocket frame. So, if the
induced gravitational field did not exist, by symmetry, the rocket frame would be equivalent to the lab
frame and the above physical effects would have to occur in the lab frame and not in the rocket frame, for
the observer R. Nevertheless, the uniform gravitational field exists and the above physical effects occur in
the rocket frame and not in the lab frame, for both observers. In order for this to happen, the only
way is to think that the induced uniform gravitational field, in the rocket frame, should be
capable of causing all the above physical effects, with the same numerical values. For this
reason, we accept the next principle,

Principle 4 - The principle of equivalence

Physics in an accelerating local reference frame with uniform acceleration a = −g,
in a region without gravity, is equivalent to physics in a non accelerating local
reference frame with a uniform gravitational field, where all the released bodies
fall with acceleration g.

From the viewpoint of the observer R, the lab frame makes a free fall in the gravitational field that he
perceives but none of the above physical effects happen in the lab frame, although it is accelerating. In
order for this to happen, the only way is to think that the gravitational field must exactly
cancel the acceleration of the lab frame so that, no sign of either acceleration or gravitation
can be found by any physical means in the lab frame. So, we have an alternative expression of
the equivalence principle,

Principle 4 - The principle of equivalence

Physics in a local reference frame, freely falling in a gravitational field, is equiva-
lent to physics in an inertial reference frame without gravity.
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3 GENERAL RELATIVITY OF TRANSLATORY MOTION

From the viewpoint of the observer R, the fixed stars and the lab frame, fall in the gravitational
field that he perceives. Thus, according to the equivalence principle, no sign of either acceleration or
gravitation can be found by any physical means in the fixed stars and in the lab frame because they are
freely falling in a gravitational field. Therefore, the observer R doesn’t observe any radiation
field from them, because radiation is a sign of acceleration or gravitation. In order for this
to happen, the only way is to think that the fields make a free fall just like the stars.

So, for the the observer R, the instantaneous potentials of the free falling stars are the
same with the potentials that they would have if they were moving with uniform velocity,
equal to the instantaneous relative velocity.

Therefore, we can find the instantaneous potentials of the free falling stars in the rocket
frame, from the potentials of them in the lab frame, using just the Lorentz transformation
with the instantaneous relative velocity.

Thus, when the rocket accelerates relative to the fixed stars it is equivalent to say either that

1. the rocket accelerates and thus radiates because of the acceleration, while the fixed stars are sta-
tionary and thus they do not radiate, or that

2. the rocket is stationary in a universal gravitational field where all the fixed stars make free fall,
and thus they do not radiate, whereas the rocket which is at rest in the gravitational field radiates
because of the gravitational field.

So, with the principle of general relativity and the principle of equivalence we have ensured
the relativity of all kinds of translatory motion. Moreover, as we have seen, the equivalence
principle shows us that spacetime is endowed with a metric and the gravitational field affects
the spacetime metric so that, the maximum proper time is the law of motion of a freely
moving body in a gravitational field. The two above physical effects are so important that we will
elevate them to physical principles. So, we will accept the next two principles:

Principle 5 - The principle of spacetime metric

Spacetime is endowed with a metric. The spacetime interval between two events
is:

ds2 = gµνdx
µdxν

where gµν is the metric tensor.

Principle 6 - The principle of geodesic motion or of maximum proper time

Freely moving test bodies, in a gravitational field, follow geodesic of the metric:

δ

ˆ
ds = 0

The gravitational force affects the spacetime metric and so, we can say that gravity curves the space-
time. The spacetime of Special theory of relativity is the Minkowski spacetime which is a flat spacetime.
While it is clear that flat and curved spaces are different entities, they are closely related. We are
familiar from our experience with smoothly curved surfaces that any smoothly curved space can be ap-
proximated locally by a flat plane. This is the content of the local-flatness theorem. According to the
local-flatness theorem, the metric in the immediate neighborhood of a point P is, to a close approxima-
tion, the Minkowski spacetime metric and the laws of Special relativity are valid there [10][11]. Therefore,
everywhere locally the laws of Special theory of relativity are valid.
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4 INERTIA AND INERTIAL MASS

Let’s follow now the principle of general relativity by applying the Newton’s First Law, which is a
law of Special relativity, in the proper-frame of an accelerating body, i.e. the frame where the
body is always at rest. We assume that the the proper-frame is sufficiently small so that we can use
the local-flatness theorem. Newton’s First Law of motion states that a body, subject to no forces, remains
at rest or continues to move in a straight line with constant speed. In its proper frame the body is at rest
and so, according to the Newton’s First Law the net force on it is zero. So, we come to the conclusion
that, in the proper-frame of any-body the total force on the body is equal to zero.

So, in order for the acceleration to be relative, we have now all the principles of Einstein’s General
theory of relativity except the weak equivalence principle, i.e. the equality of the gravitational mass and
the inertial mass. Now, having created all the tools we need, we can move on and consider what are the
inertial forces and the inertial mass.

4 Inertia and inertial mass

Let’s continue now, the lab frame experiment. We assume that the lab frame and the rocket frame have
the three sets of axes parallel and common the x, x′ axis. The rocket, which is initially at rest in the
lab frame, begins to accelerate along the x axis. We assume that the rocket frame is sufficiently small, so
that, according to the local-flatness theorem, we can consider that the spacetime is flat in the rocket frame,
and so we can apply the laws of Special relativity. We have shown in the previous chapter, that we can
find the potentials of the fixed stars in the accelerated rocket frame, from their potentials
in the lab frame, using the Lorentz transformations with the instantaneous relative velocity.

The transformation laws which give the gravitational scalar potential ϕ′g and the vector potential A′g
in a moving frame S′, in terms of ϕg and Ag in a stationary frame S, as measured at the same point, at
the same time by people in the two frames, are

ϕ′g = γ(v)(ϕg − vAg−x), A′g−y = Ag−y

A′g−x = γ(v)(Ag−x −
v

c2
ϕg), A′g−z = Ag−z, γ(v) =

1√
1− v2

c2

(4.1)

This assumes that the primed reference frame is moving with speed v in the positive x-direction, as
measured in the unprimed reference frame. We consider now that the rocket frame is the moving frame
and the lab frame is the stationary frame. When the instantaneous speed of the rocket frame is v in
the positive x-direction, as measured in the lab frame, it is straightforward to find the instantaneous
potentials ϕ′g and A′

g in the accelerated rocket frame, in terms of ϕg and Ag in the stationary lab frame.
Substituting for Ag−x from equation (3.2) into equation (4.1) and using vector notation with v the velocity
of the rocket in respect to the lab frame, the potentials in the rocket frame are [12][13],

ϕ′g = γ(v)ϕg (4.2)

A′
g = − 1

c2
ϕ′gv = − 1

c2
γ(v)ϕgv (4.3)

The gravitational field in the rocket frame now, is given from the equation (2.3),

E′
g = −∇′ϕ′g −

∂A′g
∂t′

(4.4)

where ∂t′ is the time interval, in the rocket frame. The gravitomagnetic field, in the rocket frame, is zero
because all the fixed stars make translatory motion in respect to the rocket frame and so, ∇′ ×A′

g = 0.

7



4 INERTIA AND INERTIAL MASS

The γ(v) factor is the same everywhere in the rocket frame. Hence, from the equation (4.2), the scalar
potential ϕ′g is always the same everywhere in the rocket frame and therefore,

∇′ϕ′g = 0 (4.5)

So, the gravitational field in the rocket frame becomes

E′g = −
∂A′g
∂t′

(4.6)

Because the vector potential is also the same everywhere in the rocket frame, an induced
uniform gravitational field appears in the accelerated rocket frame, whereas in the lab frame
there is no gravitational field.

If a test-body K with gravitational mass m, is at rest in the rocket frame, will experience a gravitational
force,

F ′
g = mE′

g = −
∂
(
mA′g

)
∂t′

(4.7)

Substituting for A′g from equation (4.3) into equation (4.7), we obtain,

F ′
g =

m

c2
∂(ϕ′gv)

∂t′
=
m

c2

(
∂ϕ′g
∂t′

v + ϕ′g
∂v

∂t′

)
(4.8)

We can have now, some very important results for non relativistic velocities. So, for γ(v) = 1,

ϕ′g = ϕg, ∂t
′ = ∂t and

∂ϕ′g
∂t′

=
∂ϕg
∂t

= 0. Thus, the equation (4.8) becomes

F ′g =
mϕg
c2

∂v

∂t
=

1

c2
mϕg a =

(
− 1

c2
mϕg

)
(−a) (4.9)

where a is the acceleration of the test-body K in respect to the lab frame. If we recall now that,
the gravitational scalar potential is negative, it is obvious from the equation (4.9) that the induced
gravitational force on the test-body K, is opposite in direction to the acceleration of the body and thus
resists to any change of its speed. It is an inertial force!

We will call the force which is given from the equations (4.7), external gravitational
inertial force because it is due to the acceleration in respect to the external bodies, i.e. in
respect to the fixed stars. So, the external gravitational inertial force on the test-body K, for all
speeds, is given by the equation

F ′ext−in−g = F ′
g = −

∂
(
mA′g

)
∂t′

(4.10)

In addition to the external inertial force, there is also a self-force. Lorentz originally
calculated the electromagnetic self-force using a spherical charge distribution [14]. The well
known picture is something like this: We can think that a body consists of many particles. When the
body is at rest or it’s moving at uniform velocity, every particle exerts a force on every other, but the
forces all balance in pairs, so that there is no net force. However, when the body is being accelerated, the
internal forces will no longer be in balance, because of the fact that the influences take time to go from
one particle to another. With acceleration, if we look at the forces between the various particles of the
body, action and reaction are not exactly equal, and the body exerts a force on itself that tries to hold
back the acceleration. We will call this self-force, internal inertial force, because it depends on
the internal structure of the body.
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4 INERTIA AND INERTIAL MASS

According to the equivalence principle, when a body makes free fall in a gravitational field, the
gravitational field exactly cancels the acceleration so that, no sign of either acceleration or gravitation
can be found by any physical means on the body. Therefore, because the internal inertial force is
a sign of acceleration, it should be canceled when the body makes free fall. So, we come to
the conclusion that,

• When a body makes a free fall in a gravitational field, it experiences only the external
inertial force.

Let’s imagine now, that the test-body K is a body without internal structure and thus, when it is
accelerated by a force F in the lab frame, it does not experience any internal inertial force. The inertial
force on the body is only the external gravitational inertial force. According to the Newton’s First Law,
as we restate it, in the proper-frame of the test-body K, the total force on the body, is zero. Therefore,
for non relativistic velocities, from the equation (4.9), the force F that accelerates the test-body K is

F = −F ′ext−in−g = −F ′
g =

(
− 1

c2
mϕg

)
a = min−g0a (4.11)

With min−g0 as inertial rest mass, the equation (4.11) is the Newton’s Second Law for non relativistic
velocities. We shall call the inertial rest mass of the test-body K, gravitational inertial rest mass min−g0
and its momentum gravitational momentum pg because they are due to external gravitational forces.
Hence, from the equation (4.11), the gravitational inertial rest mass min−g0 of a body without internal
structure, with gravitational mass m, is

min−g0 =

(
− 1

c2
mϕg

)
(4.12)

So, the gravitational inertial rest mass of a body, without internal structure, is not an
intrinsic property of the body but is proportional to the gravitational scalar potential from
the entire Universe at the position of the body.

From equation (4.12) it follows that the gravitational inertial rest mass of a body is independent of
the direction of its acceleration. This problem has the name “anisotropy of inertia” and was the subject
of experimental investigation with negative results [15].

It’s noteworthy that if we consider that the density of matter is roughly uniform throughout space,
then the most distant matter dominates the gravitational scalar potential. This is because, although
the influence of matter decreases with the distance, the amount of matter goes up as the square of the
distance. With this consideration, the distant matter is of predominant importance, while local matter
has only a small effect on the gravitational scalar potential.

If the Universe consists of n discrete gravitational masses, each at a different distance ri from the the
test-body K, as measured in the lab frame, the gravitational inertial rest mass of the the test-body B, in
the lab frame, is

min−g0 =
1

c2
1

4πg0

n∑
i=1

mmi

ri
(4.13)

Let’s consider now if the gravitational inertial rest mass of the test-body K is Lorentz
invariant. In the equation (4.13) the distances are measured in the lab frame and so they are proper
distances and therefore they are Lorentz invariant. The gravitational masses are also Lorentz invariant
So, the gravitational inertial rest mass of a body, without internal structure, is an invariant
quantity.
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4 INERTIA AND INERTIAL MASS

In another area in the Universe, we can have a second lab frame with different gravitational scalar
potential ϕ′g and gravitational vector potential also equal to zero. The gravitational inertial rest mass of
the test-body K, in this second lab frame, will be

min−g0 = − 1

c2
mϕ′g (4.14)

So, the gravitational inertial rest mass of a body without internal structure is Lorentz
invariant but it does not have the same value everywhere.

Having the relation for the gravitational inertial rest mass, the gravitational momentum of the test-
body K, in the lab frame, is

pg = γ(v)

(
− 1

c2
mϕg

)
v = min−gv (4.15)

where min−g the gravitational inertial mass of the test-body K, in the lab frame.
When the test-body K is at rest in the lab frame, its gravitational rest energy is

Eg0 = min−g0c
2 =

(
− 1

c2
mϕg

)
c2 = −mϕg (4.16)

and its gravitational potential rest energy is

Ug0 = mϕg (4.17)

Thus, the total energy of the test-body K, is

Eg0 + Ug0 = −mϕg +mϕg = 0 (4.18)

It’s noteworthy that Richard Feynman writes in the “Lectures on Gravitation” [16]:

“Another spectacular coincidence relating the gravitational constant to the size of the universe
comes in considering the total energy. The total gravitational energy of all the particles of the
universe is something like GMM/R, where R=Tc, and T is the Hubble’s time. [...] If now we
compare this number to the total rest energy of the universe, Mc2, lo and behold, we get the
amazing result that GM2/R = Mc2, so that the total energy of the universe is zero. [. . . ]Why
this should be so is one of the great mysteries and therefore one of the important question of
physics. After all, what would be the use of studying physics if the mysteries were not the
most important things to investigate?”

Let’s suppose now that a body A with internal structure and gravitational mass m, makes free fall in
the gravitational field of a body B with spherically symmetric gravitational mass M and M � m, in a
place where the gravitational scalar potential is ϕg and the gravitational vector potential is zero. In the
free fall of a body in a gravitational field, as we have shown, the internal structure of the
body does not play any role and the body experiences only the external inertial force. So,
for non relativistic velocities, the Universal Newton’s Law of gravitation and the Newton’s Second Law
gives for the magnitude of the acceleration of the body A,

G
Mm

r2
=

(
− 1

c2
mϕg

)
a (4.19)

where r the body’s A distance from the centre of the body B. It is obvious that the gravitational mass m
is canceled in equation (4.19). So, for non relativistic velocities, all the bodies released from
the same point in a gravitational field, fall with the same acceleration. This is a fundamental
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4 INERTIA AND INERTIAL MASS

experimental result that has been tested with enormous precision. In Einstein’s General relativity, the
above result is interpreted by accepting the equality of the gravitational mass and the inertial mass.

Let’s consider now the case where there are electric charges around the lab frame with
such a distribution that the total electric scalar potential ϕe in the lab frame is not zero but is the same
everywhere so that, ∇ϕe = 0 and the total electromagnetic vector potential Ae of the electric charges in
the lab frame, is zero. So, the electric field in the lab frame is zero. Let’s have a test-body B without
internal structure, with gravitational mass m and electric charge q which is accelerated in the lab frame.
From the viewpoint of the test-body B all the other charges make a free fall in the gravitational field that
it perceives and so, they do not radiate. We shall call the momentum pge of the test-body B gravitoelectric
momentum and its inertial mass min−ge gravitoelectric inertial mass because they are due to external
gravitational and electric forces. Because the equations of electromagnetism have the same mathematical
form as the equations of gravitomagnetism, the gravitoelectric momentum of the test-body B is

pge = γ(v)

[
−

1

c2
(mϕg + qϕe)

]
v (4.20)

and the gravitoelectric inertial rest mass min−ge0 of the test-body B, which is Lorentz invariant, is

min−ge0 =

[
− 1

c2
(mϕg + qϕe)

]
(4.21)

We assume now, that the Universe consists of n discrete gravitational masses and m discrete electric
charges, each at a different distance ri from the the test-body B, as measured in the lab frame. In this
case, according to equations (4.21), the gravitoelectric inertial rest mass of the the test-body B, in the
lab frame, is

min−ge0 =
1

c2

(
1

4πg0

n∑
i=1

mmi

ri
− 1

4πε0

m∑
i=1

qqi
ri

)
(4.22)

Let’s calculate now the order of magnitude of the distance between the test-body B and a charged
particle with charge Q, in order for the effect of the electric scalar potential on the inertial rest mass of
the test-body B to be significant. The gravitoelectric inertial mass of the test-body B according to the
equation (4.22), is

min−ge0 =
1

c2

(
1

4πg0

N∑
i=1

mmi

ri
− 1

4πε0

qQ

r

)
= min−g0 −

1

c2
1

4πε0

qQ

r
(4.23)

For like charges there is a distance where the inertial mass of the test-body B “becomes almost zero”.
Let’s calculate approximately this distance. When this happens, equation (4.23) becomes

min−g0 =
1

c2
1

4πε0

qQ

r
⇒ r =

1

c2
1

4πε0

qQ

min−g0
(4.24)

For q = Q if the test-body B is a proton r ≈ 1, 53 × 10−18m and if the test-body B is an electron
r ≈ 2, 81 × 10−15m. So, the effect of electric potential becomes significant in the subatomic
world.

Having finished with the gravitoelectric inertial rest mass of a body without internal
structure, let’s consider now the total inertial rest mass of a composite body M, a body
with internal structure. We shall call it just inertial rest mass. The Special theory of relativity
accepts the principle of conservation of four-momentum, i.e. the sum of the four-momentum of all the

11
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particles going into a collision, is the same as the sum of the four- momentum of all those coming out. If
we apply the conservation of four-momentum in a inelastic collision where n free moving point particles
without internal structure, collide and create a composite body M which is at rest in a reference frame,
the inertial rest mass min−0 of the composite body M is

min−0 =
i=n∑
i=1

min−ge0i +
∑

T/c2 + Efield/c
2 (4.25)

where min−ge0i is the gravitoelectric inertial rest mass of each particle, without internal structure, that
makes up the body M, T is the kinetic energy of the relative motion of the particles that make up the
body M, and Efield is the potential energy of the interaction of the particles that make up the body M
[17]. The inertial rest mass min−0 of the composite body M, is also Lorentz invariant as is
well known from the Special theory of relativity [18].

Therefore, if we have the gravitoelectric inertial rest mass of each point particle, without internal
structure, using the principle of conservation of four-momentum, we end up with the relation that gives
us the inertial rest mass of the body M with internal structure, which is Lorentz invariant.

5 Spacetime metric

The equivalence principle shows us that, spacetime is endowed with a metric and the gravitational forces
affects the spacetime metric. So, we will find now the spacetime metric outside of a stationary and
static body B with spherically symmetric distribution of gravitational mass M. We will consider the freely
motion of a test-body A with gravitational mass m in the radial direction of the gravitational field of the
body B. We suppose that M � m. We will follow a new method based on a paper of F. Tangherlini
[19][20] [21].

From the principle of spacetime metric we have the spacetime interval between two events

ds2 = gµνdx
µdxν (5.1)

It is well documented that we can bring the spacetime interval outside of a stationary body with spherically
symmetric distribution of gravitational mass, into the standard Schwarzschild form [22]

ds2 = g00c
2dt2 + g11dr

2 − r2(dθ2 + sin2θdϕ2) (5.2)

We assume now that,

1. The scalar functions g00 and g11, of the metric tensor, are functions only of the distance from the
centre of the body B.

2. The gravitational inertial rest mass min−g0, of the test body A, is constant during the radial motion
(We use the gravitational inertial rest mass because the test body A makes a free fall and thus
experiences only the external gravitational inertial force).

3. The metric (5.2) should give us to infinity the Minkowski metric in spherical coordinates

ds2 = c2dt2 − dr2 − r2(dθ2 + sin2θdϕ2) (5.3)

So we must have the boundary conditions

lim
r→∞

g00(r)→ 1 lim
r→∞

g11(r)→ −1 lim
r→∞

g00(r)g11(r)→ −1 (5.4)

12



5 SPACETIME METRIC

For radial motion of the test-body A, the spacetime interval of equation (5.2), becomes

ds2 = g00(r)c
2dt2 + g11(r)dr

2 (5.5)

From the principle of geodesic motion we have

δ

ˆ
ds = 0⇒ δ

ˆ √
gµν

dxµ

dτ

dxν

dτ
dτ = 0⇒ δ

ˆ √
Ldτ = 0 (5.6)

where τ is the proper time.The L may be termed a ‘lagrangian’. Using the relations

ẋµ =
dxµ

dτ
ẋν =

dxν

dτ
(5.7)

the lagrangian L becomes

L = gµν
dxµ

dτ

dxν

dτ
= gµν ẋ

µẋν (5.8)

For radial motion the lagrangian becomes

L = g00c
2

(
dt

dτ

)2

+ g11

(
dr

dτ

)2

(5.9)

From the lagrangian, using the calculus of variation, we obtain the Euler-Lagrange system of equations

d

dτ

(
∂L

∂ṫ

)
− ∂L

∂t
= 0 and

d

dτ

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (5.10)

where

ṫ =
dt

dτ
and ṙ =

dr

dτ

Because the Lagrangian does not depend on time,

∂L

∂t
= 0 (5.11)

Therefore, from equations (5.10) we have
∂L

∂ṫ
= const. (5.12)

So, the term
∂L

∂ṫ
is a conserved quantity. Performing the differentiation in the equation (5.9), using the

fact that the metric function g00(r) doesn’t depend on ṫ and the relation ds2 = c2dτ2, we obtain

∂L

∂ṫ
= 2g00c

2 dt

dτ
= const.⇒ g00

dt

ds
= k0 (5.13)

Equation (5.13) is a well known first integral for the equation of motion of the test-body A,
in the radial direction and states that the body’s energy k0 (per unit mass) is a constant of
the motion. We can have a second first integral for the equation of motion in the radial direction by
dividing the equation (5.5) by the spacetime interval ds2

1 = g00c
2

(
dt

ds

)2

+ g11

(
dr

ds

)2

(5.14)
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5 SPACETIME METRIC

Equation (5.14) is the second first integral for the equation of motion of the test-body A, in
the radial direction and states the invariant relation between energy and momentum (per

unit mass). Eliminating
dt

ds
from the equation (5.14), using the first integral from equation (5.13), we

have

1 =
c2k20
g00

+ g11

(
dr

ds

)2

(5.15)

We define a matrix gνσ as the inverse of gνσ, that is, gνσgκν = δσκ . Because the metric tensor is diagonal
we have gννgνν = 1 and so

g00 =
1

g00
and g11 =

1

g11
(5.16)

Dividing the equation (5.15) by g11 and using the equations (5.16) we have

1

g11
=

c2k20
g00g11

+

(
dr

ds

)2

⇒ g11 = c2k20(g00g11) +

(
dr

ds

)2

(5.17)

Because we assume that g00 and g11 are functions only of r

dg00

ds
=
∂g00

∂r

dr

ds
= g00,r

dr

ds
and

dg11

ds
=
∂g11

∂r

dr

ds
= g11,r

dr

ds
(5.18)

where a comma denotes ordinary differentiation. Using the relations (5.18) we differentiate the equation
(5.17) in respect to s and we obtain the following equation

g11,r
dr

ds
= c2k20

(
g00g11

)
,r
dr

ds
+ 2

dr

ds

d2r

ds2
⇒ d2r

ds2
= −c

2k20
2

(
g00g11

)
,r +

1

2
g11,r (5.19)

Using the relation ds2 = c2dτ2 , we obtain the radial geodesic equation (5.19) in the form,

d2r

dτ2
= −c

4k20
2

(
g00g11

)
,r +

c2

2
g11,r (5.20)

In the equation (5.20) we can see that because of the k0 term, the radial acceleration depends on
the energy which the test-body A had initially, i.e. the radial velocity with which the test-body A was
launched. However, it is well known that the electric force on a charge is strictly independent of the
charge’s velocity [23]. Therefore, the proper acceleration of a charge due to an electric force, for a motion
of the charge along the line of the force, is strictly independent of the charge’s velocity [24]. The same
happens with the gravitational force, because we accept that both forces are described by equations with
the same mathematical form. Therefore, the radial acceleration of the test-body A must also
be independent of the radial velocity with which it was launched.

Thus, in order for the radial acceleration to be indepndent of the energy which the
test-body A had initially, this must be valid:(

g00g11
)
,r

= 0⇒ g00g11 = const. (5.21)

Taking into consideration the boundary conditions (5.4) and the equation (5.16), we obtain

g00g11 = −1⇒ g11 = − 1

g00
⇒ g11 = − 1

g00
(5.22)

So, the line element wich is given from the equation (5.2), can be written as

ds2 = g00(r)c
2dt2 − g00(r)−1dr2 − r2(dθ2 + sin2θdϕ2) (5.23)
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From the equation (5.22), using the equation (5.16), we have

g00g11 = −1⇒ g11 = − 1

g00
⇒ g11 = −g00 (5.24)

So, using the relations (5.21) and (5.24), the radial geodesic equation of motion (5.20),
becomes

d2r

dτ2
= −c

2

2
g00,r (5.25)

The final step in our derivation is to use the principle of consistency and the Newtonian
limit to relate the g00 component of the metric tensor to the gravitational potential of the
spherically symmetric body B centred on the origin. The principle of consistency asserts that a
new theory that aims to replace or supersede earlier theories should account for the successful predictions
of those earlier theories. According to the principle of consistency, in the Newtonian limit, i.e. when
the test-body A moves with nonrelativistic velocity v � c, in a weak and static gravitational field, the
equation (5.25) reduces to the radial equation of motion of the test-body A in Minkowski spacetime,
which is

min−g0
d2r

dt2
= −m∇ϕgB ⇒

d2r

dt2
= − m

min−g0
∇ϕgB (5.26)

where min−g0 is the gravitational inertial rest mass of the test-body A and ϕgB is the gravitational scalar
scalar potential of the body B. So, in the Newtonian limit, by taking into consideration that a comma
denotes ordinary differentiation, from the equations (5.25) and (5.26), this must be valid:

−c
2

2

∂g00
∂r

= − m

min−g0

∂ϕgB
∂r

⇒ ∂g00
∂r

=
2m

c2min−g0

∂ϕgB
∂r

(5.27)

Because we assume that the gravitational inertial rest mass min−g0 of the test body A, is constant during
the radial motion, using the boundary conditions (5.4) we obtain for g00 from the equation (5.27),

g00 = 1 +
2m

c2min−g0
ϕgB (5.28)

and for g11, because of the equation (5.22),

g11 = − 1

1 +
2m

c2min−g0
ϕgB

(5.29)

So, the spacetime interval outside of the body B, from the equation (5.23), becomes

ds2 =

(
1− m

min−g0

2GM

c2r

)
c2dt2 − dr2(

1− m

min−g0

2GM

c2r

) − r2(dθ2 + sin2θdϕ2) (5.30)

In the International system of units the ratio of the gravitational mass to the gravitational
inertial rest mass of the test-body A, is equal to unity and so, the equation (5.30) becomes
the Schwarzschild metric

ds2 =

(
1− 2GM

c2r

)
c2dt2 − dr2

1− 2GM

c2r

− r2(dθ2 + sin2θdϕ2) (5.31)

So, the new theory is in agreement with all the past experiments and observations. In another
area in our Galaxy or in the Universe, the ratio of gravitational to inertial mass is not equal to unity.
There, the phenomena will be the same qualitatively but not quantitatively.
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6 Dark matter and dark energy

6.1 Dark matter

From equation (4.22), which is valid for non relativistic velocities, it follows that the inertial mass of a
star depends on the gravitational scalar potential of the entire Universe, i.e. the inertial mass of a star
depends on the distribution of matter in the Universe. From astronomical observation, we know that the
distribution of matter in the Universe is highly inhomogeneous; there are planets, the sun, stars, galaxies,
clusters of galaxies and so on. So, it seems that the position where a star is located, affects significantly
the inertial mass of the star. In places with higher density of matter the inertial mass of a star will be
greater than the inertial mass of the same star, in a place with lower density of matter. This phenomenon
has been observed, but the inability to explain it has led to the theory that in the Universe most of the
matter is dark matter. It is very likely that the equation (4.22) provides a solution to this problem.

6.2 Dark energy

Let’s consider now the light emitted by an atom, with gravitational mass m and gravitational inertial rest
mass min−g0, at a distance rem from the centre of a star, which is stationary with spherically symmetric
gravitational mass M. From equation (5.30) arises the equation relating the proper time dτem at the point
of emission, with the proper time dτ∞ at infinity where is the point of observation [25]

dτ∞ =
dτem√

1−
2GMm

c2remmin−g0

(6.1)

So, the frequency of light observed by an observer, in the point of observation, will be

f∞ = fem

√
1−

2GMm

c2remmin−g0
(6.2)

The equation (6.2) describes the red shift of spectral lines, which is emitted by an atom in a gravitational
field and is received by a body, which is out of the gravitational field. This phenomenon is known as
gravitational red shift.

As the Universe expands, according to the equation (4.22), the gravitational inertial
rest mass of a star decreases. Thus, the gravitational inertial rest mass of an atom, which
emits light, decreases over time. As it emerges from equation (6.2) the light emitted by
two identical supernovas Ia which move at the same speed in respect to us, at different
moments in the history of the Universe, will have different red shift. Because the atoms in a
younger supernova have smaller gravitational inertial rest mass than the gravitational inertial rest mass
of the atoms in an older supernova, the light emitted by a younger supernova Ia has greater red shift
than the light emitted by an older supernova Ia. This phenomenon has been observed, but the inability
to explain why the red shift of spectral lines is greater, has led to the theory that the Universe expands in
an accelerating way, because of dark energy. It is very likely that the equations (4.22) and (6.2) provide
a solution to this problem.

Conclusions

So, in order for the equilibrium to be a frame-independent condition and the acceleration to be relative,
we have now a theory that describes gravity by equations which have the same mathematical form as
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those of the electromagnetic theory but also has all the features of Einstein’s General theory of relativity
that have been confirmed experimentally. The field equations of gravitomagnetism determine the field
of force, and the curvature of space is a consequence of this field. The mystery with the inertial and
gravitational mass has been solved in a very logical way. All bodies can fall with the same acceleration
in a gravitational field without the two masses having to be equivalent.
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