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Abstract
We consider the equational theory generated by all algebras of languages with the regular op-
erations (union, composition and Kleene star), together with the intersection and mirror image.
Building on results by Andréka, Mikulás and Németi from 2011, we construct the free model
for this algebra. We then adapt the notion of Petri automata, which we introduced with Pous
in 2015 to tackle a similar problem for algebras of binary relations, to provide a procedure to
decide equations over this signature. This allows us to show that testing the validity of equations
in this algebra is ExpSpace-complete.
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1 Introduction

We are interested in algebras of languages, equipped with the constants empty language (0),
unit language (1, the language containing only the empty word), the binary operations
of union (+), intersection (∩), and concatenation (·), and the unary operations of Kleene
star (_?) and mirror image, also called converse, (_N). Given a finite set of variables X, and
two terms e, f built from variables and the above operations, we say that the equation e = f

(respectively inequation e ≤ f) is valid if the corresponding equality (resp. containment)
holds universally. A free model for this algebra is a setM together with a map h from terms
to elements ofM such that e = f is valid if and only if h maps e and f to the same element
ofM.

It is well known that to any term over this syntax, one can associate a regular language,
and that comparing regular languages is decidable. In fact, the problem of comparing regular
expressions with intersection with respect to regular language equivalence is ExpSpace-
compete [11]. The difference with the work presented here is that we are considering equations
that are stable under substitution. For instance, the equation a ∩ b = 0 is not stable under
substitution (one may for instance replace both a and b with 1), but the regular languages
associated with the terms a ∩ b and 0 coincide. What is remarkable however is that testing
the validity of equations in the algebra of languages is still an ExpSpace-complete problem,
as we show in this paper.

Several fragments of this algebra have been studied:
Kleene algebra (KA) [8]: if we restricts ourselves to the operators of regular expressions

(0, 1, +, ·, and _?), then the free model is the set of regular languages, with the usual
definition of the language of an expression. Testing the validity of equations in KA is
thus a PSpace-complete problem [18, 13].
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XX:2 The Algebra of Languages

Kleene algebra with converse (KAC) [3]: if we add to KA the converse operation, then
the free model consists of regular expressions over a duplicated alphabet, with a letter a′
denoting the converse of the letter a. The associated decision problem is still PSpace.

Identity-free Kleene lattices (KL−) [1]: this algebra stems from the operators 0, +, ·, ∩
and _+, where the latter is the non-zero iteration. Andréka Mikulás and Németi studied
this fragment, and showed that the free model for this algebra consists of languages
of series-parallel graphs, downward closed with respect to some graph preorder. We
reformulated their results with Pous [5], and introduced a new class of automata, called
Petri automata, able to recognise these languages of graphs. In that paper we provided
a decision procedure to compare these automata, thus yielding an ExpSpace decision
procedure for the equational theory of this algebra. It is in fact ExpSpace-complete,
thanks to some simple adaptation of a result by Fürer [11].

Following an approach similar to [5], we construct in Section 2 the free model for the
whole algebra of languages, and introducing a new Petri net-based automata model we show
in Section 3 that testing the validity of equations is a decidable problem, and in fact an
ExpSpace-complete one. We conclude and list some perspectives in Section 4.

Basic definitions and notations

For a pair p = 〈x, y〉, we denote by π1 (p) = x the first projection, and by π2 (p) = y the
second projection. The set of function from a set A to a set B is written A→ B, and the set
of partial functions from A to B is written A ⇀ B. The number of elements of a finite set A
is written |A|. The empty word is denoted by ε, and the set of words over the alphabet Σ is
Σ?. If w = x1 . . . xn is a word of length n, w[i, j] is the word xi . . . xj if i 6 j, and undefined
otherwise. If f is a function from some set X to {0, . . . , n}, x, y are elements of X, and
if f (x) 6 f (y), we use the notation wf [x, y] for the word w[f (x) , f (y)].

Let X be a finite set of variables, we define Ȧ := A∪{aN | a ∈ A} for every subset A ⊆ X.
The set Ẋ is called the duplicated alphabet, we let α, β range over Ẋ. Expressions over X
are given by the following grammar:

e, f ::= 0 | 1 | x | eN | e+ f | e · f | e ∩ f | e?. (x ∈ X)

The set of expressions over X is written E 〈X〉. The size of an expression e, written |e|, is
its number of symbols, i.e.the number of vertices in its syntax tree. Most of the time, we
will implicitly assume that the converse operator only appears as xN, with x ∈ X. This
is not restrictive, as every expression can be transformed linearly such that this property
holds. Given a second alphabet Σ, an interpretation is a map σ : X → P (Σ?) that
associates to every variable a a language σ (a). This map can be uniquely extended to a
homomorphism σ̂ : E 〈X〉 → P (Σ?) defined inductively:

σ̂ (0) = ∅ σ̂ (1) = {ε} σ̂ (a) = σ (a) σ̂ (eN) = σ̂ (e)N = {xn . . . x1 | x1 . . . xn ∈ σ̂ (e)}

σ̂ (e+ f) = σ̂ (e) ∪ σ̂ (f) σ̂ (e · f) = σ̂ (e) · σ̂ (f) σ̂ (e ∩ f) = σ̂ (e) ∩ σ̂ (f)

σ̂ (e?) = σ̂ (e)? = {w1 . . . wn | wi ∈ σ̂ (e)} .

We say that e = f (respectively e ≤ f) is valid, and write Lang |= e = f (resp. Lang |= e ≤ f),
when for every interpretation σ, we have σ̂ (e) = σ̂ (f) (resp. σ̂ (e) ⊆ σ̂ (f)).

It is interesting to note that as decision problems, the validity of equations and that of
inequations are equivalent. Indeed, the following equivalences hold:

Lang |= e = f ⇔ Lang |= e ≤ f ∧ Lang |= f ≤ e Lang |= e ≤ f ⇔ Lang |= e+ f = f.
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G (a) := a

G (a · b) := a b

G ((a · b) ∩ c) :=
a b

c

G (a · (b ∩ c)) := a b

c

Figure 1 Graphs associated to terms.
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Figure 2 Graph homomorphism.

2 The free model of the algebra of languages

2.1 Intuitions

First introduced in the context of relation algebra [2, 10], directed labelled 2-pointed graphs
can be used to describe the algebra of languages over the signature 〈·,∩〉. First, we associate
to every term over this signature such a graph. See Figure 1 for examples. Such graphs are
equipped with a preorder: G is smaller than H if there is a graph homomorphism from H

to G. Such a homomorphism is illustrated in Figure 2, with dotted arrows.
Already, this gives us a clue as to the (in)equational theory: the inequation u ≤ v is valid

if and only if G (u) is smaller than G (v). If we now move to identity-free Kleene lattices,
i.e. to the signature 〈0,+, ·,∩,_+〉, we associate to every term e a set G (e) of such graphs,
and then take its downward closure G (e) ↓ with respect to the homomorphism preorder.
This gives us the free model for this algebra, as the equation e = f is valid if and only
if G (e) ↓ = G (f) ↓.

To move from identity free Kleene lattices to what we call the algebra of languages, two
steps are necessary: we need to add the converse, and to add the constant 1. The first
step is somewhat straightforward, thanks to results by Ésik et al. [3]: they showed that the
free algebra of languages with the regular operations together with converse is simply the
set of regular languages over a duplicated alphabet, where we add for every letter a new
letter representing its converse. This approach works well in our setting, by consider graphs
labelled with the duplicated alphabet.

For the second step, we draw our inspiration from Lemma 3.4 in [1], that established
that every term in E 〈X〉 is equivalent to a finite sum of terms of the form (1 ∩ a ∩ b . . .) · e,
where a, b, · · · ∈ X are letters, and 1 does not appear in e. For every interpretation
σ : X → P (Σ?), if there is some variable x ∈ {a, b, . . . } such that ε /∈ σ (x), then the
interpretation of 1 ∩ a ∩ b ∩ . . . is ∅. Otherwise, if the empty word is in the interpretation of
each of the a, b, . . . , then the interpretation is {ε}. If we now look at the interpretation of
the whole term, this means that:

σ̂ ((1 ∩ a ∩ b ∩ . . .) · e) =
®
σ̂ (e) if ∀x ∈ {a, b, . . . } , ε ∈ σ (x) ;
∅ otherwise.

Consider now an inequation f1 ≤ f2, where fi = (1 ∩ ai,1 ∩ · · · ∩ ai,ni
) · ei for i ∈ {1, 2}.

If there exists a variable x ∈ {a2,1, . . . , a2,n2} \ {a1,1, . . . , a1,n1}, consider the following
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a b

a c

a c

b

H :

G :

Figure 3 Weak graph morphism: 〈G, {a}〉 J 〈H, ∅〉

interpretation:

σ (a) =
®
∅ a = x

{ε} otherwise.

It is easy to see that the image of f1 by σ̂ will be {ε}1, and that the image of f2 will
be ∅, hence the inequation is not valid. Thus for the inequation to be valid, we need that
{a2,1, . . . , a2,n2} ⊆ {a1,1, . . . , a1,n1}. Furthermore, for every σ such that there is an a1,i
whose interpretation does not contain the empty word, the image of f1 will be ∅, which is
trivially contained in the image of the f2. We reach the following equivalence: f1 ≤ f2 is
valid if and only if (1) {a2,1, . . . , a2,n2} ⊆ {a1,1, . . . , a1,n1} and (2) for every interpretation
σ such that the empty word is in the interpretation of every a1,j , we have σ̂ (e1) ⊆ σ̂ (e2).
This means that we need to compare 1-free expressions under the assumption that certain
variables contain the empty word.

This is the intuitions behind what we call weak graphs. Weak graphs are pairs of a graph
and a set of test variables. They are equipped with a preorder relation J, that relates 〈G,A〉
and 〈H,B〉 if B ⊆ A and there is a map ϕ from H to G such that every edge labelled outside
of A is preserved, but edges labelled with tests in A are either preserved or contracted. Such
a map is shown in Figure 3.

We then have theorems similar to those for identity free Kleene lattices and series
parallel graphs, in the sense that for every pair of terms u, v over the syntax 〈·,∩, 1,_N〉,
if we denote by WG (u) ,WG (v) their associated weak graphs, u ≤ v is valid if and only if
WG (u) JWG (v). Furthermore, if we associate to every expression e in E 〈X〉 a downwards
closed set of weak graphs JJeK, the equation e = f is valid if and only if JJeK = JJfK.

2.2 Weak terms
We define the following two sets of terms over the alphabet X:
Ground terms: u, v ∈ GT 〈X〉 ::= 1 | a | aN | u · v | u ∩ v.
Simple ground terms: u, v ∈ GT− 〈X〉 ::= a | aN | u · v | u ∩ v.

We call the variables of the term u, and write v (u), the set of variables a ∈ X such that
a or aN appears in u. We call weak terms the elements of the set (GT− 〈X〉 ∪ {1})× P (X),
that is simple ground terms or 1 indexed with a set of test variables. The set of weak terms
is written WT 〈X〉. This set is equipped with two products, denoted by • and ‖, defined as
follows:

1A • 1B := 1A∪B 1A • uB = uA • 1B := uA∪B uA • vB := (u · v)A∪B

1A ‖ 1B := 1A∪B 1A ‖ uB = uA ‖ 1B := 1A∪B∪v(u) uA ‖ vB := (u ∩ v)A∪B .

1 Here we implicitly assume that f1 is not equivalent to 0.
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Given an interpretation σ : X → P (Σ?), the interpretation σ̃ (uA) of the weak term uA
is either ∅ if ∃a ∈ A : ε /∈ σ (a), or σ̂ (u) otherwise. We define a translation τ from ground
terms to weak terms:

τ (u · v) := τ (u) • τ (v) τ (u ∩ v) := τ (u) ‖ τ (v) ∀u ∈ {1} ∪ Ẋ, τ (u) := u∅.

This translation is faithful, in the sense that the following holds:

I Lemma 1. ∀u ∈ GT 〈X〉 ,∀σ : X → P (Σ?) , σ̂ (u) = σ̃ ◦ τ (u) .

Proof (Sketch). The proof relies on the fact that for every pair of weak terms x, y we have:

σ̃ (x • y) = σ̃ (x) · σ̃ (y) σ̃ (x ‖ y) = σ̃ (x) ∩ σ̃ (y) .

We then conclude by a simple induction on u. For concision, the full proof is omitted here. J

We can also define a converse translation κ : WT 〈X〉 → GT 〈X〉 that associate to a weak
term u{a1,...,an} the ground term (1 ∩ a1 ∩ · · · ∩ an) · u. It is immediate to check that for
every term x ∈WT 〈X〉 and every interpretation σ we have σ̃ (x) = σ̂ ◦ κ (x).

2.3 Weak graphs
A graph G in our setting is a tuple 〈VG, EG, iG, oG〉, where VG is a finite set of vertices,
EG ⊆ VG × Ẋ × VG is a set of labelled and directed edges, and iG, oG ∈ VG are two vertices,
called the input and output of the graph. Term graphs must further be series parallel, iG
must be the unique source vertex (i.e. with no incoming edge), and oG the unique sink
vertex (i.e. with no outgoing edge). We let G,H range over graphs. Term graphs can be
sequentially composed, by identifying the output of the first graph with the input of the
second one, or composed in parallel, by identifying the inputs of both graphs and identifying
theirs outputs. These two compositions are respectively denoted by ; and |. The set l (G) of
labels of a graph G is defined as the set of letters a ∈ X such that there is an edge in EG
labelled with either a or aN.

The graph of a simple ground term u, written G (u), is a term graph defined inductively:

G (α) :=
α

G (u · v) := G (u) ;G (v) G (u ∩ v) := G (u) | G (v) .

We define the graph 1 as . Notice that it is not a term graph, as it is not
series parallel. We call weak graph a pair whose left part is either a term graph or 1, and
whose right part is a set of test variables. We denote the weak graph 〈G,A〉 by GA. For
every weak term x we associate a weak graph WG (x) as one would expect:

WG (1A) := 1A WG (uA) := G (u)A .

The weak graph GA is smaller than HB , written GA J HB , if B ⊆ A and there exists a
function ϕ : VH → VG such that ϕ (iH) = iG, ϕ (oH) = oG, and for every edge 〈x, α, y〉 in
EH , either 〈ϕ (x) , α, ϕ (y)〉 ∈ EG or α ∈ Ȧ and ϕ (x) = ϕ (y). The relation J is a preorder.
We will show in the next section that for any two ground terms u and v, the following holds:

Lang |= u ≤ v ⇔WG (τ (u)) JWG (τ (v)) .

The first important lemma is the following. It is a generalisation of [1, Lemma 2.5].

I Lemma 2. ∀u ∈WT 〈X〉, there exists a word wu and an interpretation σu such that for
every v ∈WT 〈X〉, wu ∈ σ̃u (v)⇔WG (u) JWG (v).
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Proof. Let WG (u) = 〈〈Vu, Eu, iu, ou〉 , A〉. Let and µ : Vu → {1, . . . , |Vu|} be a bijective
map such that 〈x, α, y〉 ∈ Eu ⇒ µ (x) < µ (y)2. In particular, µ (iu) = 1 and µ (ou) = |Vu|.
Let n = 2× (|Vu| − 1), and Σu an alphabet composed of n distinct letters x1, . . . , xn.

We define wu = x1x2 . . . xn, and f : Vu → {0, . . . , n} such that f (x) = 2 (µ (x)− 1).
Notice that f (iu) = 0 and f (ou) = n. We now define σu:

σu (a) :=


{
wfu[x, y]

∣∣ 〈x, a, y〉 ∈ Eu} ∪ ¶wfu[x, y]N
∣∣∣ 〈x, aN, y〉 ∈ Eu© ∪ {ε} if a ∈ A{

wfu[x, y]
∣∣ 〈x, a, y〉 ∈ Eu} ∪ ¶wfu[x, y]N

∣∣∣ 〈x, aN, y〉 ∈ Eu© if a /∈ A

Notice that for every α ∈ Ẋ, ε ∈ σ̂u (α)⇔ α ∈ Ȧ, and that if x 6= y then wfu[x, y] ∈ σ̂u (α) if
and only if 〈x, α, y〉 ∈ Eu.

Let v = tB ∈ WT 〈X〉. First, suppose that ∃a ∈ B \ A. We know that ε /∈ σu (a),
meaning that σ̃u (v) = ∅. We also know by definition of J that WG (u) 6JWG (v). Thus the
equivalence holds, as both sides are false. In the following, we thus assume that B ⊆ A.

If t = 1, then σ̃u (v) = {ε}. This means that wu ∈ σ̃u (v) if and only if wu = ε. By
definition, this is equivalent to n = 0, which is again equivalent to |Vu| = 1 thus to u = 1A.
It is not hard to check that the only graph G such that GA J 1B is 1 itself, thus proving the
desired equivalence.

The other case is when t is a simple ground term. Then an induction much like in the
proof of [1, Lemma 2.5] allows to conclude. We omit this part of the proof here. J

The other important lemma is a generalisation of [1, Lemma 2.3].

I Lemma 3. For every simple ground term u, every interpretation σ : X → P (Σ?), and
every word w ∈ Σ? of length n:

w ∈ σ̂ (u)⇔ ∃ϕ : Vu → {0, . . . , n} :
®
ϕ (iu) = 0 ∧ ϕ (ou) = n

x, α, y ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α) .

It can be proved by a simple induction on u; for concision, we omit this proof.

2.4 Freeness results
We can now establish our first freeness result:

I Theorem 4. ∀x, y ∈ GT 〈X〉, WG (τ (x)) JWG (τ (y))⇔ Lang |= x ≤ y.

Proof. The statement of the theorem is equivalent to the following, thanks in part to
Lemma 1: ∀x, y ∈ WT 〈X〉 ,WG (x) J WG (y) ⇔ ∀Σ,∀σ : X → P (Σ?) , σ̃ (x) ⊆ σ̃ (y). We
let x = uA and y = vB , and proceed to prove both implications.

Suppose WG (x) J WG (y), let σ be an interpretation, and w a word of length n. The
case of 1 being trivial, we consider here the case where both u and v are simple ground
terms. Assume w ∈ σ̃ (x), then we need to prove that w ∈ σ̃ (y). First notice that because
σ̃ (x) 6= ∅ it must be the case that ∀a ∈ A, ε ∈ σ (a). By Lemma 3, we have a function
ϕ : Vu → {0, . . . , n} such that ϕ (iu) = 0, ϕ (ou) = n, and 〈x, α, y〉 ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α).
By definition of J, we also have a function ψ : Vv → Vu such that ψ (iv) = iu, ψ (ov) = ou,
and for every edge 〈x, α, y〉 in Ev, either ψ (x) , α, ψ (y) ∈ Eu or α ∈ Ȧ and ψ (x) = ψ (y).
We define Φ = ϕ ◦ ψ. Now we may check that Φ (iv) = ϕ (iu) = 0; Φ (ov) = ϕ (ov) = n; and
if 〈x, α, y〉 ∈ Ev, then either

2 Remember that both term graphs and 1 are directed acyclic graphs.
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〈ψ (x) , α, ψ (y)〉 ∈ Eu, which means wΦ[x, y] = wϕ[ψ (x) , ψ (y)] ∈ σ̂ (α);
or α ∈ Ȧ and ψ (x) = ψ (y), which entails wΦ[x, y] = ε ∈ σ̂ (α).

Using Lemma 3 again, we get that w ∈ σ̂ (v). Because B ⊆ A, we also have that σ̃ (y) = σ̂ (v).
Hence σ̃ (x) ⊆ σ̃ (y).

For the converse, we now assume that WG (x) 6JWG (y). Using Lemma 2, we know that
wx ∈ σ̃x (x) and that wx /∈ σ̃x (y). This proves that σ̃x (x) 6⊆ σ̃x (y). J

We define the set of weak terms JeK of an expression e by structural induction:
J0K := ∅ J1K := {1∅} JαK := {α∅} Je+ fK := JeK ∪ JfK

Je · fK := {u • v | u ∈ JeK ∧ v ∈ JfK} Je ∩ fK := {u ‖ v | u ∈ JeK ∧ v ∈ JfK}

Je?K := {u1 • · · · • un | n > 0 ∧ ∀0 6 i 6 n, ui ∈ JeK}

The downward closure JS of a set of weak terms S is the set of weak terms x such that
there exists a weak term y ∈ S satisfying WG (x) J WG (y). The function J is a closure
operator. The set of downward closed sets of weak terms is the free model for the full algebra
of languages:
I Theorem 5. ∀e, f : JJeK ⊆ JJfK⇔ Lang |= e ≤ f .
Proof. We use the fact that for every interpretation σ,

σ̂ (e) =
⋃
u∈JeK

σ̃ (u) =
⋃

u∈JJeK

σ̃ (u) .

This can be proved using [1, Lemma 2.1], and Lemmas 1 and 2 and Theorem 4.
Suppose JJeK ⊆ JJfK, and let σ be an interpretation.

σ̂ (e) =
⋃

u∈JJeK

σ̃ (u) ⊆
⋃

u∈JJfK

σ̃ (u) = σ̂ (f) .

For the converse, suppose JJeK 6⊆ JJfK. Because J is a closure operator, this means
JeK 6⊆ JJfK. Let u ∈ JeK \ JJfK. By Lemma 2, we have wu ∈ σ̃u (u) ⊆ σ̂u (e), but because
u /∈ JJfK, for every v ∈ JfK, we have WG (u) 6J WG (v) thus wu /∈ σ̃u (v). Hence wu is not
in the set

⋃
v∈JfK σ̃u (v) = σ̂u (f). J

3 Decidability and complexity of the algebra of languages

To decide the equational theory of identity-free Kleene lattices, we used Petri automata. This
was a new style of automaton, that was designed to recognise sets of series parallel graphs.
We modify this model slightly to recognise weak graphs, provide a construction to build
automata out of expressions, and an algorithm to decide language containment (up-to closure
by J) for these automata. This algorithm itself is inspired by the simulation algorithm for
simple Petri automata. We conclude this section by showing that the problem is complete of
the class ExpSpace.

3.1 Weak Petri automata
A weak Petri automaton is a Petri automaton [5, 4] whose transitions are labelled with sets
of letters3. Formally, an automaton A over the finite alphabet X is a triple 〈P, T, ι〉 where P

3 In the following, we use the definitions from [4]. They differ slightly from those from [5], despite being
overall equivalent.
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Figure 4 Weak Petri automaton.
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Figure 5 A run R in the automaton of Figure 4.
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AR = {a} .

Figure 6 Trace of R.

is a finite set of places, ι ∈ P is the initial place, and T ⊆ P (P )× P (X)× P
(
Ẋ × P

)
is a

set of transitions. Each transition t ∈ T is composed of three parts: its input ▹t ⊆ P , its set
of tests Êt ⊆ X, and its output t▹ ⊆ Ẋ × P . It will also be useful to write π2 (t▹) for the set
of output places of t, i.e.

{
p ∈ P

∣∣ ∃α ∈ Ẋ : 〈α, p〉 ∈ t▹
}
. The transition t is called final if

t▹ = ∅, and initial if ▹t = {ι}.
We will add a few constraints on this definition along the way, but we need more

definitions to state them. An example of such an automaton is depicted in Figure 4. The
graphical representation used here draws round vertices for places and rectangular vertices
for transitions, with the incoming and outgoing arcs to and from the transition corresponding
respectively to the inputs and outputs of said transition. The set of tests of a transition is
written inside the rectangle. The initial place is denoted by an unmarked incoming arc.

Runs and reachable states.

We define the operational semantics of weak Petri automata. Let us fix for the remainder of
this section an automaton A = 〈P, T, ι〉. A state of this automaton is a set of places. In a
given state S ∈ P (P ), a transition t is enabled if ▹t ⊆ S. In that case, we may fire t, leading
to a new state S′ = (C \ ▹t) ∪ π2 (t▹). This will be denoted in the following by S t−−→A S

′.
We extend this notation to sequences of transitions in the natural way:

S0
t1−−→A S1 S1

t2;...;tn−−−−−−→A Sn

S0
t1;t2;...;tn−−−−−−−→A Sn

In that case we say that 〈S0, t1; t2; . . . ; tn, Sn〉 is a valid run, or simply run, from S0 to Sn.
If S0 = {ι} then the run is initial and if Sn is empty then it is final. A run that is both
initial and final is called accepting. An accepting run of the automaton from Figure 4 is
depicted in Figure 5. A state S is reachable in A if there is an initial run leading to S.

We may now state the first two constraints we impose on automata: if S is reachable
in A and S

t−−→A S
′, then (S \ ▹t) ∩ π2 (t▹) = ∅, and for each transition t ∈ T , and every

triple 〈p, α, β〉 ∈ P × Ẋ × Ẋ, we have: {〈α, p〉 , 〈β, p〉} ⊆ t▹ ⇒ α = β. These constraints
correspond to the classic Petri net property of safety, also called one-boundedness.
I Remark. These constraints are decidable: the set of transitions is finite, and because
reachable states are subsets of a fixed finite set, there are only finitely many. Thus checking
whether an automaton satisfies these two requirements only entails a finite number of tests.
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We introduce some attributes of a run R: its input IR, its output OR, its excess ER,
its tests AR, and its internal labels ΛR. Let R = S0

t1−−→A S1 . . .
tn−−→A Sn be a valid run

in some automaton A. IR is the set of tokens (places) in S0 that are consumed during the
run; ER is the rest of the tokens from S0, those that are not moved; ΛR is the set of labels
appearing in some t▹i such that the associated token is consumed later on; AR is the union of
the sets of tests of R’s transitions; and OR is the set of outputs that are not consumed in
the remainder of the run. Formally:

IR := {p ∈ S0 | ∃i : p ∈ ▹ti} OR :=
¶
〈α, p〉

∣∣∣ ∃i : 〈α, p〉 ∈ t▹i ∧
Ä
∀j > i, p /∈ ▹tj

ä©
AR :=

⋃
i

Êti ER := S0 \ IR ΛR :=
¶
α
∣∣∣ ∃p,∃i < j : 〈α, p〉 ∈ t▹i ∧ p ∈ ▹tj

©
.

In the example run of Figure 5, we have IR = {1}, ER = ∅, OR = ∅, AR = {a},
and ΛR = {a, b, c}.

Traces

The trace language of an automaton can be obtained by extracting from every accepting
run a weak graph, called its trace. Consider an accepting run 〈{ι} , t0; . . . ; tn, ∅〉. The graph
of its trace is constructed by creating a vertex k for each transition tk of the run. We add
an edge 〈k, a, l〉 whenever there is some place q such that 〈a, q〉 ∈ t▹k, and tl is the first
transition after tk in the run with q among its inputs. The set of tests of the trace is AR.
The trace of the run in Figure 5 is presented in Figure 6. The definition we give below is a
generalisation for arbitrary valid runs, that coincides with the informal presentation we just
gave on accepting runs.

Let R = 〈S, t0; . . . ; tn, S′〉 be a run in A. For every k and p ∈ π2 (t▹k), we define

ν (k, p) = {l | l > k and p ∈ ▹tl} .

The trace of R, denoted by G (R), is the pair 〈GR, AR〉, where GR has vertices VR =
{0, . . . , n} ∪ S′ and edges defined by:

ER = {〈k, a, l〉 | 〈a, p〉 ∈ t▹k and (p = l ∧ ν (k, p) = ∅) ∨ (l = min (ν (k, p)))} .

The language L (A) of an automaton A is the set of traces of accepting runs of A. In the
following, we will only consider automata such that if 〈G,A〉 ∈ L (A), then either G is either
isomorphic to 1 or is a term graph: that is, if GA is a weak graph.

3.2 From expressions to automata
In this section, we show how to build inductively from an expression e an automaton Ae such
that JeK = L (Ae). This construction is again quite similar to the one we used in [4].

For 0, 1 and atoms, we give a graphical description of the automata:

A0 := 0 A1 := 0 ∅ Aα := 10 ∅∅
α

For the inductive cases, let Ae = 〈Pe, Te, ιe〉 and Af = 〈Pf , Tf , ιf 〉, and suppose Pe ∩ Pf = ∅.
Intuitively, the automaton for e+ f is the union of Ae and Af , where we copy the initial

transitions of Af so that they start from ιe instead of ιf . Formally:

Ae+f = 〈Pe ∪ Pf , Te ∪ Tf ∪ T, ιe〉 , where T =
¶¨
{ιe} ,Êt, t▹∂ ∣∣∣ ¨{ιf} ,Êt, t▹∂ ∈ Tf© .
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For the product, we want an automaton Ae·f such that L (Ae·f ) = L (Ae) • L (Af ). This
property is satisfied by the automaton 〈Pe ∪ Pf , T+

e ∪ Tf ∪ T, ιe〉 where T+
e is the set of

non-final transitions in Te, and T = {〈▹t, A ∪B, t▹〉 | 〈▹t, A, ∅〉 ∈ Te ∧ 〈{ιf} , B, t▹〉 ∈ Tf}.
Instead of defining directly an automaton for e?, we give an automaton for the non-zero it-

eration e+, and then define Ae? to be A1∪e+ . Using the last two constructs, the automaton Ae+

is easy to define: Ae+ = 〈Pe, Te ∪ {〈▹t, A ∪B, t▹〉 | 〈▹t, A, ∅〉 ∈ Te ∧ 〈{ιe} , B, t▹〉 ∈ Te} , ιe〉.
Finally, we then define Ae∩f to be the automaton 〈Pe ∪ Pf ∪ {ι} , T1 ∪ T2 ∪ T3 ∪ T4, ι〉,

where ι is a fresh place, and:
T1 is the set of non-initial, non-final transitions of Te and Tf ;
T2 is the set of triples

¨
{ι} ,Át1 ∪ Át2, t▹1 ∪ t▹2∂ such that t1 (respectively t2) is initial but

not final in Te (resp. Tf );
T3 is the set of triples

¨
▹t1 ∪ ▹t2,Át1 ∪ Át2, ∅∂ such that t1 (respectively t2) is final but not

initial in Te (resp. Tf );
T4 is the set of triples 〈{ι} , A, ∅〉 such that 1A ∈ Je ∩ fK.

This is well defined because {A ⊆ X | 1A ∈ JeK} can be computed in space O
(
|e| × 2|X|

)
.

Using the proofs for Petri automata as a guideline, it is a simple exercise to check that the
correction of the construction, that is L (Ae) = JeK.

3.3 Comparing automata

The algorithm to compare weak Petri automata relies on the notion of simulation. Similarly
to many finite transition systems, the language of an automaton A is included in that of the
automaton B if B can simulate A.

I Definition 6 (Simulation). Let A1 = 〈P1, T1, ι1〉 and A2 = 〈P2, T2, ι2〉 be two automata, we
say that A2 can simulate A1 if there exists a function 4 associating to every subset of X a
set of triples from P (P1)× P (X)× P (P2 ⇀ P1), such that: (We denote the fact that the
triple 〈S,B,E〉 is contained in the image by 4 of the set A by S 4BA E.)
(correspondence) if S 4BA E and η ∈ E then range (η) ⊆ S;
(initialisation) {ι1} 4∅A {[ι2 7→ ι1]};
(totality) if ∅ 4AA E then ∃η ∈ E : dom (η) = ∅;

(progress) if S 4BA E and S t−−→A1 S
′, then S′ 4B∪ÊtA E′, where E′ is the set of all η′ such

that there is a map η in E, and a run R in A2 from dom (η) to dom (η)′ s.t.:

IR = {p | η (p) ∈ ▹t} ΛR ∪AR ⊆ Ȧ ∀ 〈α, p〉 ∈ OR, 〈α, η′ (p)〉 ∈ t▹

∀p ∈ ER, η (p) = η′ (p) .

I Lemma 7. L (A1) ⊆ JL (A2) if and only if there exists a simulation between A1 and A2.

Proof. We start by showing the right to left direction: suppose that there is a simulation
function 4 between A1 and A2, and consider an accepting run R = 〈S0, t1; . . . ; tn;Sn〉 in A1:

S0 = {ι1} ∀1 6 i 6 n, Si−1
ti−−→A1 Si Sn = ∅.

We write Bi =
⋃
j<i
Átj . Using the relations 4Bi

AR
, we can find a sequence of Ei (for 0 6 i 6 n)

such that Si 4Bi

AR
Ei, E0 = {[ι2 7→ ι1]}, and there is some ηn ∈ En that has an empty domain.

Backtracking from this ηn using the progress condition allows us to find a sequence of maps
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(ηi)06i6n, with domains (Ti)06i6n such that there are valid runs Ri in A2 from Ti−1 to Ti,
and satisfying:

T0 = {ι2} Tn = ∅ IRi = {p | ηi−1 (p) ∈ ▹ti} ΛRi ∪ARi ⊆ ȦR

∀ 〈α, p〉 ∈ ORi
, 〈α, ηi (p)〉 ∈ t▹i ∀p ∈ ERi

, ηi−1 (p) = ηi (p) .

We now build the run R′ by concatenating the Ris. We obtain an accepting run in A2, whose
set of tests is

⋃
iARi

⊆ AR. To any transition t′j in R′, the function ϕ associates the index i of
the run Ri from which this transition was extracted. The function ϕ witnesses G (R) J G (R′).

For the converse direction, we prove an intermediary result. Let R = 〈S0, t1; . . . ; tn, Sn〉
be an accepting run in A1 and R′ be an accepting run from A2 such that G (R) J G (R′),
with ϕ as the witnessing function. Notice that if the transition t′i is a cause of t′i+1 in R′
(i.e. they cannot be exchanged without changing the trace), either ϕ (i) = ϕ (i+ 1), or tϕ(i)
is a cause of tϕ(i+1) in R, thus ϕ (i) < ϕ (i+ 1). This means that we may permute transitions
in R′ without changing the trace, to obtain a run R′′ such that i < j ⇒ ϕ (i) 6 ϕ (j).

Now, the sets of transitions sharing the same value ϕ (i) are contiguous, meaning that
R′′ can be split as the sequence of sub-runs R1; . . . ;Rn, such that ϕ maps every transitions
in Ri to i. (It may be the case that some of these runs are empty.) As G (R) J G (R′′), we
know that AR′′ ⊆ AR, which means that ∀i, ARi

⊆ AR. Inside the run Ri, we know that the
internal edges of the graph of Ri are labelled with letters from AR, as both their extremities
are mapped to ϕ (i). This means ΛRi ⊆ ȦR.

We know define the ηi. First, we set η0 (ι2) = ι1, and ∀p ∈ ERi+1 , ηi+1 (p) = ηi (p). If on
the other hand 〈α, p〉 ∈ ORi+1 , let j = νR′′ (p, i+ 1). We know that ϕ (j) > ϕ (i+ 1), as j
cannot be in Ri+1. Thus, in the graph of R there is an edge 〈ϕ (i+ 1) , α, ϕ (j)〉. By definition
of the graph of a run, there must be a pair 〈α, q〉 ∈ t▹ϕ(i+1) such that νR (q, ϕ (i+ 1)) = ϕ (j).
Then this q is a suitable choice for ηi+1 (p).

It is then a simple matter of unfolding the definitions to check that:

IRi
= {p | ηi−1 (p) ∈ ▹ti} ∀ 〈α, p〉 ∈ ORi

, 〈α, ηi (p)〉 ∈ t▹i ∀p ∈ ERi
, ηi−1 (p) = ηi (p) .

This means that whenever we have R and R′ accepting runs from respectively A1 and A2
s.t. G (R) J G (R′), we can find a sequence of ηi satisfying all four conditions of a simulation.
Thus, if L (A1) ⊆ JL (A2), for every reachable state S of A1, we set 4BA to relate S to the
set of all maps η such that there is an index i, an accepting run R in A1, and an accepting
run R′ of A2 satisfying (1) AR = A, (2)

⋃
j<i
Átj = B, (3) S = Si, (4) G (R) J G (R′) and

(5) the construction we just provided produces ηi = η. J

3.4 Complexity
I Corollary 8. The validity of equations in the algebra of languages is ExpSpace-complete.

Proof. The equational theory of identity-free Kleene lattices being already ExpSpace-
complete [7, Proposition 10.2], we know the problem at hand to be ExpSpace-hard.

Let e, f ∈ E 〈X〉. We want to check whether Lang |= e ≤ f . By Lemma 5, this
reduces to asking if JJeK ⊆ JJfK. The properties of the closure operator allow us to change
this into JeK ⊆ JJfK. Using the construction in Section 3.2, this is equivalent to asking
if L (Ae) ⊆ JL (Af ). This later question can be decided by looking for a simulation function,
thanks to Lemma 7.

We now inspect the space complexity of this method. Let n,m, x be respectively the size
of e, the size of f and the size of the alphabet. By analysing each step in Section 3.2, we get
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that the number of places of Ae is less than 2×n (similarly for Af ). The number of transitions
is harder to work out from the construction, but because T ⊆ P (P )×P (X)×P

(
Ẋ × P

)
,

we know it is bounded by 22n+x+2x×2n. Using Savitch’s theorem [21], we only need to show
that there is a non-deterministic semi-algorithm to refute the existence of a simulation, that
uses only exponential space in n,m and x. Here is such a procedure:
1. choose A ⊆ X;
2. start with S = {ι1}, B = ∅ and E = {[ι2 7→ ι1]};
3. if 〈S,B〉 = 〈∅, A〉 and E does not contain a map η whose domain is empty return False;
4. choose t ∈ T1 such that ▹t ⊆ π1 (S);
5. fire t from S, and update B as Êt ∪B;
6. update E according to the progress condition in Definition 6;
7. go to step 3.
All of these computations can be performed using exponential space. For instance, S, being a
pair of a set of places in Ae and a set of letters, can be stored in space 2n log (2n)× x log (x),
and E only needs space (2n+ 1)2m × 2m log (2n+ 1). J

4 Conclusion

We showed that the free model for the algebra of languages consists of downward closed
sets of weak terms, or equivalently of downward closed sets of weak graphs. By considering
a suitable variation of Petri automata, and producing an algorithm to decide language
containment of these automata, we showed that testing the validity of equations in the
algebra of languages is an ExpSpace-complete problem.

The results we obtained here could be naturally extended in a number of ways.
We would like to add to our model some features of programming languages that have
been studied independently, among which tests [15], and nominal structures [12, 17, 16, 6].
Although Kleene algebra is known not to be finitely axiomatisable [19], several authors
have proposed semi-axiomatisations [14, 8, 20]. A complete axiomatisation of Kleene
algebra with converse, relative to an axiomatisation of KA, is also known [9]. As far
as we know, no axiomatisation of the algebra of languages as considered in this paper
exists. We believe the free algebra we defined in Section 2 could help finding, and proving
correct, such an axiomatisation.
Since we provide here an algorithm, it would be interesting to implement it. Such a
procedure could fit in very well in a proof assistant such as Coq.

Although the weak Petri automata introduced in this paper were just a means to an end,
we are wondering whether this might be an interesting model of computation in itself. We
are confident that we could reuse to technology of boxes introduced in [7, 4] to get a Kleene
theorem for these automata. Their semantics could also be reformulated with transitions
labelled with weights chosen from a finite lattice (instead of sets of letters from the alphabet).
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A Restriction of the use of converse

We define the following mutually recursive functions:

b0c = 0 b1c = 1 bac = a be+ fc = bec+ bfc be · fc = bec · bfc

be ∩ fc = bec ∩ bfc be?c = bec? beNc = dee

d0e = 0 d1e = 1 dae = aN de+ fe = dee+ dfe de · fe = dfe · dee

de ∩ fe = dee ∩ dfe de?e = dee? deNe = bec

By a simple induction, one can check that Lang |= e = bec, that |bec| 6 2× |e|, and that in
the expression bec the converse only appears applied to variables.

B Omitted proof: Lemma 1

I Lemma 9. ∀σ, ∀u ∈ GT− 〈X〉 , (∀a ∈ v (u) , ε ∈ σ (a))⇔ ε ∈ σ̂ (u).

Proof. If u ∈ {a, aN} then v (u) = {a}, and because ε = εN we have:

(∀a ∈ v (u) , ε ∈ σ (a))⇔ ε ∈ σ (a) = σ̂ (a)⇔ ε ∈ σ̂ (aN)

On the other hand, notice that ε ∈ σ̂ (u · v)⇔ ε ∈ σ̂ (u ∩ v)⇔ ε ∈ σ̂ (u) ∧ ε ∈ σ̂ (v). By
induction, this is equivalent to ∀a ∈ v (u)∪ v (v) , ε ∈ σ (a), which allows us to conclude since
we have v (u · v) = v (u ∩ v) = v (u) ∪ v (v). J

I Lemma 10. σ̃ (x • y) = σ̃ (x) · σ̃ (y) and σ̃ (x ‖ y) = σ̃ (x) ∩ σ̃ (y) .

Proof. Let x = uA and y = vB .
1. If u = 1

a. If v = 1 : then x • y = x ‖ y = 1A∪B. If there is a ∈ A such that ε /∈ σ (a), then
σ̃ (x) = ∅ = σ̃ (1A∪B), and σ̃ (x) · σ̃ (y) = σ̃ (x)∩ σ̃ (y) = ∅. Similarly when there exists
some b ∈ B such that ε /∈ σ (b).
If on the other hand for every a ∈ A ∪ B we have ε ∈ σ (a), then σ̃ (x) = σ̃ (y) =
σ̃ (1B) = σ̃ (1A∪B) = {ε}, thus σ̃ (x) · σ̃ (y) = σ̃ (x) ∩ σ̃ (y) = {ε}.

b. If v 6= 1 : x • y = vA∪B , and x ‖ y = 1A∪B∪v(v).
if ∃a ∈ A : ε /∈ σ (a) then σ̃ (x) = σ̃ (x • y) = σ̃ (x ‖ y) = ∅, and furthermore
σ̃ (x) · σ̃ (y) = σ̃ (x) ∩ σ̃ (y) = ∅;
similarly if ∃b ∈ B : ε /∈ σ (b);
otherwise, σ̃ (x • y) = σ̂ (v) = {ε} · σ̂ (v) = σ̃ (x) · σ̃ (y);

furthermore, if ∃a ∈ v (v) : ε /∈ σ (a), then by Lemma 9 we have ε /∈ σ̂ (v), which
means that σ̃ (x) ∩ σ̃ (v) = {ε} ∩ σ̂ (v) = ∅ = σ̃ (x ‖ v),
finally, in the last case, Lemma 9 tells us that ε ∈ σ̂ (v), thus that σ̃ (x)∩ σ̃ (v) =
{ε} ∩ σ̂ (v) = {ε} = σ̃ (x ‖ y).

2. If u 6= 1
a. If v = 1: same as 1b
b. If v 6= 1: then x • y = (u · v)A∪B , and x ‖ y = (u ∩ v)A∪B . If ∃a ∈ A : ε /∈ σ (a), then
σ̃ (x) = ∅, and σ̃ (x) · σ̃ (y) = σ̃ (x) ∩ σ̃ (y) = ∅. Evidently, the case ∃b ∈ B : ε /∈ σ (b)
is symmetric.
Otherwise, σ̃ (x • y) = σ̂ (u · v) = σ̂ (u)·σ̂ (v) = σ̃ (u)·σ̃ (v); and σ̃ (x ‖ y) = σ̂ (u ∩ v) =
σ̂ (u) ∩ σ̂ (v) = σ̃ (u) ∩ σ̃ (v). J
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Using this fact, the proof of Lemma 1 by structural induction is straightforward:
by definition of σ̃ we have σ̃ (u∅) = σ̂ (u). This ensures that the lemma holds for all base
cases, i.e. 1, a, and aN;
For the sequence:

σ̂ (u · v) = σ̂ (u) · σ̂ (v) = σ̃ ◦ τ (u) · σ̃ ◦ τ (v) (Definition of σ̂, induction)
= σ̃ (τ (u) • τ (v)) (Lemma 10)
= σ̃ (τ (u · v)) = σ̃ ◦ τ (u · v) ; (Definitions of τ and ◦)

For the intersection:

σ̂ (u ∩ v) = σ̂ (u) ∩ σ̂ (v) = σ̃ ◦ τ (u) ∩ σ̃ ◦ τ (v) (Definition of σ̂, induction)
= σ̃ (τ (u) ‖ τ (v)) (Lemma 10)
= σ̃ (τ (u ∩ v)) = σ̃ ◦ τ (u ∩ v) . (Definitions of τ and ◦)

C Omitted proof: Lemma 2

For a term s ∈ GT− 〈X〉, and two vertices x1, x2 ∈ Vu, we write Homs (x1, x2) for the set
of maps ϕ : VG(s) → Vu such that: ϕ (iH) = x1, ϕ (oH) = x2, and for every edge 〈x, α, y〉 in
EG(s), either 〈ϕ (x) , α, ϕ (y)〉 ∈ Eu or α ∈ Ȧ and ϕ (x) = ϕ (y). We now prove by induction
on t that Homt (x, y) 6= ∅ ⇔ wfu (x, y) ∈ σ̂u (t).

If s ∈ Ẋ, then G (s) = 〈{0, 1} , {〈0, s, 1〉} , 0, 1〉, and ϕ ∈ Homs (x, y) means that ϕ (0) = x,
ϕ (1) = y, and either 〈x, s, y〉 ∈ Eu or s ∈ Ȧ and x = y. If x 6= y then we’ve already noticed
that 〈x, s, y〉 ∈ Eu is equivalent to wfu (x, y) ∈ σ̂u (s). If on the other hand x = y then
wfu (x, y) = ε, and again we know that ε ∈ σ̂u (s) is equivalent to s ∈ Ȧ. In the end, we get
that ∃ϕ ∈ Homs (x, y)⇔ wfu (x, y) ∈ σ̂u (s).

For the case s = t · t′, we need to use the following property:

∀x, y,∃ϕ ∈ Homt·t′ (x, y)⇔ ∃z : ∃ 〈ϕ1, ϕ2〉 ∈ Homt (x, z)×Homt′ (z, y) .

The direct implication is straightforward, and the converse relies on the fact that the graphs
of t and t′ only overlap on the output of t and input of t′.

Using this and the induction hypothesis, we get

∃ϕ ∈ Homt·t′ (x, y)⇔ ∃z : wfu (x, z) ∈ σ̂u (t) ∧ wfu (z, y) ∈ σ̂u (t′)⇒ wfu (x, y) ∈ σ̂u (t · t′) .

For the last implication, if wfu (x, y) ∈ σ̂u (t · t′), then there must be 〈w1, w2〉 ∈ σ̂u (t)× σ̂u (t′)
such that wfu (x, y) = w1w2. To conclude, we use the fact that for every simple term s, if a
sub-word xi . . . xj of wu is in σ̂u (s) then either i = j or ∃x, y : f (x) = i ∧ f (y) = j. This
can be established by a simple induction on s, and implies that there must be some z such
that w1 = wfu (x, z) and w2 = wfu (z, y).

The last case is the simplest one:

∃ϕ ∈ Homt∩t′ (x, y)⇔ ∃ϕ ∈ Homt (x, y) ∧ ∃ϕ ∈ Homt′ (x, y)
⇔ wfu (x, y) ∈ σ̂u (t) ∧ wfu (x, y) ∈ σ̂u (t′)
⇔ wfu (x, y) ∈ σ̂u (t ∩ t′)

We have now established that Homt (x, y) 6= ∅ ⇔ wfu (x, y) ∈ σ̂u (t). To conclude, notice
that wu = wfu (iu, ou), and because B ⊆ A, σ̃u (v) = σ̂u (t), thus we get

wu ∈ σ̃u (v)⇔ wfu (iu, ou) ∈ σ̂u (t)⇔ ∃ϕ ∈ Homt (iu, ou)⇔WG (u) JWG (v) .
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D Omitted proof: Lemma 3.

We proceed by induction on u.
If u ∈ Ẋ, its graph has only two vertices, and a single edge whose label is u itself. Thus

ϕ (iu) = 0 ∧ ϕ (ou) = n completely defines ϕ; and 〈x, α, y〉 ∈ Eu ⇒ wϕ[x, y] ∈ σ̂ (α) just
means w[0, n] ∈ σ̂ (u). As w[0, n] = w, we are done.

For u ∩ v, by induction w ∈ σ̂ (u ∩ v) is equivalent to the existence of two functions
ϕ1 : Vu → {0, . . . , n} and ϕ2 : Vv → {0, . . . , n} satisfying the conditions of the right hand
side. It is then a simple matter to check that these to functions can be merged into an
appropriate ϕ, and that any acceptable ϕ : Vu∩v → {0, . . . , n} could be split into ϕ1 and ϕ2.

For the sequential product, by definition w ∈ σ̂ (u1 · u2) is equivalent to the existence
of a pair of words 〈w1, w2〉 ∈ σ̂ (u1) × σ̂ (u2) such that w = w1w2. By induction, we get
that for k ∈ {1, 2}, wk ∈ σ̂ (uk) if and only if there is a map ϕk such that ϕk (iuk

) = 0,
ϕk (ouk

) = |wk|, and 〈x, α, y〉 ∈ Euk
⇒ wϕk [x, y] ∈ σ̂ (α). We need to show that this last

condition is equivalent to the existence of a single ϕ : Vu1·u2 → {0, . . . , n}. Building such a ϕ
from ϕ1 and ϕ2 is simple: we define

ϕ (x) :=
®
ϕ1 (x) if x ∈ Vu1 ;
ϕ2 (x) + |w1| otherwise.

If on the other hand we have ϕ : Vu1·u2 → {0, . . . , n} such that ϕ (iu1·u2) = 0 ∧ ϕ (ou1·u2) =
n and 〈x, α, y〉 ∈ Eu1·u2 ⇒ wϕ[x, y] ∈ σ̂ (α), then we define w1 and w2 as respectively
wϕ[iu1 , ou1 ] and wϕ[iu2 , ou2 ], and ϕ1 (x) := ϕ (x), ϕ2 (x) := ϕ (x)− ϕ (iu2).

E Omitted proof: uniformity lemma

σ̂ (e) =
⋃
u∈JeK

σ̃ (u) =
⋃

u∈JJeK

σ̃ (u) .

First, We define the set of ground terms LβeM as in [1] by structural induction:

Lβ0M := ∅ Lβ1M := {1} LβαM := {α} Lβe+ fM := LβeM ∪ LβfM

Lβe · fM := {u · v | u ∈ LβeM ∧ v ∈ LβfM} Lβe ∩ fM := {u ∩ v | u ∈ LβeM ∧ v ∈ LβfM}

Lβe?M := {u1 . . . un | n > 0 ∧ ∀0 6 i 6 n, ui ∈ LβeM}

It is straightforward to check that JeK = {τ (u) | u ∈ LβeM}.
By [1, Lemma 2.1] we have that σ̂ (e) =

⋃
u∈LβeM σ̂ (u) thus using Lemma 1 and the fact

that JeK = {τ (u) | u ∈ LβeM} we get:

σ̂ (e) =
⋃

u∈LβeM
σ̂ (u) =

⋃
u∈LβeM

σ̃ (τ (u)) =
⋃
u∈JeK

σ̃ (u) .

By Theorem 4 we get that for every u such that WG (u) J WG (v),we have σ̃ (u) ⊆ σ̃ (v).
This ensures that: ⋃

u∈JeK

σ̃ (u) =
⋃

u∈JJeK

σ̃ (u) .
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F Computing the set of tests of an expression.

We define inductively two sets of sets of variables associated with every expression:

S (0) = ∅ S (1) = {∅} S (a) = S (aN) = {{a}} S (e+ f) = S (e) ∪S (f)

S (e · f) = S (e ∩ f) = {A ∪B | 〈A,B〉 ∈ S (A)×S (f)}

S (e?) = {A1 ∪ · · · ∪An | Ai ∈ S (e)}

J0K− = JaK− = JaNK− = ∅ J1K− = {∅} Je+ fK− = JeK− ∪ JfK−

Je · fK− =
¶
A ∪B

∣∣∣ 〈A,B〉 ∈ JeK− × JfK−
©

Je?K− =
¶
A1 ∪ · · · ∪An

∣∣∣ Ai ∈ JeK−
©

Je ∩ fK− =
¶
A ∪B

∣∣∣ 〈A,B〉 ∈ ÄJeK− × ÄJfK− ∪S (f)
ää
∪
Ä
S (e)× JfK−

ä©
.

A simple induction allows one to check that these sets satisfy the following properties:

S (e) = {A ∪ v (u) | uA ∈ JeK} JeK− = {A | 1A ∈ JeK} .

Furthermore, they can be effectively computed in space exponential in the size of X, and
linear in the size of e.
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