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Abstract:  Industry 4.0 provides a framework for integration of cyber-physical systems (CPS), internet of things (IoT), 

internet of services (IoS) and internet of data (IoD) with the manufacturing domain so as to make it smart, flex- 

ible and adaptable to the dynamic market changes and the customer requirements.  It will enable companies 

to form a connected "smart manufacturing" ecosystem having interconnections between the suppliers, manu- 

facturers, distributors and even the products in order to provide better services to the end customer. However, 

due to the presence of heterogeneous systems that might not adhere to the industrial standards, there is a gap 

in achieving this vision of an interconnected ecosystem. In this paper, we focus on providing a solution for 

the modularity and interoperability issues related to the Industry 4.0 from a systems integration viewpoint. 

We propose a model-based approach for modular complex systems development by separating (1) the behav- 

ior model and (2) the implementation logic (execution) of the system. Moreover, we use unified modeling 

language (UML) based modeling techniques to model system behavior and connect the behavior models to 

the application programming interface (API) of the CPS. Thus, instead of generating source code for the CPS 

using models, we directly execute the CPS in the physical world via model execution. The model execution is 

supported by the standard execution semantics of UML. Using our approach, multiple heterogeneous systems 

can be modeled and integrated together to create a "plug and play" ecosystem needed for achieving the vision 

of Industry 4.0. 

 

 

1 INTRODUCTION 

In recent years, the dawn of the forth Industrial rev- 
olution (Industry 4.0) has created a great enthusiasm 
among companies and researchers by providing them 
an opportunity to pave the path towards the vision of 
the "smart factory". This interest in Industry 4.0 is due 
to the fact that, it is for the first time in the history of 

an industrial revolution that, it has been predicted a- 
priori, rather than being observed ex-post (Hermann 
et al., 2016). Industry 4.0 provides a framework for 
integration of CPS, IoT, IoS, IoD with the manufac- 
turing domain to make it smart, flexible and adapt- 
able to the dynamic market changes and the customer 

requirements. It is envisioned to have a great eco- 
nomic impact for companies in many ways, such as, 
enabling factories to be reconfigured over a weekend 
instead of taking a month, creating customized prod- 
ucts for the end users, reducing wastage of resources 

such as energy. It will provide the possibility of cre- 
ating new business opportunities by making efficient 
use of human resources and having end to end con- 
nected supply chain management. Additionally, In- 
dustry 4.0 is based on six design principles which 

are, interoperability, virtualization, decentralization, 
real-time capability, service orientation and modular- 
ity (Hermann et al., 2016). Moreover, it is this very 
need for creation of new business opportunities that 
requires the factories to be flexible (for e.g. easy re- 
configuration) in context of Industry 4.0. 

Furthermore, the system integration can be seen 
from two viewpoints, as shown in figure 1, (1) hor- 
izontal integration and (2) vertical integration. The 
horizontal integration (or inter-company integration) 
will be the base for a strong collaboration between 
various companies and their stake-holders. These 
companies will interact with each other and create a 

seamless inter-connected ecosystem. Moreover, for 
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these systems to be interoperable they need to be de- 
veloped in a platform-independent manner based on 
industrial standards. This will enable them to ex- 

change data or information and avoid vendor lock- 
in issues. In the same way, the vertical integration 
(or intra-company integration) shall also be based on 
standards. 

 

Figure 1: Vertical and Horizontal Integration. 

 

In this paper, we focus on the "vertical integration" 
of system using the model-driven engineering (MDE) 
approach. In vertical integration the models (for e.g. 
a production process model) that are modeled by a 
certain stakeholder (for e.g. production analysts) will 
have a traceable link with other fine-grained models 

(for e.g. a robots behavior models) modeled by an- 
other stakeholder (for e.g. a systems engineer). This 
traceability will help in achieving a better manage- 
ment of information between various layers within an 
organization along with a better impact analysis of 
the changes made in different layers. Moreover, as 

these models are based on standards, the same mod- 
els can be used for the purpose of simulation and 
also for execution of the systems that they depict. 
For instance, the execution of a industrial robot on 
a shop floor will benefit from the model-based execu- 
tion approach wherein, there is a separation between 

its behavior model (control flow) and its actual im- 
plementation logic. The behavior can be modeled us- 
ing industrial standard such as, the unified modeling 
language (UML) activity diagram that will describe 
"how to achieve a certain task". These models can 
be used to perform simulations for depicting how the 

system works. The same models will then be exe- 
cuted based on the standardized semantics of UML 
model execution. As, the semantics of UML model 
execution provides a standard mechanism to connect 
and communicate with external software and tools, it 
will allow the models to communicate and execute the 

robots in the physical world via standard APIs of the 

robots firmware . 
In contrast to the state of the art of model-driven 

approaches in robotics, we view our approach based 
on model execution as an "on-line" execution. In 
our approach the CPS executes live in sync with the 
model being executed, where as, in most of the other 
model-based approaches the models are used to create 
source code for the CPS which is then installed on it 

making it a "of-line" execution. In other words, rather 
than creating source code from our models, we di- 
rectly execute the CPS in the physical world through 
model execution. This provides a good mechanism 
for tackling co-simulation problem for CPS (Rahman 
and Mizukawa, 2013) 

Moreover, for simplicity reasons, we consider a 
simple robot as one of the concrete depiction of a 
CPS in context of the Industry 4.0. We validated our 
approach by using a Lego EV3 robot (EV3, 2013) 
installed with an open-source java based firmware 
called LeJOS (Lejos, 2015). The model design and 

model execution is performed using Papyrus frame- 
work (Papyrus, 2016) . 

This article is structured as follows. Section 2 de- 
scribes the context of this work in relation to com- 
plex system development and model-driven engineer- 
ing (MDE) for Industry 4.0. Section 3 provides some 

insight on the related work. Section 4 describes our 
approach followed with experimentation in Section 5. 
This is followed by discussion in Section 6. We con- 
clude our paper in Section 7. 

 

 

2 CONTEXT 

2.1 Industry 4.0 and Smart Factory 

One of the goals for the Industry 4.0 vision is to cre- 
ate manufacturing ecosystems that are smart, flexible 
and adaptable to dynamic market changes and cus- 

tomer requirements. Such smart factories will under- 
stand the state of a production process and will react 
accordingly with minimal human intervention. More- 
over, in case of system fault if the cyber-physical sys- 
tem (CPS) or the cyber-physical production systems 
(CPPS) needs human support, the system itself will 

assist the humans with appropriate contextual infor- 
mation to avoid cognitive overload on them (Wieland 
et al., 2010). 

Recently, various research in context of Industry 
4.0 is being focused towards understanding how MDE 

can benefit the Industry 4.0 vision as a key technol- 
ogy enabler. In their recent work, the authors (Ca- 
david et al., 2015) provide arguments about the im- 
portance of MDE for smart manufacturing and how 
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MDE with its underlying concepts such as, domain 
specific modelling languages, modelling abstractions 
based on view-points, model-based formal analysis 

and automated model transformations would help to 
transform the vision of Industry 4.0 into a reality. 

2.2 Model-Driven Engineering for 

Complex Systems 

A complex system, such as a cyber-physical system 
(CPS), an industrial robot or a service robot, con- 
sists of a large number of component such as, actu- 
ators, sensors, auxiliary tools along with the firmware 
that are all seamlessly integrated together and need 

to work as a single entity. These complex systems 
would also interact with other complex systems to 
perform certain tasks. Thus, it is very important to 
design these complex systems keeping the principle 
of modularity in mind so as to allow ease of integra- 
tion between various systems. 

In addition to above, a complex system also con- 
sists of different parts relating to different kinds of 
engineering disciplines such as, mechanical, electri- 
cal, software. Thus, these systems are required to be 
verified and tested both (1) at the component level and 
(2) at a system level. Therefore, MDE can help in re- 

ducing the inherent complexity of these systems by 
providing standard modeling languages, and provid- 
ing tools and frameworks that supports various design 
principles. For example, using the principles of "sep- 
aration of concerns" we can abstract various aspects 
of a system and can view only the things that are im- 

portant to us, thus reducing complexity. 
 

 

3 RELATED WORK 

In recent years, a number of research contributions in 
MDE have been looking at the applications of MDE 

in design and execution of complex systems such 
as, industrial robots. On the same lines, the authors 
(Steck et al., 2011) put forward the importance of 
moving from code-driven to model-driven engineer- 
ing for industrial-strength service robotic systems. 
Their work is focused on the entire life-cycle of robot 

development wherein they provide a model-centric 
view on the whole (robotic) system covering both the 
design time and the run time of the robot. The model- 
driven development will support the decision mak- 
ing process of a robot during its run-time based on 
parameters, properties and resource information that 

were modelled at design-time. This will enable it 
to handle a large number of situations. Plus, mod- 
eling would help to reduce the complexity for differ- 

ent stakeholders based on the principle of "separation 
of concerns". Similarly, in the work done by (Rah- 
man and Mizukawa, 2013), the authors describe the 

difficulty faced in achieving a holistic system-level 
verification along with the problem of fulfilling the 
requirements of different stakeholders using only de- 
scriptive systems models (SysML). Thus, they pro- 
posed to combine the descriptive and simulation mod- 
els by providing a collaborative design framework 

which brings SysML, Simulink, and Simscape pro- 
files within the domain of robotic modeling. 

Likewise, (Inglés-Romero et al., 2013) express the 
need to create a domain specific language (DSL) for 
expressing variability for the non-functional proper- 
ties for a robotic system. They argue that in con- 

text of a service robot there will always be unfore- 
seen situations that are needed to be tackled at run- 
time but, may have not been modelled at design time. 
They used the variability modelling language (VML) 
at design time to resolve such problems. The authors 
(Gherardi and Brugali, 2014), provide a development 

process containing guidelines to exploit existing best 
practices and reference architectures for robotic soft- 
ware. Similarly, in their work (Romero-Garcés et al., 
2013) present four DSLs wherein each DSL has a 
specific perspective for defining a robot component 
and are all based on model-driven techniques. They 

compare and analyse the effort based on lines of code 
for robot development before and after making use of 
these DSLs. They argue that these DSLs, reduce the 
workload of the developers depending on what "con- 
cerns" they need to focus during the robots life-cycle. 
They also describe the improvements in flexibility, 

scalability and maintenance for RoboComp frame- 
work using MDE along with the benefit from model- 
to-model, model-to-text transformations approaches 
and to generate source code automatically. Other au- 
thors, such as, (Schlegel et al., 2015), have described 
steps need to create a software business ecosystem 

in robotics using model-driven software development 
and model-driven software systems integration 

Furthermore, in their work (Harrand et al., 2016), 
the authors reinforce the benefits of model-based sys- 
tems engineering (MBSE) for increasing productiv- 
ity by automated code generation from models. They 
provide an open-source project called "ThingML" 

which includes a modelling language and tool de- 
signed for supporting code generation using highly 
customizable multi-platform code generator targeting 
heterogeneous platforms. Their work may benefit the 
heterogeneous systems environment in context of the 
Industry 4.0. Other researchers like (Kovalenko et al., 
2015) explored the AutomationML format which is 

an emerging data exchange standard for supporting 
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the Industry 4.0 vision. This standards can be repre- 
sented via two modelling approaches, MDE and Se- 
mantic Web. They pointed out the differences in these 

approaches and provide the applications of these ap- 
proached for improving the production processes in 
manufacturing domain. In context of real-time sys- 
tems, the authors (Perseil et al., 2011), presented a 
modeling and execution framework through which it 
will be possible to analyse, design and verify com- 

plex systems. This approach would help to tackle spe- 
cific concerns of the real-time and embedded systems 
(RTE) domain. 

In particluar, (Tatibouët et al., 2014) discussed the 
use of UML profile mechanism for designing a DSL 
in their work. They argued the need for having an exe- 

cution semantics for UML profiles as the current pro- 
file design methodology only considers the syntactic 
part of the language, keeping the execution semantics 
description as informal. In their work, they provide 
a systematic approach to formalize the execution se- 
mantics of UML profiles. To realize their approach 

they make use of foundational UML (normative spec- 
ification) which defines a precise semantics for a sub- 
set of UML. 

 

 

4 APPROACH 

In this section, we describe our approach for de- 
velopment and executing of a model-based modu- 
lar system using open standards. This approach will 
enable heterogeneous systems to communicate with 
each other in a cohesive but loose coupled manner. 
For our approach, we used Unified Modeling Lan- 

guage (UML2.5, 2015), which is a general-purpose, 
developmental, modeling language in the field of soft- 
ware engineering. Additionally, in this work we de- 
pict a cyber-physical system (CPS) as a simple robot 
that will expose its functionality using standard APIs 
which will be called by the executing behavior models 

(activity model in our case). 

4.1 Conceptual Approach 

In context of Industry 4.0, we have already estab- 
lished the need to develop systems based on indus- 
trial standards keeping the principle of modularity in 
mind. This will help to achieve interoperability and 

a plug and play kind of environment as envisioned 
for Industry 4.0. In our approach, we separated the 
concerns of developing and executing the robot. The 
robot executes based on instructions (events) it re- 
ceives from the control flow layer. This, separation 
helps to achieve a loose coupled system. In particu- 

lar, this approach has been developed keeping indus- 
trial robots in mind which perform standard repetitive 
tasks. But, these robots need to be flexible (for e.g. 

easy to reconfigure) so as to perform new tasks as and 
when needed. Also, these robots should be able to 
communicate with other similar or non-similar robots 
present in the ecosystem of a smart factory. 

In the figure 2, we show the two separate layers 
i.e. the model-based behavior layer (control flow) 

and robots implementation layer. In our approach, the 
software layer on the robot will be kept as minimal as 
possible. The execution of the robot is done using API 
calls through an executing model (on-line execution) 
rather than deploying the source code on the complex 
system (of-line execution). This approach will allow 

creation of complex systems having sensors and actu- 
ators with low computational power and low energy 
usage. In such a setting, the models while executing 
would send control events to the software (middle- 
ware or firmware) layer of the robots and the robots 
should respond to them with status event. 

 

Figure 2: Conceptual Approach for Modular Complex Sys- 
tem Development. 

 

4.2 Refinement of the Approach 

To concretize the above conceptual approach, we 

make use of the Papyrus framework for designing 
the models and execution of the EV3 robot. Papyrus 
framework is a part of the Eclipse foundation and 
PolarSys (PolarSys, 2016). It provides a graphical 
editing tool for UML as defined by Object Manage- 

ment Group (OMG, 2016). Additionally, it provides 
tool support for executable UML modeling through 
the Moka execution engine (Moka, 2016) . Papyrus 
provides a fully customizable environment to define 
custom graphical, textual or tabular notation. Being 
based on UML profile it allows reuse of standard lan- 

guages or creation of new modeling language. Fur- 
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thermore, the execution and debugging of models is 
handled by Moka which itself relies on an implemen- 
tation of the OMG standards called "Semantics Of 

A Foundational Subset For Executable UML Mod- 
els" (FUML, 2013) and "Precise Semantics of UML 
Composite Structures" (PSCS, 2015) . These specifi- 
cations formalize the execution semantics of a UML 
subset. In Papyrus, the editing part relies on the OMG 
standard called "Action Language For Foundational 

UML" (ALF, 2013), with an editor and compiler for 
that language. 

Most importantly, Papyrus framework provides 
the possibility to connect with external softwares and 
tools which is essential for our model-based devel- 
opment approach. In particular, a robot is composed 
of different components that need to work together 
seamlessly. Many of these components belong to dif- 
ferent kinds of engineering disciplines such as, me- 

chanical, electrical, computers and will be built using 
various software’s having their own simulation envi- 
ronments. Normally, each component can be easily 
modeled and simulated for verifying its correctness 
at a component level but there are not many standard 
frameworks available that provide a co-simulation ap- 

proach to assess the correctness of the overall system 
model. Thus, a FUML based simulation tool that con- 
nects to different external tools would be very useful 
for doing a system level co-simulation in context of 
CPS in general. 

Moreover, FUML 1.1 (FUML, 2013) provides 
"opaque behaviors" which shall be hooked to a con- 

crete "OpaqueBehaviorExecution" implementing its 
own semantics and these implementations can be used 
to communicate with external tools (Guermazi et al., 
2015). In context of Papyrus Moka, during a model 
execution, when a call is made to an opaque behavior 
from a model element, it drives the execution flow to 

the logic that enables the connection to a specific tool 
or library. Once the specific library (tool) executes the 
execution flow comes back to the running model. 

The figure 3 depicts the concretization of the con- 
ceptual approach initially described in the figure 2. It 
is visible from the figure 3 that the model-based con- 
trol flow layered is based on the Papyrus framework, 
which provides both (1) the modeling GUI and (2) 
the model execution and simulation engine known as 
Moka. We designed a UML activity diagram in pa- 

pyrus modeler and then connected the model elements 
to the opaque behaviors designed as plugins. The 
opaque behavior follow the FUML semantics and en- 
able the connection to the external tools (third party). 
In the implementation part of the opaque behavior, 

(EV3, 2013). LeJOS is an open-source java based op- 
erating system (OS) for a Lego EV3 controller. There 
are also other OS such as EV3Dev1 but we chose 

LeJOS as it was java based and provided remote APIs 
to connect and control EV3. 

 

Figure 3: Concrete Approach using Papyrus Framework 
and Lego EV3 Robot. 

 

 

5 EXPERIMENTATION 

In this section, we implement our approach described 
in section 4.2 by creating an experiment with a Lego 
EV3 robot. A Lego EV3 might be a simplified exam- 
ple of a CPS, but it useful in showing our approach 

successfully and we can argue that the same approach 
can be applied to more complex robots or multiple 
heterogeneous robots. During our experimentation, 
the models, the java based adaptors for LeJOS and the 
model execution are all done using Eclipse Papyrus 
framework. 

5.1 Implementation: Lego EV3 Robot 

5.1.1 Background 

Firstly, we selected a Lego EV3 robot to implement 

our approach for depicting a model-based execution 
of a system as, (1) a Lego EV3 robot matches our 
need to depict a system that can execute actuators and 
sensors. (2) Lego EV3 is plug and play, not very ex- 
pensive and can be easily build to depict different sce- 
narios. (3) It has a strong community of users and de- 

velopers along with the availability of various open- 
source software. Additionally, it is important to men- 
tion that Lego provides its own proprietary software 

we created adaptors to connect to LeJOS firmware   
(Lejos, 2015) which have been installed on Lego EV3 1http://www.ev3dev.org/ 

http://www.ev3dev.org/
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tool called "Lego Mindstorms" based on LabVIEW2  
to build executable code for EV3 robot in a model- 
driven manner. Moreover, Lego claims that the pro- 

cess of using GUI based robot modeling technique 
for modeling robot behaviour on their proprietary tool 
is quite easy and intuitive. It is easy enough such 
that a 10 year old can use it to build their own robot 
(LEGO-Education, 2016). This reconfirms our point 
that MDE is one of the good techniques available for 

developing complex systems such as robots. 
In contrast to the benefits, there are certain shortcom- 
ings of the Lego Mindstorm software due to which we 
can’t use it as such. These shortcomings are, (1) the 
tool is proprietary and not open-source thus, we can- 
not make changes to the APIs (2) it does not follow 

any open standards (3) to the best of our knowledge, 
the Lego Mindstorm software does not provide any 
kind of standard API to control EV3 from external 
tool (such as Papyrus framework) (4) the tool is used 
to deploy the code directly on the EV3 (offline mode) 
and doesn’t provide any mechanism to allow execu- 

tion of EV3 from an executing model. 
To tackle the above mentioned problem with Lego 

proprietary software, we make use of an open-source 
java based firmware for EV3 called LeJOS. We use 
this tool for following reasons, (1) it provide connec- 
tion to EV3 via its remote API using IP address (de- 

picting the ideas of an IoT), (2) each actuator and sen- 
sor can be controlled independently using the port id 
and IP address. 

For our experimentation, we created a Lego 
robotic car using two large motors (actuator) as shown 
in the figure 4. 

 

Figure 4: Lego EV3 Robotic Car. 

 
 
 

 
2http://www.ni.com/labview/ 

5.1.2 Setup 

 

The figure 5 shows a behavior model (activity model) 
having a behavior called "Move Lego EV3 Motor". 
This activity has four input values. The input values 
are used to provide the IP address of the robot, the port 
of the actuator, the speed of the motor and the degree 
of rotation for the robot (number of revolution). 

 

Figure 5: Model showing the UML Activity Model to Move 
the Car. 

 

In order to execute the robotic Lego car, i.e. to 
make it move in the physical world, we execute the 
behaviour model by making use of the FUML based 
Moka engine. This is achieved by creating an opaque 

behavior called "RotateEV3MotorExecution". This 
behavior extends "OpaqueBehaviorExecution" and 
connects to the remote APIs of the LeJOS to control 
and move the EV3 robot car. These opaque behav- 
iors are reusable and can be used for any number of 
separate models by providing different values for in- 

put variables. In our case, the input values needed to 
move the robot are, the IP address, port, motor speed 
and the degree of rotation. 

When the model is executed, it calls the above 
mentioned opaque behavior and then passes the con- 
trol to the adaptor created for the robot. The java 

based adaptor in-return calls the LeJOS APIs and pro- 
vide the incoming input values of the model to the 
firmware. The LeJOS firmware on the EV3 robot gets 
these values and executes the command to move the 
actuator. As a note, Lego EV3 also has sensors for 
data collection such as, color sensor, ultrasound sen- 

sor but to keep our experiment simple we do not make 
use any sensor data in this current work. 

5.1.3 Model-based Execution 

 

The figure 6 shows the execution of the UML be- 

havior model (activity model) using FUML based Pa- 
pyrus Moka engine. In the Papyrus framework, when 
a model element has been executed (completed) the 

http://www.ni.com/labview/
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color of the element changes to green. While the red 
color indicates that a model element is currently be- 
ing executed. While executing the model, Moka will 

pass the input values to the underlying opaque behav- 
ior and the robot will start moving as explained in the 
above section. In case, of any kind of problem with 
the underlying robot such as, issues with connection 
between robot and computer, the same model can still 
be executed like a normal simulation without the ac- 

tual physical executing of the underlying robot. The 
error handling will displaying the error message to the 
developers for rectifying the problems. For e.g., one 
of such common error message is "connection refused 
to host: 10.0.1.1", which occurs when there is a prob- 
lem in the wired connection between the robot and the 

laptop. 
 

Figure 6: FUML based Model Execution. 

 

5.2 Evaluation 

In this section, we evaluate some of the use cases for 

EV3 robot using our approach as follows: 

 

(1) Changes to the Behavior Model 
Description: In case of a new system requirement, 

how beneficial is the model-based execution ap- 
proach? 
Experience: Firstly, this approach provides loose 

coupling between the control flow and execution 
code. Secondly, as the execution of the robot is based 
on execution of the models via API calls, we can 
argue that the changes to the system can be tackled 
easily. For e.g., initially, we created the "EV3 car 

movement" process to move the EV3 car only in the 
forward direction. This process consisted of a single 
activity "Go Front". But, when there was a need to 
move the EV3 in backward direction, we created a 
new task called "Go Back" and used the same opaque 
behavior created before with different input values. 

In our experience, the addition of the new task and 
the update to the model was fast and simple, like a 
drag and drop of the activity task and then addition of 

the opaque behavior to it with different input values. 
Thus, using our approach a behavior model can be 
updated quickly along with the reuse of existing 

opaque behavior(s), creating a flexible and easy to 
reconfigure complex systems environment. 

 
(2) Interchanging Similar EV3 Robots or Actua- 

tors 
Description: In case of a need to change or update a 

EV3 controller or an actuator, how beneficial is this 
approach to manage such changes? 
Experience: Due to the separation between the model 

execution (control flow) and the robot execution us- 

ing API calls, it is easy to manage such a need. To 
change a problematic EV3 with a new EV3, only the 
IP address of the new EV3 needs to be updated in 
the activity model. Similarly, to change or update the 
EV3 actuator, only the port id needs to be updated in 
the behaviour model. Thus, we can argue that using 

model-based execution it is possible to create a plug- 
and-play environment. 

Likewise, as this approach uses standard API calls 
of the robot via IP address, we can argue that this ap- 
proach can help to realize an IoT environment. 

 

 

6 DISCUSSIONS 

The following points are noteworthy for model-based 
development for complex systems in context of Indus- 
try 4.0: 

(1) Model-based development of CPS provides 
easy system integration due to the use of standard tool 

and languages (UML). It helps in creation of an inter- 
operable and "plug and play" type ecosystem. More- 
over, MDE provides need based abstraction of a sys- 
tem to various stake holders for different concerns. 
It also provide traceability between the various view- 
points leading to a better management. For example, 

exchange of information between strategy level (man- 
agement) and business process analysts view in con- 
text of Industry 4.0. 

(2) Model-based execution of CPS using standard 
execution semantics such as FUML provides a possi- 
bility to connect to different software’s and external 

tool and perform co-simulation using the same mod- 
els. 

(3) "Virtual factory" which is a "digital replica" of 
the physical factory is an important feature of Industry 

4.0. The model-based execution techniques will help 
to create and use common model that can be used (A) 
in the virtual factory to do simulations and (B) the 
same models will be updated or enriched with data 
coming form the virtual factory to do an optimized ex- 
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ecution of the real machines in the physical world, i.e. 
a shop floor. Thus, knowledge gained via simulations 
performed in the virtual factories will be transferred 

to the physical factories for saving real materials and 
resources in the physical world. 

(4) Various software and tool providers involved 
in Industry 4.0 will continue to build their solutions 
based on industry standards. The use of standards 
would help to resolve the issues related to interop- 

erability between different tools. Moreover, instead 
of creating dedicated middlewares, the model-based 
approach for co-simulation can help to integrate and 
exchange data between the various systems. 

(5) Model-based CPS execution benefits from 
concepts such as, "separation of concerns" that will 
provide abstraction to various layer of the system 
(viewpoints) along with concepts of loose coupling. 

Thus, in case of replacement of the old system with 
a new one, there will be no need to redesign the be- 
havior models from scratch. The same models can be 
reused by creation new connection or adaptors to the 
external tool. However, this seamless change would 
only be possible provided the new system provides 

all the functionality of the old system. 
(6) Furthermore, model-based execution enhances 

understandability of the exact state of execution of a 

machine. MBSE provides another advantages, such 
as, a strong community and standards based open- 
source tools. This help to achieve "digital continu- 
ity" wherein, a system model created in one stan- 
dard is transformed into another standards (model-to- 
model or model-to-text). In context of Industry 4.0, 

this is beneficial as, an activity model can be trans- 
formed into a business process modeling and notation 
(BPMN) model and can be executed on a manufac- 
turing execution system (MES) which executes ma- 
chines on industrial shop floor. 

 

6.1 Limitations 

Our work is based on the assumption that the CPS 
will expose standard API for communication. More- 

over, we map or glue the functionality of the CPS via 
APIs to the opaque behavior(s) created in the mod- 
eling framework (based on FUML semantics). How- 
ever, a system model cannot execute a functionality 
which is not provided by the API of the CPS. 

Initially, this work was done keeping industrial 
robots in the mind that perform standard repetitive 

tasks. This approach was not built in context of au- 
tonomous robots. Furthermore, at this stage we did 
not create a domain specific language (DSL) for our 
approach, but as this approach is based on UML stan- 
dards, it is possible to extend this work for creating a 

DSL without much effort. Most importantly, the im- 
plementation of this approach is tightly coupled to the 
modeling and execution framework or tool, thus the 

model execution would be effected by the limitation 
and performance issues of the tools. 

 

 

7 CONCLUSION AND FUTURE 

WORK 

Industry 4.0 presents great opportunities for the man- 
ufacturing sector, but it also lays great challenges on 
the development of complex industrial systems that 
will realize the vision of the connected, flexible and 
smart industry. In this paper, we discussed several of 
those challenges, namely, horizontal and vertical inte- 

gration, interoperability and modularity. These chal- 
lenges can be tackled through the use of model-driven 
engineering, mainly, for the description or design and 
execution of the industrial cyber-physical processes 
and robotic systems. 

The main contribution of this paper is a concep- 
tual model-based approach for modular complex sys- 

tem development, which can be applied to indus- 
trial cyber-physical systems. This approach treats the 
model as the first-class citizen of system develop- 
ment, since the model is used for (1) modeling and 
simulation (the "digital world") and (2) actual exe- 
cution of industrial processes and robots (the "real 

world"). The model thus becomes the pivot for both 
horizontal and vertical integration. The approach was 
validated with an implementation based on Lego EV3 
robot and the Papyrus modeling environment with 
Moka as model execution engine. The outcome is an 
overall approach where the actual industrial automa- 

tion systems are piloted from abstract models, while 
keeping interoperability intact thanks to the use of a 
standard API to communicate with the physical sys- 
tems and its components. 

In the future, we plan to extend this work and per- 
form co-simulation with heterogeneous robots such 

as, "NAO" the the humanoid robot. We also plan 
to experiment and refine the approach with industrial 
robots such as, Kuka. Plus, we plan to explore the 
working of this approach in a service-oriented model- 
driven way. 
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