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Beamforming Through Regularized Inverse
Problems in Ultrasound Medical Imaging

Teodora Szasz, Adrian Basarab, and Denis Kouamé, Member, IEEE

Abstract—Beamforming (BF) in ultrasound (US) imaging has
significant impact on the quality of the final image, controlling
its resolution and contrast. Despite its low spatial resolution and
contrast, delay-and-sum (DAS) is still extensively used nowadays
in clinical applications, due to its real-time capabilities. The most
common alternatives are minimum variance (MV) method and
its variants, which overcome the drawbacks of DAS, at the cost
of higher computational complexity that limits its utilization in
real-time applications. In this paper, we propose to perform BF
in US imaging through a regularized inverse problem based on
a linear model relating the reflected echoes to the signal to
be recovered. Our approach presents two major advantages:
1) its flexibility in the choice of statistical assumptions on the
signal to be beamformed (Laplacian and Gaussian statistics are
tested herein) and 2) its robustness to a reduced number of
pulse emissions. The proposed framework is flexible and allows
for choosing the right tradeoff between noise suppression and
sharpness of the resulted image. We illustrate the performance
of our approach on both simulated and experimental data, with
in vivo examples of carotid and thyroid. Compared with DAS,
MV, and two other recently published BF techniques, our method
offers better spatial resolution, respectively contrast, when using
Laplacian and Gaussian priors.

Index Terms—Adaptive beamforming (BF), basis pursuit (BP),
beamspace processing, least squares (LS), linear inverse
problems.

I. INTRODUCTION

ULTRASOUND (US) imaging is one of the most fast-
developing medical imaging techniques, allowing nonin-

vasive and ultrahigh frame rate procedures at reduced costs.
Cardiac, abdominal, fetal, and breast imaging are some of the
applications where it is extensively used as diagnostic tool.
The new advances in beam formation, signal processing, and
image display enlarge the US imaging potential to other fields
like brain surgery, or skin imaging (see [1], [2]).

In a classical US scanning process, short acoustic pulses
are transmitted through the region of interest of the human
body. The backscattered echo signals, also called raw radiofre-
quency (RF) data, are then processed for creating RF beam-
formed lines. Beamforming (BF) plays a key role in US image
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formation, influencing the resolution and the contrast of final
image. The most used BF method is the standard delay-and-
sum (DAS), which consists in delaying and weighting the
reflected echoes before averaging them. So far, its simplicity
and real-time capabilities make it extensively used in US scan-
ners. However, its weights are independent on the echo signals,
resulting in beamformed signals with a wide mainlobe width
and high sidelobe level. Consequently, the resolution and the
contrast of final image are relatively low [3]. Several adaptive
beamformers (with weights dependent on data) from array
processing literature were applied to US, the most common
being the Capon or minimum variance (MV) BF [4]. It offers
a very good interference rejection and better resolution than
DAS, allowing higher contrast [5]. However, this method uses
an estimated covariance matrix of the data and its main issue is
the high computation complexity due to the calculation of the
inverse covariance matrix. To overcome this, many improved
versions of MV have been recently proposed (see [6], [7]),
but still not adequate for real-time applications. In practice,
in order to provide well-conditioned covariance matrices,
diagonal loading, time, and spatial averaging approaches were
investigated (see [8], [9]).

Recently, to improve the MV BF, Nilsen and Hafizovic [10]
proposed a beamspace adaptive beamformer, BS-Capon, and
unlike MV BF, they based their BF method on orthogonal
beams formed in different directions. This technique was also
applied by Jensen and Austeng [11] to develop an adaptive
beamformer based on multibeam covariance matrices, called
multibeam Capon beamformer. In their works, a covariance
matrix is calculated for each range in the image, based on the
idea that the beams were transmitted with different angles.
Thus, Jensen and Austeng [11] were able to reduce the
computation time of MV BF, while improving the resolution
of the point-like reflectors. Following a similar idea, Jensen
and Austeng [12] applied to US imaging a method initially
proposed in [13], called the iterative adaptive approach (IAA).
They obtained better defined cyst-like structures compared
with conventional DAS and better rendering than MV.

The work presented here uses a similar idea of BF range
by range. However, inspired from the source localization prob-
lems, we represent, for each range, the BF as a linear direct
model relating the raw samples to the desired lateral profile
of the RF image to be beamformed. This formalism allows
us to invert the problem by imposing standard regularizations
such as the ℓ1- or ℓ2-norm. These choices are motivated by the
existing works in US image enhancement, which are typically
based on Laplacian (see [14]) or Gaussian (see [15]) priors.

.



Fig. 1. Main US imaging elements used to adapt the array processing
BF methods discussed in Sections II and III to medical US imaging.

Thus, the major contribution of this paper is the improvement
of the existing BF techniques by combining the proposed
direct model formulated in the lateral direction of the images
with a regularized inversion approach. Moreover, we incor-
porated the proposed method with a beamspace processing
technique, in order to highly reduce the number of the required
US emissions.

In contrast to existing BF methods in US imaging using
regularized inverse problem approaches (see [16]–[21]), our
method does not use the system point spread function (PSF)
in the direct model or in the inversion process. Thus, the pro-
posed BF technique, similar to [22] applied to nondestructive
evaluation, does not require any experimental measurement
(see [23]) or estimation of the PSF (see [14], [24], [25]).

Laplacian and Gaussian statistics, two of the most common
regularizations in such imaging problems (including US imag-
ing applications such as deconvolution), are considered herein,
allowing the reader to observe their influence on the results.
Furthermore, our method opens new tracks for more complex
regularization terms (see [26]–[28]) to further improve the
results. The proposed approaches, generically named basis
pursuit BF (BP BF) and least squares (LS) BF in this paper,
were evaluated using different Field II simulated data and
in vivo carotid and thyroid experimental data. Finally, we
compared our BF techniques with four existing beamformers:
the conventional DAS, MV, multibeam Capon, and IAA.

The remainder of this paper is organized as follows. First,
in Section II, we summarize the theoretical background of BF.
In Section III, we describe the proposed BF method from
a regularized inverse problem perspective. Details about the
experiments and the results are given in Section V, and
Section VI concludes this paper.

II. BACKGROUND

The main elements used to model the BF process are
depicted in Fig. 1. We consider, without loss of generality, the
particular setup of an M-element US probe (M can also be the
number of active elements of the probe), with the transducer’s

elements denoted by um , with m = 0, · · · M − 1. We consider
a trivial change of variable, such that the position of the mth
element is

pm = [m − (M − 1)/2](λ/2), m = 0, 1, . . . , M − 1 (1)

with the probe’s elements positioned symmetrically around the
origin. We have considered, as example, the pitch equal to
λ/2 (the spacing between elements is half of the wavelength
λ = c/ f0, c denoting the speed of the sound through soft
tissue and f0 the transducer’s center frequency).

A series of K focused beams is transmitted with different
incident angles θk , k = 1, . . . , K . The returning echoes are
recorded using the same US probe, being time delayed, such
that the time of flight is compensated for, so the backscatter
from the point of interest is summed up coherently. If we con-
sider that each of the recorded raw signal after the time-delay
compensation has N time samples, the size of the recorded
data from all the K directions will be M × N × K . Finally,
the final RF US image is a collection of RF beamformed
lines, each of which being the result of BF the raw RF signals
coming from an emission in the direction θk , k ∈ {1, . . . , K },
using M elements of the transducer.

The classical DAS BF can be expressed as

ŝk(n) =
M

∑

m=1

wm y(k)
m (n − 1m(n)), n = 1, . . . , N

k = 1, . . . , K (2)

where 1m(n) is the time delay for focusing at the point of
interest sample, being dependent on the distance between the
mth element and the point of interest, wm are the BF weights,
and y

(k)
m ∈ CN×1 is the raw data received by the mth element

of the US probe, corresponding to the emission steered at
angle θk . A simplified form of (2) can be formulated as

ŝk = w
H yk (3)

where yk ∈ CM×N is the time-compensated version of y
(k)
m

in (2) for the kth emission (for the sake of generality, we
consider yk to be complex-valued data), w is the vector of the
beamformer weights of size M × 1, and (·)H represents the
conjugate transpose. DAS BF selects the weights independent
on data, solving

min
w

w
H

w, such that w
H1 = 1 (4)

where 1 is a length M column vector of ones since the raw
data were focused using time delays. The solution of (4) is

wDAS = 1

M
. (5)

If we replace (5) in (3), we get

ŝk = 1

M
1T yk (6)

where {·}T denotes the transpose. A common technique used
in US is to apply weighting functions such as Hanning or
Hamming apodizations to (6) to further reduce the sidelobes
of ŝk , resulting in improved contrast of the beamformed image,
at the cost of a slight lateral spatial degradation.



Fig. 2. Elements used to form the proposed model.

Further details about adaptive BF in US imaging (i.e., the
methods used for comparison purposes) and about beamspace
processing are provided in Appendixes A–D.

III. PROPOSED METHOD: BEAMFORMING THROUGH

REGULARIZED INVERSE PROBLEMS

A. Model Formulation

The main elements used to model the proposed method are
depicted in Fig. 2. For the sake of simplicity, let us focus our
problem at a time sample (range) n. The proposed BF method
is sequentially applied in the same manner to each range.
If yk[n] ∈ CM×1 is the raw data after the compensation of
the time of flight for the kth steering direction θk , we can
form the steering vectors as in (26). Let A be the M × K

steering matrix containing the steering vectors in (26) for all
θk directions, k = 1, . . . , K

A = [aθ1, aθ2, . . . , aθK ]. (7)

Note that A is known and depends on the positions of the
probe elements and on the locations to beamform. Thus, it is
independent on the actual positions of the reflectors.

For each range n, we want to estimate the signal cor-
responding to a reflector as a function of its location that
will contain dominant peaks at reflector positions. Thus, the
main difference from the multibeam Capon BF method is that
instead of calculating the values of the weights wθ,n as in (28),
that are further used to calculate the reflector’s signal, we are
directly estimating the corresponding signal by considering
the raw data yk[n] as observations. In other words, we want
to obtain an estimate of the reflected echo x[n] ∈ CK×1

through the observations yk[n]. Unfortunately, one difficulty
arises: since yk[n] is corresponding to only one emission,
modeling our problem using raw data as observations to
estimate the reflectors requires high computational cost, since
we are dealing with multiple directions. We recall that the size
of raw data in our problem at a range n is M×K . To overcome
this issue, motivated by the results in [29] and [30], we propose
to use the DAS beamformed data instead of the original

raw data. In addition to data dimensionality reduction, it was
shown in [29] and [30] that more accurate results may be
achieved by proceeding in this way. Thus, we can formulate
our model as follows:

ŝ[n] = (AH A)x[n] + g[n] (8)

where ŝ[n] ∈ CK×1 is a lateral scanline of the DAS beam-
formed image formed as discussed in Section II, A is the
steering matrix formed with (7), and g[n] is an additive white
Gaussian noise. If we denote by Ŝ the DAS beamformed image
of size K × N , formed by juxtaposing the DAS RF lines ŝk

expressed in (6) for all K directions, we consider ŝ[n] the
lateral scanline from Ŝ taken at the time sample (range) n.
Note that, since the transducers are emitting the same pulse,
we assumed that x[n], which is the unknown signal, is the
same for all K emissions and for all transmitters (e.g., [31]).

The role of the multiplication of the steering matrix A with
its conjugate transpose AH in (8) is to relate the position of
the elements with the position of all K reflectors on a scanline.
This relation is a result of considering on the one hand that
the elements are impinging to the reflectors situated on the
lateral scanline (the multiplication of A with x[n]), while on
the other hand, the reflectors are impinging to the elements
through their reflected pulses (the multiplication with AH ).
Hence, the result of the DAS beamformed scanline ŝ[n] is
related to the unknown signal x[n] through a direct linear
model. Fig. 2 offers a schematic of our model in (8). Thus,
after the compensation of the time of flight, the received raw
data y[n] at a range n are formed by multiplying the steering
matrix A with the desired signal x[n], y[n] = Ax[n]. This
multiplication could be sufficient for describing the proposed
model if we are considering the raw data y[n], as observations.
However, since we are using the DAS beamformed data
instead of the original raw data, we further take into account
the geometrical relationship between the potential sources
and the elements of the probe (through the multiplication
with AH ).

B. Beamspace Processing

In order to solve (8), we first apply beamspace processing,
a common tool used in source localization approaches that
reduces the computational complexity, while improving the
resolution and reducing the sensitivity to the position of
the sensor (see [30], [32]). Its main purpose in US is to
reduce the number of the US emissions, thus reducing the
acquisition time and the computational load required by the
BF process. We should note that our method of transforming
the data into beamspace domain is totally different from
the technique resumed in Appendix B. The main reason
is that, using the beamspace processing presented in [10],
we need all the acquired raw data for applying beamspace
processing as described in (22). Hence, even if on the one
hand, the computational complexity required by the estimated
covariance matrix inversion is reduced, on the other hand, it
is increased by the operations required to transform the entire
set of the raw data into its beamspaced correspondents.

To overcome this, we based our idea on the beamspace
processing techniques proposed in array processing



(notably in source localization). More specifically,
Malioutov et al. [29] used a method that maps the data
from full dimension space of the directions (DS) into a lower
dimension beamspace (BS) through a linear transform prior to
source localization processing. In our case, for each range n,
we project the data resulted by applying DAS BF, ŝ[n], in
BS before BF it through regularized inverse problems. To
emphasize, ŝ[n] ∈ C

K×1 is projected on a lateral sampled
grid of P ≪ K locations. In other words, the proposed BF
method, contrarily to all the other discussed BF methods, uses
only P focused emitted beams among all the K transmissions
to beamform a particular lateral scanline of K samples.
Thus, the number of emissions is reduced by a factor of
(K/P). This will result in a reduced dimensionality of the
data compared with the other BF methods and an improved
computational complexity compared with MV, multibeam
Capon, and IAA.

Let z[n] ∈ CP×1 be the beamspace transformed vector
formed by sampling the DAS beamformed lateral scanline ŝ[n]
on a grid of P locations (see Fig. 2)

z[n] = DH ŝ[n] (9)

where D of size K × P is the beamspace decimation matrix,
which will reduce the dimensionality of a vector from K × 1
to P ×1. Hence, since the decimation factor is (K/P), D has
all elements zero, except the elements di, j with j = (K/P)i ,
which will get the value 1. Similarly, the beamspaced steering
matrix AH

BS of size P × M is formed, composed of the P

beamspaced steering vectors

AH
BS = DH AH . (10)

Concretely, we form ABS ∈ CM×P by taking from AH each
(K/P)th steering vector. Thus, the model formed by (8) after
applying beamspace processing becomes

z[n] = DH ŝ[n] =
(

AH
BS A

)

x[n] + DH g[n] (11)

where x[n] of size K ×1 is the lateral profile at range n to be
estimated. Thus, we can see (11) as an inverse problem, where
z[n] is the DAS beamformed data corresponding to P < K

emissions, and considered as the observation data.

C. Beamforming Through Regularized Inverse Problems

Given the ill-posedness of the direct model in (11), we
propose hereafter to invert it using standard regularization
techniques. For achieving this, a cost function, denoted by
J (x[n]), consisting into the linear combination of two terms
is considered. The first term, denoted by J1(x[n]), represents
the data attachment, while the second, denoted by J2(x[n]),
is the regularization prior

J (x[n]) = J1(x[n]) + λJ2(x[n]) (12)

where λ is a scalar, called regularization parameter, that
adjusts the tradeoff between the fidelity to the data and the
regularization term. A large λ will strongly favor the a priori

about x[n], while a small λ gives a high confidence to the
observations. Keeping in mind that the additional noise in (11)

is Gaussian, the data attachment term is expressed by an
ℓ2-norm, giving the following cost function:

J (x[n]) =
∥

∥z[n] −
(

AH
BS A

)

x[n]
∥

∥

2
2 + λJ2(x[n]). (13)

In this paper, the choice of the regularization term J2(x[n])
is guided by the existing literature on statistical modeling of
US images, previously applied to various applications such as
image deconvolution or segmentation (see [14], [33]). It has
thus been shown that Laplacian and Gaussian statistics are
well adapted to model US images. For this reason, we give in
the two following paragraphs the mathematical derivations and
BF results using ℓ1 norm (the sum of absolute difference) and
ℓ2 norm (or the Euclidean norm, that is, the sum of squared
difference) regularization terms. We should note that while
the first will promote sparse solutions, the latter will promote
smoother results.

The choice of a quadratic data fidelity term is related to
the additive zero-mean Gaussian assumption on the noise. We
emphasize that the noise considered in our paper is different
from the multiplicative speckle noise generally assumed to
affect envelope images in US imaging. Instead, the additive
noise considered in our paper affects the RF data and is
caused by the acquisition process. The same model has been
previously used by several authors (see [14], [31]).

1) Laplacian Statistics Through Basis Pursuit: Considering
that the signal x[n] to be beamformed follows Laplacian
statistics, the minimization of the cost function in (13) turns
into the optimization procedure in the following, usually called
BP in the literature [34]:

xBP[n] = argmin
x[n]

(∥

∥z[n] −
(

AH
BS A

)

x[n]
∥

∥

2
2 + λ‖x[n]‖1

)

(14)

where ‖ · ‖1 denotes the l1 norm. The minimization prob-
lem (14) is convex, hence continuous, and has one global
minimum for any λ > 0.

Herein, we used the well-known YALL1 to solve (14) [35], a
software package that contains implementation of alternating
direction method that also solves BP. A comparison of the
six mostly used BP implementations is done in [36], and
three of them were also compared in [37] with application
in underwater acoustics, where it is shown that YALL1 gives
the best performances for real-time applications.

2) Gaussian Statistics Through Least Squares: To achieve
smooth solutions of the proposed BF method, we modeled our
problem with an ℓ2-norm-based minimization function, and we
used the Tikhonov regularized least-squared method (or rigid
regression) for solving it [38]. The cost function is of the form

xLS[n] = argmin
x[n]

(∥

∥z[n] −
(

AH
BS A

)

x[n]
∥

∥

2
2 + λ‖x[n]‖22

)

(15)

where ‖ · ‖2 denotes the ℓ2-norm. For solving (15), we used
its analytical solution

xLS[n] =
((

AH
BS A

)H (

AH
BS A

)

+ λI K×K

)−1(
AH
BS A

)H
z[n]

(16)

where I K×K denotes the identity matrix of size K × K .



In order to obtain the BP and LS beamformed images, for
each time sample n, with n ∈ {1, . . . , N}, we estimate its
corresponding lateral scanline xBP[n] (using BP BF method)
or xLS[n] (using LS BF method), and we are juxtapos-
ing all the obtained scanlines, in the axial direction of the
image.

IV. EXPERIMENTS

For evaluating the proposed BP BF and LS BF approaches,
we considered different types of simulated and experimental
data. We compared our BF results with DAS (Section II),
MV (Appendix A), multibeam Capon (Appendix C), and
IAA (Appendix D) BF methods. The simulations were made
using the Field II program (see [39], [40]). The first simulation
includes a sparse medium, the second one contains a circular
hypoechoic cyst in a medium with speckle, and the third
one contains a simulation of the short axis (SAx) view of
a cardiac image, as suggested in [41]. The first experimental
data consist in a carotid that was recorded with an Ultrasonix
MDP research platform. Finally, the second experimental data
contain a thyroid medium with a malignant tumor. The thyroid
data were recorded with the Sonoline Elegra clinical scanner,
modified for research purpose. The parameters of the simulated
and experimental data are presented in Table I. Note that for
MV and multibeam Capon beamformers, spatial and temporal
averaging, as well as diagonal loading technique are used
for the estimation of the covariance matrix, as discussed
in Section VI.

An important aspect is that, when applying the proposed
BF methods, five times [(K/P) = 5] less emissions were
used in the BF process, by applying the beamspace process-
ing presented in Section III-B. This hangs on for all the
examples we are presenting in this paper. For these exam-
ples, reducing five times the US transmissions is optimal
in terms of gain in resolution, while reducing computational
time.

The values of the regularization parameter λ for all the
presented examples are grouped in Table I. The optimal value
of λ was chosen manually. We emphasize that this was the case
for all hyperparameters of all comparative methods. Several
studies exist in the literature for automatic estimation of the
regularization hyperparameter (see [42]–[44]) that can improve
the robustness of the proposed methods, at increased compu-
tational cost. Nonetheless, their implementation is beyond the
scope of this paper.

A. Parameters for the Comparative Methods

The results of MV BF were obtained using the implemen-
tation described in [9]. The length of the spatial averaging
window, L, was defined as half of the number of the probe’s
elements, i.e., L = (M/8). A temporal window of ten samples
was used in our examples, and the diagonal loading parameter
was fixed to 1 = (1/10L). The adaptive coherence method
was applied to the MV BF method.

The results of multibeam Capon were obtained using the
multibeam approach suggested in [11]. The K emissions
were uniformly distributed between ±30°. The beamspace
transform down to 33 dimensions was applied, able to retain

the variance for incoming narrowband far-field signals. The
diagonal loading factor was set to 0.01.

Finally, for IAA implementation, we used the source code
provided in [12]. The number of iterations was set to 15 for
our examples.

Note that for all the comparative methods, several parame-
ters need to be carefully tuned in order to obtain acceptable
results. However, using the proposed approach, only the reg-
ularization hyperparameter λ needs to be set.

B. Simulated Point Reflectors

The medium contains five point reflectors, four of them
aligned in pairs of two and separated by 4 mm, and the other
laterally centered at 0 mm. They are located at axial depths
ranging from 63 to 68 mm, with a transmit focus at 65 mm
and a dynamic receive focalization.

C. Simulated Phantom Data

To evaluate the accuracy, contrast and resolution of the
aforementioned beamformers, a hypoechoic cyst of radius
5 mm, located at the depth 80 mm, in a speckle pattern.
The speckle pattern contains 50000 randomly placed scatter-
ers, with Gaussian-distributed amplitudes. This example was
inspired from the simulation of a synthetic kidney example
included in Field II software. The attenuation was not taken
into account.

D. Simulated Cardiac Image

The SAx view is the cross-sectional view of the heart and
is a well-exploited perspective in echocardiography, containing
information about the left ventricle (LV) and right ventricle.
In our simulation, we visualize the LV. The transmit focus
point is set at 65 mm. The final image is ultrarealistic, the
amplitudes being related to an in vivo cardiac image [41]. The
number of scatterers was sufficiently large to produce fully
developed speckle.

E. In Vivo Data: Carotid

The carotid US is a common procedure used to detect
strokes or the risk of strokes due to the narrowing of the
carotid arteries. The data were acquired from a healthy subject,
with the Ultrasonix MDP research platform, attached with
the parallel channel acquisition system, SonixDAQ. The linear
ultrasonic probe L14-W/60 Prosonic (Korea) of 128 elements
was used.

F. In Vivo Data: Thyroid

The thyroid US is done to visualize the thyroid gland to
detect possible tumors or deformations. Two sets of data
were acquired: first one, from a subject with a tumor and
the other one from a healthy subject. For both acquisitions,
we used the clinical Sonoline Elegra US system modified for
research purposes, and a 7.5L40 P/N 5260281-L0850 linear
array transducer of Siemens Medical Systems, having the
characteristics described in Table I.



TABLE I

PARAMETERS OF SIMULATED AND EXPERIMENTAL IMAGES

G. Image Quality Measures

Three image quality metrics were evaluated: the contrast-
to-noise ratio (CNR), the signal-to-noise ratio (SNR), and
the resolution gain (RG). They were computed based on the
envelope-detected signals independent of image display range.

Based on two regions R1 and R2 belonging to two different
structures, CNR is defined as [45]

CNR = |µR1 − µR2 |
√

σ 2
R1

+ σ 2
R2

(17)

where µR1 and µR2 are the mean values in the regions
R1 and R2, respectively, and σR1 and σR2 are the standard
deviations of intensities in R1 and R2, respectively.

The SNR is defined as the ratio between the mean value µ

and the standard deviation σ in homogeneous regions [12]

SNR = µ

σ
. (18)

The RG is defined in [46] as the ratio between the nor-
malized autocorrelation function with values higher than 3 dB
(computed for the DAS beamformed image in our case), over
the normalized autocorrelation function (higher than 3 dB) of
the images formed using the other aforementioned BF methods
(MV, multibeam Capon, IAA, BP, and LS). Note that a value of
RG > 1 needs to be achieved for achieving a better resolution
than DAS beamformer.

V. RESULTS AND DISCUSSION

A. Individual Point Reflectors

With this simulation, we evaluate the potential of the
proposed methods in sparse media. The resulted beamformed
images are illustrated in Fig. 3. The result of DAS BF is

Fig. 3. (a) DAS, (b) MV, (c) multibeam Capon, (d) IAA, (e) BP, and
(f) LS BF results of the simulation of individual point scatterers.

shown in Fig. 3(a). Using the MV BF, the lateral resolution
is improved compared with DAS, IAA, and LS BF [see
Fig. 3(b)], and it is comparable with the result of multibeam



Fig. 4. Lateral profiles at 65-mm depth of the point reflectors represented
in Fig. 3.

TABLE II

CNR, SNR, AND RG VALUES FOR THE SIMULATED PHANTOM IN FIG. 5

Capon BF [Fig. 3(c)]. Concerning the IAA beamformed result,
as stated in [12], it gives better point-target resolvability than
DAS [Fig. 3(d)]. The proposed BP BF has the best resolution
of the point-like reflectors, being able to perfectly detect the
five reflectors, by obtaining the most narrower mainlobes, due
to the fact that BP results in a sparse representation of the
beamformed signals [Fig. 3(e)]. As expected, LS beamformer
results in solutions that tend to be smooth and regular, as
in Fig. 3(f).

Fig. 4 presents the lateral profiles of the compared BF
methods at 65 mm. We can observe that multibeam Capon
and MV are comparable in terms of lateral profiles, but MV
offers better delimitation of the two points. As observed, BP
BF outperforms the other BF methods, being able to perfectly
resolve the two points, also suppressing the sidelobes. Finally,
LS BF gives the smoothest result.

B. Simulated Hypoechoic Cyst

The BF results of a hypoechoic cyst in a speckle pattern
are shown in Fig. 5. We have highlighted with white circle
the true borders of the cyst, in order to show the accuracy
of the proposed methods regarding the dimensionality of the
scanned structures.

The image quality metrics are detailed in Table II.
To calculate the CNR, we have considered the region R2 inside

Fig. 5. (a) DAS, (b) MV, (c) multibeam Capon, (d) IAA, (e) BP, and
(f) LS BF results of the hypoechoic cyst simulation.

the hypoechoic cyst (the black region), and the region R1
inside the homogeneous speckle, at the same depth and with
the same dimension as the region R2, as suggested in [5].
The SNR was computed for R1. For calculating RG, the
whole image was considered. As expected, with DAS, the cyst
appears more narrow due to the low resolution and its low
capability of resolving cyst-like structures inside the speckle
pattern [Fig. 5(a)]. Using MV, we slightly increase the contrast
and the resolution in the final image compared with DAS,
the dimension of the cyst being closer to its real dimension,
as shown in Fig. 5(b). Better resolution is obtained when
the multibeam Capon is used, the RG being increased by a
factor of almost 1.4. The improvement in resolution can also
be observed in the delimitation of the cyst region compared
with the white circle that represents the real dimension of the
cyst [see Fig. 5(c)]. Compared with DAS, IAA increases the
resolution of the beamformed image, but not as much as MV
or multibeam Capon [Fig. 5(d)]. However, a contrast degra-
dation can be observed from Table II. Finally, the proposed
methods are reflecting more correctly the real dimension of the
cyst, especially when using the BP BF [Fig. 5(e)], this being



Fig. 6. Lateral profiles at 80-mm depth of the cyst phantom represented
in Fig. 3.

Fig. 7. Variation of (a) CNR and (b) SNR versus λ when the BP method
was applied to the hypoechoic cyst simulation [Fig. 5(e)].

in concordance with the high increase in resolution (with a
factor of two compared with MV) and contrast. As expected,
LS tends to favor continuity and smoothness, especially when
dealing with the speckle pattern [see Fig. 5(f)], the gain in
resolution being less important. However, even so, it is more
precise in reflecting the dimensionality of the cyst. Note that
in terms of SNR, in comparison with DAS, all the other
beamformers give better SNR, the best improvement being
obtained with LS BF, which is also outperforming the other
beamformers in terms of contrast.

Fig. 6 presents the lateral profiles of the results presented
in Fig. 5, where the previous observations are confirmed.
The curves in Fig. 6 are computed by averaging 15 lateral
profiles around a depth of 80 mm. The proposed methods, BP
and LS, have larger mainlobes than the other BF methods,
which correspond to the true dimension of the hypoechoic
cyst. We can also confirm the increase in contrast presented
in Table II in the case of BP and LS BF approaches.

Fig. 7 presents the variation of CNR and SNR parameters
as a function of λ hyperparameter in the case of BP BF.
We can observe that a favorable compromise between CNR
and SNR is reached when λ = 0.5. The value of CNR can

Fig. 8. Variation of (a) CNR and (b) SNR versus λ when the LS method
was applied to the hypoechoic cyst simulation [Fig. 5(f)].

TABLE III

CNR, SNR, AND RG VALUES FOR THE SIMULATED US CARDIAC

BEAMFORMED IMAGES IN FIG. 9

be improved by increasing the value of λ. For example, when
λ = 0.9, CNR = 6.61, but the value of SNR is reduced,
SNR = 0.55. Similarly, decreasing the value of λ will increase
the value of SNR, while losing in CNR. Similarly, with Fig. 7,
Fig. 8 presents the variation of CNR and SNR function of λ

hyperparameter in the case of LS BF.

C. Simulated Cardiac Image

The results of BF the cardiac medium are shown in Fig. 9.
With this example, we are interested in visualizing the LV
region (hypoechoic), which is surrounded by the hyperechoic
regions containing the anterior and posterior walls of the heart
as well as the septum. The small echoic regions inside the
LV region are the papillary muscles, which due to the low
contrast and resolution of the DAS beamformed image are hard
to be distinguished [Fig. 9(a)]. A better visualization of the
walls is obtained with MV [Fig. 9(b)] and multibeam Capon
[Fig. 9(c)], also resulting in an improved resolution, confirmed
with a higher RG value (see Table III). For the calculation of
the CNR, we considered R1 the region inside the white square,
situated at approximately 18 (laterally) and around 55 mm
(axially), while R2 is delimited by the black square, around
−20 (laterally) and 55 mm (axially). To compute SNR, the
R1 region was considered.

An interesting observation is that the value of the CNR
in the case of MV and multibeam Capon is not improved
compared with DAS. This is explained by the results in [5],
where it has been shown that the improvement of the contrast



Fig. 9. (a) DAS, (b) MV, (c) multibeam Capon, (d) IAA, (e) BP, and
(f) LS BF results of the simulation of a cardiac image.

directly depends on the high definition of the regions (the LV,
the septum, and the walls in our example). Since the amplitude
of the reflectors from the walls and septum are not so high
compared with the region of LV that contains speckle, the
contrast of the final image is affected. However, IAA improves
both the contrast and the resolution of the image, presenting
more defined regions, as shown in Fig. 9(d). Yet, the best
improvement of the resolution is obtained when we promote
Laplacian BF solutions, with BP BF [see Fig. 9(e)], resulting
in an improvement by a factor of two in RG compared
with MV and multibeam Capon and by a factor of almost
ten compared with DAS. Of course, as expected, LS BF is
highly improving the contrast and the SNR of the resulted
image, while the RG is lower than when using the other BF
approaches [Fig. 9(f)].

D. In Vivo Data: Carotid

Fig. 10 presents the BF results of the studied beamformers,
and in Table IV, we calculated their corresponding CNR,

Fig. 10. (a) DAS, (b) MV, (c) multibeam Capon, (d) IAA, (e) BP,
and (f) LS BF results of experimental carotid data.

TABLE IV

CNR, SNR, RG, AND COMPUTATIONAL TIME VALUES FOR THE

EXPERIMENTAL CAROTID BEAMFORMED IMAGES FROM FIG. 10

SNR, RG, and computational time values. In this example,
the carotid is placed between 8 and 15 mm in the axial
direction. In this region, the interior of the carotid artery is the
hypoechoic structure surrounded by the arterial walls (which
are hyperechoic). To calculate the CNR, we have considered
region R2 inside the carotid (the white rectangle positioned at
0 mm laterally) and the region R1 inside the region of speckle
(the black rectangle positioned at 0 mm laterally). The SNR
for R1 was computed.



As observed, using DAS BF is hard to distinguish between
the interior of the carotid and its walls [Fig. 10(a)]. This can
also be explained by the fact that DAS BF result represents
the lower RG. A better visualization of the structures of
interest is obtained with MV and multibeam Capon, which
have similar RG values. However, the contrast of the MV
beamformed image is better, increasing the value of CNR
by a factor of ≈1 compared with multibeam Capon. We can
observe that multibeam Capon is clearly defining the region
inside the carotid, by reducing the level of speckle inside it
[see Fig. 10(c)]. The IAA beamformed image is comparable
with the one of multibeam Capon, but it conserves better the
speckle inside the carotid, offering a better resolution and a
better contrast of the image. With the proposed approaches,
however, we are able to better distinguish the interior of the
carotid artery, as well as its walls, with a high gain in contrast
and resolution resulted by applying BP BF. A loss in resolution
can be observed when using LS, compared with BP, due to
the use of the ℓ2-norm regularization. Note that, due to the
formulation of the proposed direct model (8) that includes an
additive noise, the proposed method is intrinsically denoising
the signal (e.g., the noise inside the carotid is reduced) through
the inversion process (see Table IV). The denoising effect
obtained by our BF approach does not suffer from any spatial
resolution loss, as it could be the case if the raw data or the
beamformed images were low-pass filtered.

Regarding the computational time, note that it is highly
dependent on the length of the acquired raw data. For this case,
the number of ranges was around N = 2500, and the proposed
approaches were applied without a previous decimation of the
raw data. Of course, the standard parallel computing meth-
ods could additionally improve the computational complexity,
since the BF process is done for each lateral scanline. All the
discussed methods were implemented with MATLAB R2013b,
on an Intel i7 2600 CPU working at 3.40 GHz. Note that
even so, LS BF is approaching the time capabilities of DAS,
being just twice slower than DAS. Moreover, BP is also faster
than MV. Thus, using the discussed techniques for improving
the computational expense makes the two proposed methods
good candidates for real-time applications.

E. In Vivo Data: Healthy Thyroid

Fig. 11 presents the BF results of healthy thyroid data.
The thyroid (echoic region) is situated between the trachea
and the carotid artery (laterally, between −20 and 30 mm
approximately). Fig. 11(a) illustrates the result obtained with
DAS BF. As expected, the contrast of the image is low and it
is hard to distinguish the thyroid structure from the trachea,
especially in the top-left part of the thyroid. However, when BP
[Fig. 11(b)] and LS [Fig. 11(c)] are used, the thyroid region is
easy to be identified, and the contrast of the image is increased.

The values of CNR, SNR, and RG are depicted in Table V.
To compute CNR, we considered the region R2 inside the
thyroid (the black circle positioned at approximately −10 mm
laterally) and the region R1 inside trachea (the white circle
positioned at approximately −40 mm laterally). The SNR for
R1 was computed. We can observe that the best values of

Fig. 11. (a) DAS, (b) BP, and (c) LS BF results of in vivo healthy thyroid
data.

TABLE V

CNR, SNR, AND RG VALUES FOR THE In Vivo HEALTHY

THYROIDAL BEAMFORMED IMAGES FROM FIG. 11

the CNR and SNR are obtained when the LS method was
applied, the thyroid region being obvious to be discerned.
The boundaries of the carotid artery are also well defined
[Fig. 11(c)].

F. In Vivo Data: Thyroid With Tumor

The beamformed results of the thyroid data with tumor are
presented in Fig. 12. The malignant tumor with an irregular
structure can be seen between the left lobe of the thyroid (the
hyperechoic structure situated near the trachea) and the carotid
artery [the hypoechoic circular structure with the center at
approximately 33 mm (axially) and 40 mm (laterally)]. We can
observe that, contrarily to DAS beamformed image, where
the tumor is hard to be distinguished [see Fig. 12(a)], both
our methods improve the visualization of the main structures,
enhancing the edges of the tumor. The values of CNR, SNR,
and RG are depicted in Table VI, where a gain in resolution
with a factor of almost three can be observed when using BP,
compared with DAS, while with LS, we obtain a higher
improvement in contrast and SNR than with BP BF. CNR
was computed by considering region R2 inside the tumor (the
black circle positioned at 0 mm laterally) and the region R1
inside the left lobe of the thyroid (the white circle positioned



Fig. 12. (a) DAS, (b) BP, and (c) LS BF results of in vivo thyroid data with
tumor.

TABLE VI

CNR, SNR, AND RG VALUES FOR THE In Vivo THYROIDAL

BEAMFORMED IMAGES FROM FIG. 12

at approximately −20 mm laterally). The SNR for R1 was
computed.

VI. CONCLUSION

We have presented a new BF approach in US medical
imaging that solves a regularized inverse problem based on
a linear model relating, for each depth, the US reflected data
to the signal of interest. Contrarily to existing techniques
that use adaptive or nonadaptive weights to average the raw
data in order to form RF lines, we directly recover, for
each depth, the desired signals using Laplacian or Gaussian
statistical assumptions. The proposed regularization-based BF
allows us to take advantage of the beamspace processing that
enables to highly reduce the number of US transmissions
(by a factor of five in our examples), while improving the
quality of the beamformed images compared with four existing
beamformers. Multiple simulated and experimental examples
were presented, which compare our approach with DAS, MV,
multibeam Capon, and IAA beamformers. We showed that
our BF approaches, based on Laplacian and Gaussian prior
information, although based on the same model, are comple-
mentary in terms of result quality. Thus, Laplacian statistics
are favoring sparse results, while the Gaussian law is offering

more regular and smooth images. We also proved through
RG, CNR, and SNR image quality metrics that we obtained
an important gain in spatial resolution and/or in contrast,
while maintaining a reasonable computational time compared
with other existing techniques. As a future work, we will
consider other statistical assumptions, such as the generalized
Gaussian distribution, resulting in ℓp-norm minimization with
the parameter p between 0 and 2. Following the choice
of p, this should guarantee a better compromise between the
gain in contrast and the improve of the spatial resolution
(see [27], [47], [48]). Another way to obtain this compromise
could be to combine the two regularization terms (through
Laplacian and Gaussian statistics) used in our approach, result-
ing in an elastic net regularization (see [26], [49]).

Another interesting perspective offered by our BF direct
linear model is the possibility to combine it with existing
postprocessing techniques, aiming to enhance the quality of
US images, such as deconvolution or super-resolution.

Including the knowledge of the PSF in our beamformer
will also facilitate the comparison with existing regularized
BF methods in medical US imaging.

APPENDIX A
MINIMUM VARIANCE BEAMFORMING

MV (or Capon filter) BF [50] consists in minimizing the
array output power by maintaining a unit gain at the focal
point. It adaptively calculates the weights, by solving

min
w

w
H Rkw, such that w

H1 = 1 (19)

with the analytical solution

wMV =
R−1

k 1

1T R−1
k 1

(20)

where Rk = E[ yk yH
k ] is the covariance matrix of yk and 1 is a

length M column vector of ones. These weights are then used
to calculate the desired RF beamformed lines in a similar way
as with DAS. In practice, Rk is unavailable and the estimated
covariance matrix R̂k is used as alternative, derived from L

received samples

R̂k =
L

∑

l=1

yk(l)yH
k (l). (21)

Since the received focused raw data are coherent, several
methods were proposed to decorrelate the data as much as pos-
sible: subaperture (or subarray) averaging (also called spatial
smoothing), time averaging, and diagonal loading significantly
improve the standard MV BF (see [51]).

APPENDIX B
BEAMSPACE BEAMFORMING

Starting from the MV BF method presented in Section VI,
named element-space-based Capon (ES-Capon), Nilsen and
Hafizovic [10] proposed a beamspace beamformer (BS-Capon)
that allowed reducing the computational complexity of the
MV BF by a ratio of three. Basically, they reduce the size
of the covariance matrix in (21) by replacing it with a smaller
covariance matrix of orthogonal beams. The expression of



the orthogonal beams is detailed in [10], and the beamspace
transformation is expressed as follows:

ykBS
= B yk (22)

where B = [b1, . . . , bM ]T is the M × M Butler matrix whose
elements are defined as

bmn = 1√
M

e
j 2π

M

(

m− 1
2

)

n
. (23)

B is a unitary matrix (B BH = BH B = I M×M ), equivalent
to an M-point discrete Fourier transform matrix. I M×M is the
identity matrix of size M × M .

The transformation in (22) is applied to all signals and
weights vectors in the ES to find their beamspaced version.
Therefore, the weights of ES-Capon BF are formed by solving

min
wBS

w
H
BSRBSwBS, such that w

H
BSe1 = 1. (24)

The solution of (24) is

wBS = R−1
BSe1

eT
1 R−1

BSe1
(25)

where RBS = E[ ykBS
yH

kBS
] is the covariance matrix of ykBS

and em is an M × 1 vector having the value 1 in the mth
position and zero in all other positions. Finally, we can state
that BS-Capon BF can be seen as the description of the Capon
filter from (20) in the Fourier domain.

As stated before in this section, in the case of DAS, MV,
and BS-Capon BF, the final RF US image is a collection of
RF beamformed lines, each of which being the result of BF
the raw RF signals coming from a focused wave emission in
the direction θk , k ∈ {1, . . . , K }, using the M elements of the
transducer.

The most commonly used visualization mode in US medical
imaging is the B (brightness)-mode. It is obtained by applying
envelope detection and log-compression techniques to each
beamformed RF line. Finally, all the RF lines are juxtaposed
in the lateral direction to form the final 2-D US image, as
shown in Fig. 1.

APPENDIX C
MULTIBEAM CAPON BEAMFORMING

Jensen and Austeng [11] used beamspace processing for
reducing the dimensionality of the data, and proposed a new
approach of Capon BF, called multibeam Capon BF. For more
convenience, let us briefly recall their approach.

For a given range n, let us select its corresponding lateral
scanline, as illustrated in Fig. 1. Since the signals ykBS

have
been focused in axial direction (by applying time delays)
before being beamformed, we just need to compensate for the
phase shifts based on the distances from the samples of the
lateral scanline (equivalent, in our case, with K , the number
of beam directions).

The compensation of the phase shifts, 1φm , with
M = 0, . . . , M − 1, is depicted in Fig. 13, assuming that
the time-compensated data reach the elements at angle θk .
We consider the first elements as reference, so its phase
shift is zero. Thus, based on the far-field assumption, we can

Fig. 13. Phase shift compensation of the focused raw data.

formulate the complex exponential version of the manifold
vector for a given direction k, which corresponds to the
incident angle θk , as (see [11], [52])

aθk = [1 e− jπ sin(θk) · · · e− j (M−1)π sin(θk)]T . (26)

Thus, using phase shifts, for focusing along a lateral
scanline, contrarily to the matrix RBS used in BS-Capon,
for a given range n, the covariance matrix R[n] will cover
all the directions θk, k = 1, . . . , K . Therefore, the weights
corresponding to a given direction θ and a range n will be
formed by solving

min
w

w
H R[n]w, such that w

H aθ,n = 1 (27)

having the solution

wθ,n = R−1[n]aθ,n

aT
θ,n R−1[n]aθ,n

. (28)

These weights are then applied to calculate the signal corre-
sponding to a lateral scanline, at a range n.

APPENDIX D
ITERATIVE ADAPTIVE APPROACH BEAMFORMING

Based on the beamspace processing technique and on the
calculation of the multibeam covariance matrix discussed in
Section VI, Jensen and Austeng [12] applied IAA [13] to US
medical imaging. Following this recent work, a covariance
matrix, R̄[n] based on K̄ potential reflectors placed across
a considered lateral scanline, was defined as:

R̄[n] =
K̄

∑

k=1

| yBS[n]|2aθ aT
θ = ABS P AT

BS (29)

with yBS[n] ∈ CNb×K̄ the beamspaced time-delayed raw data
at a given range n, before applying the phase-shift transform.
A is the matrix containing the manifold column vectors
defined in (26), and P is a diagonal matrix with the elements
of | yBS[n]|2 along its diagonal. The values of P are then
iteratively updated and calculated by taking into account the
weights corresponding to a lateral scanline, by following (28).
Finally, P is used to estimate the amplitude of each reflector
of the IAA BF result.

Contrarily of DAS, MV, and BS-Capon BF where, to form
the final beamformed image, the RF lines are juxtaposed in
the lateral direction, multibeam Capon and IAA BF are axially
juxtaposing the beamformed lateral scanlines to form the final
beamformed image.
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