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Abstract

This article presents a new method for analyzing Automatic

Speech Recognition (ASR) results at the phonological feature

level. To this end the Levenshtein distance algorithm is refined

in order to take into account the distinctive features opposing

substituted phonemes. This method allows to survey features

additions or deletions, providing microscopic qualitative infor-

mation as a complement to word recognition scores. To explore

the relevance of the qualitative data gathered by this method,

a study is conducted on a speech corpus simulating presbycusis

effects on speech perception at eight severity stages. Consonan-

tic features additions and deletions in ASR outputs are analyzed

and put in relation with intelligibility data collected in 30 human

subjects. ASR results show monotonic trends in most conso-

nantic features along the degradation conditions, which appear

to be consistent with the misperceptions that could be observed

in human subjects.

Index Terms: Microscopic Intelligibility, Levenshtein Dis-

tance, Phonological Features, ASR

1. Introduction

Today most of the models and systems developed to predict

speech intelligibility, whether based on ASR techniques [1, 2, 3]

or not (ex. Rasti [4]) are designed to fit quantitative data

only, i.e. percent correct words observed in human listeners.

These approaches could therefore be complemented by qual-

itative data brought by microscopic intelligibility prediction,

which attempts to predict (mis)perceptions observed in humans

[5]. Such qualitative data could help to diagnose and qualify in

a more precise way the degradations occurring in speech signals

– whether they appear during speech production, transmission

or reception.

The goal of this present work is twofold. Firstly, it aims

at presenting a method for the calculation of phonologically

weighted Levenshtein distances (PWLD), which can be used

to get more precise distances between target words and recog-

nized words than simple edition distances, and which also were

found to constitute better predictors of speech intelligibility [6].

Secondly, an exploratory study is reported, which aims at using

PWLD to monitor phonological features additions and deletions

in degraded speech simulating age-related hearing losses.

2. Assessing ASR performances at the
phonological feature level with the PWLD

method

2.1. The use of Levenshtein algorithm to calculate phono-

logical distances

The Levenshtein algorithm [7] permits to calculate the edi-

tion distance between two symbol strings, that is the minimal

number of symbol additions, substitutions or deletions that are

needed in order to transform a string a into a string b. The Lev-

enshtein algorithm is based on dynamic programming and can

be formalized as in the equation 1 (inspired by the work of [8])

if considering that all editing operations are weighted with a

value equal to 1.

if min(i, j) = 0 leva,b(i, j) = max(i, j)

else leva,b(i, j) = min











leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

where ai 6=bj
is a function returning 0 when ai=bj

and 1 otherwise

(1)

The Levenshtein distance is used for a great variety of appli-

cations, among which the calculation of phonological distances

between words. It is used for example in the field of dialec-

tology to survey the distance between cognates and calculate

the mutual intelligibility of two linguistic systems [9, 10]. For

example, following the calculation presented in (1) the Lev-

enshtein distance between the two phonetic strings [p@ti] and

[apeti] is 2, because two operations are required to pass from

one to another: the deletion of the consonant [p] and the substi-

tution of the central vowel [@] by the front vowel [e].

2.2. Taking phonologic features into account for weighting

phoneme substitutions

Using the Levenshtein algorithm as described in (1) to calcu-

late phonological distances between lexical units does not ac-

count for the fact that two phonemes may be more or less close

depending on the number of distinctive features they share to-

gether. For example, the distance between the French words

/bo/ (beau) and /põ/ (pont) is the same as between /bo/ (beau)

and /öi/ (riz), that is 2, even thought the first pair of words

shares more phonological features than the second pair and may

thus be thought as much closer perceptively.



To refine the baseline version of the algorithm and to be

able to calculate PWLD the indicator function ai 6=bj given in

equation (1) was replaced by a function returning:

• 1 if the substituted phonemes ai
and bj were opposed on

the vocalic feature (e.g. a vowel and a consonant);

• the number of features distinguishing the substituted

phonemes ai
and bj divided by the total number of

phonological features otherwise. For example if the

phoneme /p/ is substituted by /b/, the function will re-

turn 1/8, that is 0.125, because only the voice feature

distinguishes the two units among the eight features con-

sidered in consonants.

Table 1: Examples of phonologically weighted Levenshtein dis-

tances (PWLD) and non weighted Levenshtein distances (LD).

Word #1 Word #2 LD PWLD

/batõ/
/pato/ 2 0.29

/pitõ/ 2 0.63

/bani/ 2 1.17

For a direct application to French language the distinc-

tive features considered in the algorithm were those described

by [11], consisting of eight features distinguishing between con-

sonants vs. six features for vowels. As an illustration Table 1

shows phonological distances between French words using the

Levenshtein distance in its original form vs. with a weighting

based on phonological features. Using this method, feature-

level information can be extracted from the errors made by an

ASR system. When computing the PWLD between the target

utterances and the ASR responses, information can indeed be

gathered about which phones were substituted and thus about

which phonological features were added or deleted during these

substitutions.

3. Using PWLD to study
micro-intelligibility of speech signals

simulating presbycusis

To conduct a first exploration of the reliability and relevance

of the phonological feature-level information gathered through

PWLD calculation on ASR results, we sought to apply this

method on a degraded speech corpus. To this end, speech stim-

uli simulating age-related hearing losses (presbycusis) at eight

severity stages were used. We expected to observe monotonic

trends in phonological features additions and deletions along

the degradation conditions, suggesting that the gathered data

is closely related to the modifications occurring at the acous-

tic level. The second objective of this study was to check if the

observed data was consistent with misperceptions observed in

human listeners.

3.1. Speech stimuli

A subset of the stimuli used in the study reported in [1] was

used. This subset consists of 60 disyllabic nouns, always pre-

ceded by the French definite article le. The words were recorded

by a native French male speaker, and were artificially degraded

in order to simulate presbycusis effects on speech perception

at eight different severity grades, leading to a set of 540 stim-

uli: 60 non degraded utterances + 60 utterances * 8 presbycusis

simulation conditions.

The signal degradations were done by using the algorithm

described in [12], taking as input parameters the eight audio-

grams presented in figure 1. The eight audiogram values were

calculated upon the basis of the hearing loss prevalence study

conducted by [13] in 3,753 subjects. They represent mean hear-

ing losses typically observed in people aged from 60 years old

(audiogram 1) up to 104 years old (audiogram 8). For each au-

diogram the algorithm produced new audio files simulating the

main effects of presbycusis by applying three signal processing

methods:

1. filters were used to simulate reduced audibility in differ-

ent frequency bands;

2. a spectral smearing algorithm was used to simulate re-

duced frequency selectivity [14];

3. the signal envelope was raised to a power of two for sim-

ulating the effect of loudness recruitment [15].
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Figure 1: Audiograms used to simulate presbycusis effects on

speech perception.

3.2. Methods

3.2.1. ASR system

An ASR system based on Sphinx-3 [16] and distributed by

Carnegie Mellon University was used, with acoustic models

including 35 phones and five kinds of pause. Acoustic mod-

els were trained on the basis of French radio broadcasts [17],

and made available by the Laboratoire d’Informatique de

l’Université du Maine (LIUM) for speech recognition in French

language [18, 19]. They are continuous models consisting

of 5,725 context-dependent states (22 Gaussian mixtures per

state), designed to process 16 kHz speech samples using a PLP

feature extraction [20]. A bigram language model was set up to

take into account the lexical and phonological characteristics of

the target words. Each item consisting of a definite article and

a noun beginning with a consonant (e.g. le vacher, [l@vaSe]),
a list of 15,146 French nouns responding to such constraints

was used. To reflect the frequency of these forms in spoken

French, the frequencies values defined by [21] and available in

the database Lexique 3.81 were also taken into account.

3.2.2. PWLD implementation and use

In order to get a maximum of information about the phonetic

confusions made by the ASR system, the use of several ASR

1http://www.lexique.org



outputs for each stimulus (n-best possibilities) was considered.

An optimal number of ASR outputs was defined by analyzing

the recognition scores improvement brought by each increment

in best possibilities cardinal, based on the recognition of the 60

non degraded words of the corpus (figure 2). The regression fit

shows that the recognition score improvement reaches a ceiling

effect when using more than five best possibilities, suggesting

that the amount of noise in ASR results may also increase above

this threshold. As a result, only the five best possibilities given

by the system were used to calculate phonological distances.
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Figure 2: Absolute recognition scores improvement (% correct

words in a total set of 60 words) for each increment of the num-

ber of best answers considered in ASR system results, and re-

gression curve (R2 = .99).

For each stimulus and according to the algorithm described

in section 2, phonological distances between the target word

and the five best answers provided by the ASR system were

computed. During each PWLD calculation record was kept

about the phones substitutions and thus about the phonologi-

cal features additions or substitutions. This procedure led to

mean addition and deletion scores for each feature, as a function

of speech degradation condition. The non degraded condition

(“audiogram 0” condition) was used to normalize the scores.

3.2.3. Collecting human data

Data pertaining to human perception of the stimuli are taken

from a previous study involving speech intelligibility tests (rep-

etition task) in 30 French participants [1]. All participants were

native French speakers, aged from 18 to 30 years old, and did

not suffer from any hearing loss superior to 15 dB, on average,

between 2 kHz and 8 kHz. Contrary to the study reported in

[1], this present study focus was not set on intelligibility scores

(quantitative scores corresponding to percent correct words) but

rather on the “errors” made by listeners, that is the alternative

answers they provided and that may give qualitative informa-

tion on their misperceptions. To this end all alternative answers

given by participants were transcribed.

3.3. Results

3.3.1. Phonological feature changes in consonants

Figures 3 and 4 illustrate the percentage of phonological fea-

ture additions and deletions in ASR results, for consonants, as

a function of the eight presbycusis simulation conditions. The

condition 0 corresponds to the original recordings, without any

signal processing.

As it can be observed, most of the phonological feature

additions and deletions follow rather monotonic trends, show-
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Figure 3: Phonological feature additions in consonants, as a

function of presbycusis simulation condition.
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Figure 4: Phonological feature deletions in consonants, as a

function of presbycusis simulation condition.

ing either a global rise, decrease or a neutral trend along the

eight degradation conditions. As it can also be observed, the

standard deviations and the monotonicity of these curves are

variable. Some features show indeed great changes between

conditions 0 and 8 (e.g. addition of the continuant feature)

whereas some others show very little changes (e.g. addition of

the nasal feature). Concerning the monotonicity, some features

show very consistent variation trends along the degradation con-

ditions (e.g. addition of the continuant feature) whereas other

features seem to follow a more erratic behavior (e.g. additions

and deletions of the anterior feature).

3.3.2. Consistency with human listeners’ data: focus on the

continuant feature

As the most important and consistent effects (monotonic in-

creases of feature additions and decreases of feature deletions)

were found for the continuant feature, we chose to focus on
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Figure 5: Spectrograms and waveforms obtained for the word le taquin ( [l@takẼ] ), both in its original recording form (left) and after

applying the presbycusis simulation corresponding to the audiogram #7 (right).

this specific feature when observing human listeners’ data. The

continuant feature is the feature that distinguishes occlusive

phonemes from constrictive ones. Occlusive phonemes im-

ply a total occlusion during the first phase of their produc-

tion, followed by a sudden burst, especially important in un-

voiced phonemes such as /p, t, k/. On the contrary constrictive

phonemes imply an undisrupted flow of air during their produc-

tion. The data collected in humans is peculiar in that sense that

alternative answers (incorrect and non null answers) are mainly

present in degradations corresponding to audiograms 6, 7 and

8 (94 answers representing 76% of total alternative answers),

conditions in which the speech signal was difficult to under-

stand but was nonetheless not enough altered so that listeners

could perceive something. As a consequence, human answers

were not sufficiently numerous nor enough distributed along the

degradations to permit a statistical comparison with ASR re-

sults. Nevertheless, we conducted a qualitative analysis of hu-

man misperceptions that occurred in degradation conditions 6, 7

and 8. This exploratory qualitative analysis revealed that some

alternative answers given by human subjects clearly imply the

substitution of non continuant consonants by their continuant

counterparts at the same – or to a close – place of articulation

(see examples on Table 2: /p, b/→/f/, /t/→/s/).

Table 2: Examples of substitutions observed in listeners’ re-

sponses, and implying the addition of the continuant feature.

Target word Listener response Substitution

Pruneau (/pöyno/) Finot (/fino/) /p/→/f/
Répit (/öepi/) Refus (/ö@fy/) /p/→/f/
Dépôt (/depo/) Défaut (/defo/) /p/→/f/
Turbo (/työbo/) Football (/futbOl/) /t/→/f/
Bilan (/bilã/) Fila (/fila/) /b/→/f/
Taquin (/takẼ/) Saquin (/sakẼ/) /t/→/s/
Taquin (/takẼ/) Sac (/sak/) /t/→/s/
Dément (/demã/) Venin (/v@nẼ/) /d/→/v/

As the amount of human misperceptions data is limited, we

also searched for evidence about the deletion of acoustic data

supposed to be relevant for distinguishing between continuant

and non continuant phones. Figure 5 compares the original

spectrogram obtained for the target word [takẼ] and the spec-

trogram obtained for the same word at degradation 7. It can

be observed that the explosion phase of the plosive [t] almost

disappears at degradation 7, supporting the idea that it could be

confused with some realizations of continuant phonemes, as in

the alternative answers /sakẼ/ and /sak/ given by some partic-

ipants.

4. Conclusion and perspectives

This article presented a new method for analyzing ASR results

at the phonological feature level, using a refined version of the

Levenshtein distance algorithm. This method, potentially rel-

evant for the analysis of speech recognition in a broad range

of applications (e.g. robust ASR in adverse conditions, L2 and

disordered speech evaluation, dalectology), was here used to an-

alyze features additions and deletions occurring in ASR results

for speech simulating age-related hearing loss.

The results are rather encouraging. Firstly, the tenden-

cies observed in consonantic feature additions and deletions are

overall monotonic along degradation conditions, indicating that

there is a strong relation between speech signal quality and the

“errors” made by the ASR system at the phonological feature

level. Secondly, an analysis focusing on the continuant feature

suggests that these errors are consistent with human perception

of speech: in both ASR and human recognition data this feature

tends to be added as the degradation increases.

To deepen these results, the relevance of the method for pre-

dicting microscopic intelligibility will be investigated through

statistical analyses. To this end two leads are considered. The

first one is to conduct additional word repetition tests, concen-

trating on the degradation conditions that lead to the most nu-

merous alternative answers (i.e. audiograms 6 to 8). The other

solution is to conduct closed-set identification tasks constrain-

ing the subjects’ answers to particular phonetic contrasts such

as in minimal pairs. Eventually statistics will be computed in

order to quantify the strength of the association between ASR

and human misperceptions at the phonological feature level for

each degradation condition.
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nas, P. Gaillard, and X. Aumont, “Comparaison de mesures per-
ceptives et automatiques de l’intelligibilité de la parole : cas de la
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[18] Y. Estève, Traitement automatique de la parole: contributions.
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recherches.
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