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This article presents a new method for analyzing Automatic Speech Recognition (ASR) results at the phonological feature level. To this end the Levenshtein distance algorithm is refined in order to take into account the distinctive features opposing substituted phonemes. This method allows to survey features additions or deletions, providing microscopic qualitative information as a complement to word recognition scores. To explore the relevance of the qualitative data gathered by this method, a study is conducted on a speech corpus simulating presbycusis effects on speech perception at eight severity stages. Consonantic features additions and deletions in ASR outputs are analyzed and put in relation with intelligibility data collected in 30 human subjects. ASR results show monotonic trends in most consonantic features along the degradation conditions, which appear to be consistent with the misperceptions that could be observed in human subjects.

Introduction

Today most of the models and systems developed to predict speech intelligibility, whether based on ASR techniques [START_REF] Fontan | Automatic intelligibility measures applied to speech signals simulating age-related hearing loss[END_REF][START_REF] Maier | PEAKS -A System for the Automatic Evaluation of Voice and Speech Disorders[END_REF][START_REF] Schuster | Evaluation of Speech Intelligibility for Children With Cleft Lip and Palate by Means of Automatic Speech Recognition[END_REF] or not (ex. Rasti [4]) are designed to fit quantitative data only, i.e. percent correct words observed in human listeners. These approaches could therefore be complemented by qualitative data brought by microscopic intelligibility prediction, which attempts to predict (mis)perceptions observed in humans [START_REF] Marxer | A framework for the evaluation of microscopic intelligibility models[END_REF]. Such qualitative data could help to diagnose and qualify in a more precise way the degradations occurring in speech signals -whether they appear during speech production, transmission or reception.

The goal of this present work is twofold. Firstly, it aims at presenting a method for the calculation of phonologically weighted Levenshtein distances (PWLD), which can be used to get more precise distances between target words and recognized words than simple edition distances, and which also were found to constitute better predictors of speech intelligibility [START_REF] Fontan | Comparaison de mesures perceptives et automatiques de l'intelligibilité de la parole : cas de la parole dégradée par une simulation de la presbyacousie[END_REF]. Secondly, an exploratory study is reported, which aims at using PWLD to monitor phonological features additions and deletions in degraded speech simulating age-related hearing losses.

2.

Assessing ASR performances at the phonological feature level with the PWLD method 2.1. The use of Levenshtein algorithm to calculate phonological distances

The Levenshtein algorithm [START_REF] Levenshtein | Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[END_REF] permits to calculate the edition distance between two symbol strings, that is the minimal number of symbol additions, substitutions or deletions that are needed in order to transform a string a into a string b. The Levenshtein algorithm is based on dynamic programming and can be formalized as in the equation 1 (inspired by the work of [START_REF] Wagner | The string-to-string correction problem[END_REF]) if considering that all editing operations are weighted with a value equal to 1.

if min(i, j) = 0 lev a,b (i, j) = max(i, j) else lev a,b (i, j) = min      lev a,b (i -1, j) + 1 lev a,b (i, j -1) + 1 lev a,b (i -1, j -1) + 1 (a i =b j )
where a i =b j is a function returning 0 when a i =b j and 1 otherwise

(1)

The Levenshtein distance is used for a great variety of applications, among which the calculation of phonological distances between words. It is used for example in the field of dialectology to survey the distance between cognates and calculate the mutual intelligibility of two linguistic systems [START_REF] Heeringa | Measuring Dialect Pronunciation Differences using Levenshtein Distance[END_REF][START_REF] Beijering | Modeling Intelligibility and Perceived Linguistic Distances by Means of the Levenshtein Algorithm[END_REF]. For example, following the calculation presented in (1) the Levenshtein distance between the two phonetic strings [p@ti] and [apeti] is 2, because two operations are required to pass from one to another: the deletion of the consonant [p] and the substitution of the central vowel [@] by the front vowel [e].

Taking phonologic features into account for weighting phoneme substitutions

Using the Levenshtein algorithm as described in (1) to calculate phonological distances between lexical units does not account for the fact that two phonemes may be more or less close depending on the number of distinctive features they share together. For example, the distance between the French words /bo/ (beau) and /põ/ (pont) is the same as between /bo/ (beau) and /öi/ (riz), that is 2, even thought the first pair of words shares more phonological features than the second pair and may thus be thought as much closer perceptively.

To refine the baseline version of the algorithm and to be able to calculate PWLD the indicator function a i =b j given in equation ( 1) was replaced by a function returning:

• 1 if the substituted phonemes a i and b j were opposed on the vocalic feature (e.g. a vowel and a consonant); • the number of features distinguishing the substituted phonemes a i and b j divided by the total number of phonological features otherwise. For example if the phoneme /p/ is substituted by /b/, the function will return 1/8, that is 0.125, because only the voice feature distinguishes the two units among the eight features considered in consonants. For a direct application to French language the distinctive features considered in the algorithm were those described by [START_REF] Riegel | Les sons du franc ¸ais : phonétique et phonologie[END_REF], consisting of eight features distinguishing between consonants vs. six features for vowels. As an illustration Table 1 shows phonological distances between French words using the Levenshtein distance in its original form vs. with a weighting based on phonological features. Using this method, featurelevel information can be extracted from the errors made by an ASR system. When computing the PWLD between the target utterances and the ASR responses, information can indeed be gathered about which phones were substituted and thus about which phonological features were added or deleted during these substitutions.

Using PWLD to study micro-intelligibility of speech signals simulating presbycusis

To conduct a first exploration of the reliability and relevance of the phonological feature-level information gathered through PWLD calculation on ASR results, we sought to apply this method on a degraded speech corpus. To this end, speech stimuli simulating age-related hearing losses (presbycusis) at eight severity stages were used. We expected to observe monotonic trends in phonological features additions and deletions along the degradation conditions, suggesting that the gathered data is closely related to the modifications occurring at the acoustic level. The second objective of this study was to check if the observed data was consistent with misperceptions observed in human listeners.

Speech stimuli

A subset of the stimuli used in the study reported in [START_REF] Fontan | Automatic intelligibility measures applied to speech signals simulating age-related hearing loss[END_REF] was used. This subset consists of 60 disyllabic nouns, always preceded by the French definite article le. The words were recorded by a native French male speaker, and were artificially degraded in order to simulate presbycusis effects on speech perception at eight different severity grades, leading to a set of 540 stimuli: 60 non degraded utterances + 60 utterances * 8 presbycusis simulation conditions.

The signal degradations were done by using the algorithm described in [START_REF] Nejime | Simulation of the Effect of Threshold Elevation and Loudness Recruitment Combined With Reduced Frequency Selectivity on the Intelligibility of Speech in Noise[END_REF], taking as input parameters the eight audiograms presented in figure 1. The eight audiogram values were calculated upon the basis of the hearing loss prevalence study conducted by [START_REF] Cruickshanks | Prevalence of Hearing Loss in Older Adults in Beaver Dam, Wisconsin. The Epidemiology of Hearing Loss Study[END_REF] in 3,753 subjects. They represent mean hearing losses typically observed in people aged from 60 years old (audiogram 1) up to 104 years old (audiogram 8). For each audiogram the algorithm produced new audio files simulating the main effects of presbycusis by applying three signal processing methods:

1. filters were used to simulate reduced audibility in different frequency bands; 2. a spectral smearing algorithm was used to simulate reduced frequency selectivity [START_REF] Baer | Effects of Spectral Smearing on the Intelligibility of Sentences in the Presence of Noise[END_REF]; 3. the signal envelope was raised to a power of two for simulating the effect of loudness recruitment [START_REF] Moore | Simulation of the Effects of Loudness Recruitment and Threshold Elevation on the Intelligibility of Speech in Quiet and in Background of Speech[END_REF].
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Frequency (Hz) Figure 1: Audiograms used to simulate presbycusis effects on speech perception.

Methods

ASR system

An ASR system based on Sphinx-3 [START_REF] Seymore | The 1997 CMU Sphinx-3 English Broadcast News Transcription System[END_REF] and distributed by Carnegie Mellon University was used, with acoustic models including 35 phones and five kinds of pause. Acoustic models were trained on the basis of French radio broadcasts [START_REF] Galliano | The ESTER 2 Evaluation Campaign for the Rich Transcription of French Radio Broadcasts[END_REF], and made available by the Laboratoire d'Informatique de l'Université du Maine (LIUM) for speech recognition in French language [START_REF] Estève | Traitement automatique de la parole: contributions[END_REF][START_REF] Deléglise | LIUM Speech Transcription System: A CMU Sphinx III-Based System for French Broadcast News[END_REF]. They are continuous models consisting of 5,725 context-dependent states (22 Gaussian mixtures per state), designed to process 16 kHz speech samples using a PLP feature extraction [START_REF] Hermansky | Perceptual Linear Predictive (PLP) Analysis of Speech[END_REF]. A bigram language model was set up to take into account the lexical and phonological characteristics of the target words. Each item consisting of a definite article and a noun beginning with a consonant (e.g. le vacher, [l@vaSe]), a list of 15,146 French nouns responding to such constraints was used. To reflect the frequency of these forms in spoken French, the frequencies values defined by [START_REF] New | The Use of Film Subtitles to Estimate Word Frequencies[END_REF] and available in the database Lexique 3.8 1 were also taken into account.

PWLD implementation and use

In order to get a maximum of information about the phonetic confusions made by the ASR system, the use of several ASR outputs for each stimulus (n-best possibilities) was considered.

An optimal number of ASR outputs was defined by analyzing the recognition scores improvement brought by each increment in best possibilities cardinal, based on the recognition of the 60 non degraded words of the corpus (figure 2). The regression fit shows that the recognition score improvement reaches a ceiling effect when using more than five best possibilities, suggesting that the amount of noise in ASR results may also increase above this threshold. As a result, only the five best possibilities given by the system were used to calculate phonological distances.

Number of ASR best answers

Absolute gain Figure 2: Absolute recognition scores improvement (% correct words in a total set of 60 words) for each increment of the number of best answers considered in ASR system results, and regression curve (R 2 = .99).

For each stimulus and according to the algorithm described in section 2, phonological distances between the target word and the five best answers provided by the ASR system were computed. During each PWLD calculation record was kept about the phones substitutions and thus about the phonological features additions or substitutions. This procedure led to mean addition and deletion scores for each feature, as a function of speech degradation condition. The non degraded condition ("audiogram 0" condition) was used to normalize the scores.

Collecting human data

Data pertaining to human perception of the stimuli are taken from a previous study involving speech intelligibility tests (repetition task) in 30 French participants [START_REF] Fontan | Automatic intelligibility measures applied to speech signals simulating age-related hearing loss[END_REF]. All participants were native French speakers, aged from 18 to 30 years old, and did not suffer from any hearing loss superior to 15 dB, on average, between 2 kHz and 8 kHz. Contrary to the study reported in [START_REF] Fontan | Automatic intelligibility measures applied to speech signals simulating age-related hearing loss[END_REF], this present study focus was not set on intelligibility scores (quantitative scores corresponding to percent correct words) but rather on the "errors" made by listeners, that is the alternative answers they provided and that may give qualitative information on their misperceptions. To this end all alternative answers given by participants were transcribed.

Results

Phonological feature changes in consonants

Figures 3 and4 illustrate the percentage of phonological feature additions and deletions in ASR results, for consonants, as a function of the eight presbycusis simulation conditions. The condition 0 corresponds to the original recordings, without any signal processing.

As it can be observed, most of the phonological feature additions and deletions follow rather monotonic trends, show- ing either a global rise, decrease or a neutral trend along the eight degradation conditions. As it can also be observed, the standard deviations and the monotonicity of these curves are variable. Some features show indeed great changes between conditions 0 and 8 (e.g. addition of the continuant feature) whereas some others show very little changes (e.g. addition of the nasal feature). Concerning the monotonicity, some features show very consistent variation trends along the degradation conditions (e.g. addition of the continuant feature) whereas other features seem to follow a more erratic behavior (e.g. additions and deletions of the anterior feature).

Consistency with human listeners' data: focus on the continuant feature

As the most important and consistent effects (monotonic increases of feature additions and decreases of feature deletions) were found for the continuant feature, we chose to focus on this specific feature when observing human listeners' data. The continuant feature is the feature that distinguishes occlusive phonemes from constrictive ones. Occlusive phonemes imply a total occlusion during the first phase of their production, followed by a sudden burst, especially important in unvoiced phonemes such as /p, t, k/. On the contrary constrictive phonemes imply an undisrupted flow of air during their production. The data collected in humans is peculiar in that sense that alternative answers (incorrect and non null answers) are mainly present in degradations corresponding to audiograms 6, 7 and 8 (94 answers representing 76% of total alternative answers), conditions in which the speech signal was difficult to understand but was nonetheless not enough altered so that listeners could perceive something. As a consequence, human answers were not sufficiently numerous nor enough distributed along the degradations to permit a statistical comparison with ASR results. Nevertheless, we conducted a qualitative analysis of human misperceptions that occurred in degradation conditions 6, 7 and 8. This exploratory qualitative analysis revealed that some alternative answers given by human subjects clearly imply the substitution of non continuant consonants by their continuant counterparts at the same -or to a close -place of articulation (see examples on Table 2: /p, b/→/f/, /t/→/s/). As the amount of human misperceptions data is limited, we also searched for evidence about the deletion of acoustic data supposed to be relevant for distinguishing between continuant and non continuant phones. Figure 5 compares the original spectrogram obtained for the target word [takẼ] and the spectrogram obtained for the same word at degradation 7. It can be observed that the explosion phase of the plosive [t] almost disappears at degradation 7, supporting the idea that it could be confused with some realizations of continuant phonemes, as in the alternative answers /sakẼ/ and /sak/ given by some participants.

Conclusion and perspectives

This article presented a new method for analyzing ASR results at the phonological feature level, using a refined version of the Levenshtein distance algorithm. This method, potentially relevant for the analysis of speech recognition in a broad range of applications (e.g. robust ASR in adverse conditions, L2 and disordered speech evaluation, dalectology), was here used to analyze features additions and deletions occurring in ASR results for speech simulating age-related hearing loss.

The results are rather encouraging. Firstly, the tendencies observed in consonantic feature additions and deletions are overall monotonic along degradation conditions, indicating that there is a strong relation between speech signal quality and the "errors" made by the ASR system at the phonological feature level. Secondly, an analysis focusing on the continuant feature suggests that these errors are consistent with human perception of speech: in both ASR and human recognition data this feature tends to be added as the degradation increases.

To deepen these results, the relevance of the method for predicting microscopic intelligibility will be investigated through statistical analyses. To this end two leads are considered. The first one is to conduct additional word repetition tests, concentrating on the degradation conditions that lead to the most numerous alternative answers (i.e. audiograms 6 to 8). The other solution is to conduct closed-set identification tasks constraining the subjects' answers to particular phonetic contrasts such as in minimal pairs. Eventually statistics will be computed in order to quantify the strength of the association between ASR and human misperceptions at the phonological feature level for each degradation condition.
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 34 Figure 3: Phonological feature additions in consonants, as a function of presbycusis simulation condition.

Figure 5 :

 5 Figure 5: Spectrograms and waveforms obtained for the word le taquin ( [l@takẼ] ), both in its original recording form (left) and after applying the presbycusis simulation corresponding to the audiogram #7 (right).

Table 1 :

 1 Examples of phonologically weighted Levenshtein distances (PWLD) and non weighted Levenshtein distances (LD).

	Word #1 Word #2 LD PWLD
		/pato/	2	0.29
	/batõ/	/pitõ/	2	0.63
		/bani/	2	1.17

Table 2 :

 2 Examples of substitutions observed in listeners' responses, and implying the addition of the continuant feature.

	Target word	Listener response	Substitution
	Pruneau (/pöyno/) Finot (/fino/)	/p/→/f/
	Répit (/öepi/)	Refus (/ö@fy/)	/p/→/f/
	Dépôt (/depo/)	Défaut (/defo/)	/p/→/f/
	Turbo (/työbo/)	Football (/futbOl/)	/t/→/f/
	Bilan (/bilã/)	Fila (/fila/)	/b/→/f/
	Taquin (/takẼ/)	Saquin (/sakẼ/)	/t/→/s/
	Taquin (/takẼ/)	Sac (/sak/)	/t/→/s/
	Dément (/demã/)	Venin (/v@nẼ/)	/d/→/v/
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