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Abstract— Within the Big Data trend, there is an increasing 

interest in Not-only-SQL systems (NoSQL). These systems are 

promising candidates for implementing data warehouses 

particularly due to the data structuration/storage possibilities 

they offer. In this paper, we investigate data warehouse 

instantiation using a document-oriented system (a special class of 

NoSQL systems). On the one hand, we analyze several issues 

including modeling, querying, loading data and OLAP cuboids. 

We compare document-oriented models (with and without 

normalization) to analogous relational database models. On the 

other hand, we suggest improvements in order to benefit from 

document-oriented features. We focus particularly on extended 

versions of OLAP cuboids that exploit nesting and arrays. They 

are shown to work better on workloads with drill-down queries. 

Research in this direction is new. As existing work focuses on 

feasibility issues, document-specific implementation features, 

modeling and cross-model comparison. 

Keywords— NoSQL, document-oriented system, big data 

warehouse, OLAP cuboid. 

I. INTRODUCTION

The data volume managed by computer systems is in a 
continuous growth. Data management is becoming critical: 
huge and diverse amounts of data are to be stored and analyzed 
[16]. To ease data analysis, and decision making, it is common 
to centralize them in data warehouses [4],[19]. These latter are 
suitable for on-line analysis called OLAP (On-Line Analytical 
Processing): they support efficiently interactive exploration of 
data on different analysis dimensions and at different levels of 
detail [4],[9]. The most successful data warehousing 
implementations are primarily based on Relational Database 
Management Systems (RDBMS), called R-OLAP approaches.  

In the recent year, important changes have affected the 

database domain mainly dictated by the growth of the Web. 

Major Web companies such as Google, Facebook, Twitter or 

Amazon had to face unprecedented amounts of data which is 

not necessarily in a relational format, well-structured and 

stable. Moreover, it is not convenient or possible to store all 

the data on one machine. Big Data is mainly concerned by 

data volume as well as data variety (heterogeneity) and 

velocity (real time processing). Relational databases cannot 

deal with all the big data issues [26],[29],[31] and a new class 

of data-store systems has met commercial success, namely 

NoSQL (Not Only SQL) systems [3].  

In contrast to Relational Database Management Systems 

(RDBMS), NoSQL systems are famous for horizontal scaling, 

elasticity, availability and schema flexibility. There are 4 

major classes of NoSQL systems: document-oriented, column-

family, graph-oriented and key-value systems. Investigating 

new opportunities in NoSQL for data warehousing becomes 

interesting and some research work have already considered 

document-oriented [1]and column-oriented [5],[34] systems 

for this purpose. However, related work is relatively new 

[5],[6],[8],[10],[20],[34] and focuses rather on feasibility 

issues and technology specific implementations.  

Instantiating a multidimensional data warehouse [4],[9] 

with this new technology is not an easy process. Data needs to 

be extracted and transformed in a model more suitable for 

document-oriented systems. OLAP queries must be rewritten 

in a technology specific language, their execution optimized 

and OLAP cuboids pre-computed for speeding them up. Most 

data warehouse instantiations with NoSQL systems are direct 

mappings of R-OLAP instantiations. However, we need to 

distinguish NoSQL logical models from relational data models 

(see Fig 1). We need an explicit document-oriented model 

formalization but as what works well with relational databases 

cannot be guaranteed to work well on document-oriented 

systems, we also need to investigate for NoSQL specific 

advantages for data warehousing.  This paper investigates 

further the potential of document-oriented systems for 

multidimensional data warehousing. 

Similarly to other NoSQL systems, document-oriented 

systems are known for schema flexibility, scalability and 

elasticity: handling heterogeneous data models; providing 



richer structures (nesting, arrays, etc.) and offering options for 

data processing (e.g. map-reduce or aggregation pipelines). 
In this context, we bring forward our existing work on 

document-oriented implementation of data warehouses [1]. We 
study two data models for this purpose and provide two OLAP 
cuboid extensions that can be implemented using documents. 
The paper contributions can be summarized as follows:  

i) We instantiate multidimensional data warehouses in 
document-oriented systems using two different document 
models that are equivalent to normalized and denormalized 
data storage. It is known that some NoSQL systems work 
better with flat data (denormalized) in contrast to relational 
databases. We show the direct mapping from the 
multidimensional model to these models. Advantages of 
each model are shown by comparing different instantiations 
on different data warehouse features including: loading and 
querying data, as well as computing OLAP cuboids.  

ii) Then, we propose and study extended versions of 
OLAP cuboids that use nesting and arrays. These offer fast 
drill-down capabilities and allow answering more queries. 
These types of cuboids have already been studied for data 
warehouses [17],[33], but they are not compatible with the 
relational data model. However in document-oriented 
systems, these cuboids can be stored using the document 
data model, i.e. no need for non-document features or 
specific extensions.  

iii) We also compare our document-oriented models to 
classical relational models. This comparison is technology 
specific. Our goal is to illustrate current performance 
differences.  

The paper is organized as follows. The next section details 

related work. In section III, we define our multidimensional 

data model. In section IV we define the extended OLAP 

cuboids. In section V, we detail and discuss experimental 

results. The last section concludes and lists future works. 

II.! RELATED WORK  

In the past recent years, an increasing interest has focused on 
NoSQL systems [12],[14],[26],[35]. They represent database 
systems that are alternatives to relational databases, offering 
interesting new features including new query languages (not 
only SQL), new data storage techniques and new data 
processing techniques. These different NoSQL solutions have 
been compared with each other in different settings [32]. They 
have also been compared to relational databases [14],[22]. In 
[29], the authors compare a document-oriented system 
(MongoDB) with a relational system (SQLServer) on OLTP
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queries. In [14], the authors compare query execution using 
map-reduce on NoSQL systems with query execution on 
distributed RDBMS and identify the advantages on both 
architectures. Consequently, we find work on how to map data 
from relational databases to NoSQL systems and vice-
versa[6],[8]. Recently, a new class of approaches is being 
studied called NewSQL systems [29], aiming to preserve 

                                                             
1
 OLTP (On-Line Transactional Processing) manages data 

transactions rather than data analyses (i.e. OLAP).  

relational database advantages while answering big data 
requirements: scalability, elasticity and flexibility.

Recently, NoSQL systems have been tested on OLTP and 
OLAP features and they are being considered for implementing 
data warehouses [5],[6],[8],[14],[34]. In [34], the authors 
implement a data warehouse on a column-oriented store 
(HBase [35]). They show how to instantiate efficiently OLAP 
cuboids with MapReduce-like functions. In [14], the authors 
compare a column-oriented system (Hive on Hadoop) with a 
distributed version of a relational system (SQLServer PDW) on 
OLAP queries, where the relational system is shown to perform 
better in most cases. In [5],[6],[8] , we have already studied 
column-oriented and document-oriented models for 
implementing multidimensional data warehouses. However, 
the focus of the study was limited to mapping a conceptual 
multidimensional model to logical NoSQL models. 

Existing benchmarks for data warehousing are designed to 
be compatible with relational systems: they generate uniform 
and csv-like data, and the queries are in SQL. Complex but 
more complete benchmarks (e.g. TPC-H or TPC-DS) need 
substantial efforts to be adapted for evaluating NoSQL 
systems. Until now, the only data warehouse benchmark that 
has been adapted for NoSQL systems is the Star Schema 
Benchmark [7],[13],[23]. 

Document-oriented systems offer interesting data structures 
such as nested sub-documents and arrays. These features also 
exist in object-oriented and XML-like systems. However, none 
of the above has met the success of RDBMS for implementing 
data warehouses and in particular for implementing OLAP 
cuboids as we do in this paper. In [18], different document 
logical models are compared to each other, using denormalized 
and normalized data as well as models that use nesting. 
However, this study is in a “non-OLAP” setting (i.e. OLTP). 

III.! FROM A MULTIDIMENSIONAL DATA MODEL TO DOCUMENTS 

A.! Multidimensional data model for data warehouses 

We use the reference conceptual model in data warehouses is 
the multidimensional data model. 

 
Fig 1 Translation of a conceptual model into logical models 

 



 
Fig 2 Graphical notations of the multidimensional conceptual model. 

 

It is important to map this model into logical models 

specific to document-oriented systems that we call “document 

models”. This has already been done for relational databases 

where we map a conceptual model (see figureFig 2 for an 

example) into a logical star model or snowflake model. 

We will first introduce our conceptual multidimensional 

model. [15],[25], defined here after. 

A multidimensional schema, denoted E, is defined by 

(F
E
, D

E
, Star

E
) where: 

!! F
E
 = {F1,…, Fn} is a finite set of facts;  

!! D
E
 = {D1,…, Dm} is a finite set of dimensions;  

!! Star
E
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E
 → !"

#
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possibly associating with each parameter one or more 

weak attributes.  

A fact, noted F ∈ F
E
, is defined by (N

F
, M

F
) where: 

!! N
F
 is the name of the fact,  

!! FG 2 % 2,H'I6'
GJ( ) ( 2H3I63

GJ02 is a set of measures. 

Typically, we apply aggregation functions on 

measures. 

A combination of dimensions represents the analysis axes, 

while the measures and their aggregations represent the 

analysis values.  

An example of a multidimensional conceptual schema is 

displayed in Fig 2 using notation from [15],[25] Here, the data 

model is almost the same as the one used in the SSB 

benchmark [6],[13],[23]. There are one fact LineOrder and 4 

dimensions: Customer, Part, Date and Supplier. There are 

attribute hierarchies such as {id, date, month, year, all}.  

B.! Generic document model 

Here, we provide key definitions and notation we will use to 
formalize documents. 

A document is defined as a set of key-values. Keys define 
the structure of the document; they act as meta-data. Each 
value can be an atomic value (number, string, date…) or a 
document. Such documents within documents are called sub-
documents. 

The document structure (or document schema) 
corresponds to a generic document without atomic values i.e. 
only keys. A document belongs to a collection C and has a 
unique identifier. We refer to such a document as C(id). We 
use the colon symbol “:” to separate a key from its value, “[ ]” 
to denote arrays, “{ }” to denote documents and a comma “,” 
to separate key-value pairs from each other. 

Example. The document below belongs to the “Persons” 
collection, it has 30001 as identifier and it contains keys such 
as “name”, “addresses”, “phone”. The address values 
correspond to an array and the phone value corresponds to a 



sub-document. The document schema is: {name, 
addresses: [{city, country}], phone: {prefix, 

number}}. 

Persons(30001):  

{ name: “John Smith”,  

  addresses: [{city: “London”, country: 
“UK”}, {city: “Paris”, country: “France”}], 

  phone: {prefix: “0033”, number: 
“61234567”} } 

C.! Logical document models for data warehousing 

It is at the logical level that we have to make choices on 
technology specific modeling. We consider here two logical 
document models by analogy with the relational models used 
for data warehousing. The models, denoted DFL and DSH, are 
respectively equivalent to complete data denormalization (flat) 
and star-like normalization in ROLAP [20]. Each model is 
defined below. As an illustration, we use a conceptual model 
example with one fact named “LineOrder” and measures 
M

F 
= {“l_quantity”, “l_shipmode”, “l_price”} and one 

dimension “Customer” composed of the attributes 
A

D
 =  {“c_name”,“c_city”,“c_nation_name”}.  

Model DFL (Document FLat) corresponds to a simple 
(denormalized) flat model. Every fact F is stored in a collection 
C

F
 with all attributes of its associated dimensions. It 

corresponds to denormalized data (in RDBMS). Documents are 
flat (no data nesting) where all attributes are at the same level. 
The schema S

F
 of the collection C

F
 is: 
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In our example, this corresponds to the schema {id, 
l_quantity, l_shipmode, l_price, c_name, 

c_city, c_nation_name} with a possible instance: 
{id:1,l_quantity: 4,l_shipmode: “mail”,  

l_price:400.0, c_id:4}V WXYZ[\]^[] 
{id:4,c_name: “John”, c_city: “Rome”,  

c_nation_name: “Italy”}V W_`abcd[] 
 

Model DSH (shattered): It corresponds to a simple data 

model where fact records are stored separately from 

dimension records to avoid redundancy (equivalent to 

normalization). The fact F is stored in a collection C
F
 and each 

associated dimension D is stored in a collection C
D
. The fact 

documents contain foreign keys towards the dimension 

collections. The schema S
F
 of C

F
 and the schema e" of a 

dimension collection C
D
 are as follows: 
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In our example, this corresponds to two collections, one for 

the fact with the schema {id, l_quantity, l_shipmode, l_price} 

and another collection for the dimension with schema 

{c_name, c_city, c_nation_name}. Below, we provide two 

possible instances: 

{id:1,l_quantity: 4,l_shipmode: “mail”,l_price:400.0,c_id:4}V

lm8nopBqoB 

{id:4,c_name: “John”, c_city: “Rome”, c_nation_name: “Italy”}V

lr*stuCoB 
 

IV.!EXTENDED OLAP CUBOIDS 

A.! OLAP cuboids 

An OLAP cuboid corresponds to a materialized view on 
aggregated data; it contains a subset of aggregated measures on 
a subset of analysis dimensions. A cuboid is defined on a set of 
attributes A from some dimensions of interest D, and T a set of 
aggregation functions on M

F
, all the measures from some fact 

F of interest. In a simplified manner, we will note a cuboid 
with c(A,T) defined as a pre-computed view where we group 
data on the dimension attributes from A and we compute 
aggregation functions (e.g. min, max, sum) on the measures of 
interest M

F
. An example of an OLAP cuboid with our notation 

is c(day
Date

, c_id
Customer

, sum(revenue
Sales

), count(revenue
Sales

)). 
In the latter, we group data on dimensions Date and Customer 
respectively on attributes day and c_id. The aggregation 
functions (sum and count) are applied on the measure revenue 
from the fact LineOrder. 

Partial ordering: Cuboids can be placed in a partially 
ordered set based on the analysis detail level. The partial order 
operator v is defined on attribute sets (analysis axis). We have 
& v ,w0 when a and b are attributes in the same dimension 

hierarchy and a is lower in a hierarchy than b e.g. 6xyz{ v
,|}~0. & v ,�0 means that we go to finer detail when we 
analyze data on more attributes. 

Cube, lattice: If an OLAP cuboid is generated for each 
dimension combination, the resulting set of cuboids is called an 
OLAP cube and the partially ordered set is called an OLAP 
cube lattice. 

B.! Extended OLAP cuboids 

In addition to the traditional OLAP cuboids, we study other 
types of cuboids that are not possible with relational databases.  

A nested cuboid (N-cuboid) is an extension of a classic 

OLAP cuboid where we nest at each record of the cuboid 

arrays of aggregated measures at a finer level of granularity. 

Let A and A' be sets of dimension attributes (at most one 

attribute per dimension) such that $ v $'. A nested cuboid 

c(A,T,[A',T']) is an extension of the classic cuboid c(A,T) 

where data is grouped first on attributes from A and then on 

attributes from A'. In each document, we have a distinct tuple 

from A, aggregation results from T followed by an array of 

dimensions at lower-granularity (combination of A and A') and 

aggregation functions from T'. For instance, c(country, 

sum(revenue),[city, sum(revenue)]) is a nested cuboid that can 

have records such as:  
{ country: “FRA”, sum_revenue: 45,0$,   
  by_city: [ 
   {city: “Paris”,    sum_revenue: 12,0$},  
   {city: “Toulouse”, sum_revenue: 13,0$},  
   {city: “Lyon”,     sum_revenue: 20,0$}] } 



We observe that the above cuboid groups data on the 

attribute country and then it nests cities ({country}2v{city}). 

The nested cuboid has the following advantages:  

!! It can be used to group multiple cuboids in one, saving 

memory. 

!! It allows drilling-down directly using the cuboid data 

without having to use the detailed data. 

A detail cuboid (D-cuboid) is an extension of a classical 

cuboid where we nest arrays of detailed data. Let M be a set of 

measures. A detail cuboid c(A,T,[M]) contains data grouped on 

attributes A, similar to the cube c(A,T), with the addition of 

arrays of measure values from M; e.g. c(country, , 

sum(revenue),[id, revenue]) is a detail cuboid that can have 

records such as: 
 { country: “FRA”,  sum_revenue: 45,0$, 
   detail: [{id: 15,    revenue: 2,0$},  
            {id: 18,    revenue: 3,0$}, …, 
            {id: 10048, revenue: 3,5$} ] } 

The above cuboid groups data using “day” and “customer” 

dimension attributes and it stores not only the aggregated 

function result (sum) but also the detailed data of revenue and 

product id-s. This extended model comes at the cost of 

memory usage, but it has the following advantages compared 

with the traditional approach:  

!! We can drill down on data easily i.e. view fact details. 

!! We can run faster random aggregation functions (not 

known before hand) on data and not only the traditional: 

max, min, count, average, sum.  

!! We can compute set operations: intersection, union, 

frequent items, etc. e.g. the common purchases on a 

given group of customers. 

!! The above notation is coherent with all types of cuboids 

we described (classic, nested and detailed). We can also 

imagine and denote nested cuboids with detailed data.  

Note that the extended cuboids are not possible with 

relational databases. Even if nesting arrays is possible in XML 

or object-oriented databases, the latter has not been studied 

thoroughly for an OLAP usage. 

V.! EXPERIMENTS 

A.! Experiments general settings 

The experimental setup is briefly introduced here and then 
detailed in the next paragraphs. We generate data according to 
the SSB (Star Schema Benchmark) data model [7],[13],[23] . 
Data is loaded in MongoDB v3.0, a popular document-oriented 
system and PostgresSQL v8.4, a popular RDBMS. On both 
systems we consider a flat model and a star-like normalized 
model. On each dataset, we issue sets of OLAP queries and we 
compute OLAP cuboids on different combinations of 
dimensions. We also test extended versions of OLAP cuboids. 
Experiments in MongoDB are done in both a single-node and a 
distributed 3-nodes cluster setting. Experiments in PostgreSQL 
are done in a singlenode setting. The rest of the experimental 
setup is detailed below. 

Data. We generate data using an extended version of the 

Start Schema Benchmark SSB [1],[13],[23] because it is the 

only data warehousing benchmark that has been adapted to 

NoSQL systems [1],[22]. The SSB benchmark models a 

simple product retail reality. It contains one fact “LineOrder” 

and 4 dimensions “Customer”, “Supplier”, “Part” and “Date”. 

The extended version is part of our previous work [22]. It 

allows generating raw data directly as JSon which is the 

preferable data format for loading data in MongoDB. We use 

improve scaling factor issues that have been reported. In our 

experiments we use different scale factors (sf) such as sf=1, 

sf=10 and sf=25. In the extended version, the scale factor sf=1 

corresponds to 10
7 

records for the LineOrder fact, for sf=10 

we have 10x10
7
 records and so on. 

Settings/hardware/software. The experiments have been 

done in two different settings: single-node architecture and a 

cluster of 3 physical nodes. Each node is a Unix machine 

(CentOs) with a 4 core-i5 CPU, 8GB RAM, 2TB disks, 1Gb/s 

network. The cluster is composed of 3 nodes, each being a 

worker node and one node acting also as a dispatcher. Each 

node has a MongoDB v.3.0 running. In MongoDB 

terminology, this setup corresponds to 3 shards (one per 

machine) and one machine also acts both as configuration 

server and client. 

Models. We will refer to 4 data models depending on the 

database system used and the logical data model underneath. 

We will use the abbreviations DFL and DSH for respectively 

flat and star-like normalized document models. In analogy, we 

will consider flat and star-like normalization data models in 

relational models that will be named RFL and RSH. 

 

 

Fig 3 Memory usage (GB) by model on different scale factors. 

B.! From data warehouse loading to OLAP cuboids 

Loading. In Fig 3, we show the storage space required by each 
approach (document models DFL and DSH and relational 
models RSH and DSH) on 3 scale factors (sf=1, sf=10, sf=25). 
Instantiation on PostgreSQL requires less space than in 
MongoDB (from 3 to 5 times). This is easily explained: 
document-oriented systems repeat field names on every 
document and specifically in MongoDB data types are also 
stored explicitly. To store data with flat models we need about 
4 times more space, due to data redundancy. For instance, at 
scale factor sf=10 (10

8
 line order records) we need 150GB and 

 



 

Table  1 Query execution times per model for sf=10, in seconds. 

 Mongo, singlenode PostgreSQL, singlenode Mongo, cluster 

 DFL DSH RFL RSH DFL DSH 

QS1.1 "#"$% "&'#% !"#$ %&'$ (")$ &##$ 

QS1.2 "&&(% ")($% )!!$ (#$ )*)$ '+"$ 

QS1.3 "''"% "#")% '(&$ (#$ "#+%$ '**$ 

QS1 avg %"))$ %&''$ ))'$ **$ %%##$ '+'$ 

QS2.1 "*(&% "#(&% '++$ (!$ '(&$ +""$ 

QS2.2 "''*% "*'*% '+!$ !#$ '!'$ **&$ 

QS2.3 "&""% "+""% &&'$ (#$ '(%$ **)$ 

QS2 avg %"'"$ %'++$ &%'$ (($ '(%$ *+!$ 

QS3.1 "&#(% "+&)% !'*$ (%$ '('$ +&"$ 

QS3.2 "&&*% "$'"% !&#$ (%$ &#&$ +))$ 

QS3.3 ""*$% "(*"% ()!$ (%$ '!&$ +('$ 

QS3 avg %'')$ %!""$ !%%$ (%$ '*#$ +)'$ 

avg  !"#$% !&!'% &&(% #!% )!*% #$#% 

 

42GB for respectively DFL and DSH and 45GB and 12GB for 
RFL and RSH.  

In Fig 4, we show loading times by model at different 

scale factors (single node). Denormalized data is loaded about 

23% to 26% faster with PostgresSQL (model RFL) than with 

MongoDB (model DFL). Instead, star-like normalized data is 

loaded about 35-40% faster on MongoDB (model DSH) than 

on PostgresSQL (model RSH). The latter observation is 

explained by the fact that in PostgresSQL, the foreign key 

constraint slows down the data loading process significantly. 

If loading performance is analyzed using MB stored per 

second, we observe that MongoDB stores about 18MB/s to 

21MB/s while PostgresSQL stores about 3MB/s to 8MB/s. 

This explains why the loading time for denormalized data 

models is comparable across systems although MongoDB 

requires about 4 times more storage space. 

In we show loading times in two settings: single node and 

cluster, both with a scale factor sf=1. Loading data is observed 

to be slower in a distributed setting. For instance, data (sf=1) 

is loaded into the DFL model in 588s on a single cluster, while 

it needs 1912s on a distributed setting; about 3 times more. 

This is mainly due to penalization related to network data 

transfer: MongoDB balances data volumes and it tries to 

distribute equally data across all shards implying more 

network communication. 

OLAP queries. Each model and server configuration is 

tested using 3 sets of OLAP queries (QS1, QS2, QS3). To do 

so, we use the SSB benchmark query generator that generates 

3 query variants per set. The query complexity increases from 

QS1 to QS3: QS1 queries filter on one dimension and 

aggregate all data; QS2 queries filter data on 2 dimensions and 

group data on one dimension; and QS3 queries filter data on 3 

dimensions and group data on 2 dimensions. 

 
Fig 4 Loading times by model and scale factor 

In Table  1, we show query execution times on all query 

variants with a scale factor sf=10, for all models. In 

MongoDB we consider two settings (single node and cluster).  

 



Table  2 Execution times on the computation of 3 dimensional OLAP cuboids 

Cuboid DFL, singlenode RSH, singlenode DFL cluster 

c_city, s_city, p_brand 7466s 9897s 6480s 

c_city, s_city, d_date 3540s 6742s 2701s 

c_city, p_brand, d_date 4624s 9302s 3358s 

s_city, p_brand, d_date 4133s 8509s 3301s 

avg 4941s 8612s 3960s 

 

Query variant results are averaged (using an arithmetic 

mean) for each query set.  

In MongoDB, the execution is faster on the denormalized 

data model (DFL) than on the star-like data model DSH. This 

is explained by the poor support of joins by MongoDB. The 

resuts on DSH are better than the ones that can be obtained on 

a simple translation of the queries in MongoDB querying 

language. We improved query execution by filtering data 

before having to perform join-like operations. This kind of 

optimizations will be manual until document-oriented systems 

will provide better support for joins. Instead, with 

PostgresSQL we observe that queries from these 3 sets run 

significantly faster on the star-like normalized model RSH 

than on the denormalized model RFL, from about 6 to 12 

times. This is not surprising if we consider that RDBMS are 

optimized on joins and the fact that on given circumstances we 

need to load in memory less data with DSH.  

We observe that these queries run faster on PostgresSQL 

than on MongoDB. They run about 15 to 22 times faster on 

PostgresSQL with data model RSH than on MongoDB with 

data model RFL. On these query sets, PostgreSQL is shown 

significantly superior to MongoDB. However, we observed 

these queries are particularly selective. Due to compact 

storage in relational systems, all data to be processed can fit in 

main memory after filtering. This is an advantage to RDBMS 

systems. 

 
Fig 5 Loading times on single node versus cluster mode with sf=1. 

With MongoDB, we observe that query execution times 

are generally better in a distributed setting. For many queries, 

execution times improve 2 to 3 times depending on the cases. 

In a distributed setting, query execution is penalized by 

network data transfer, but it is improved by parallel 

computation.  

OLAP cuboid queries: In addition, we considered OLAP 

queries that correspond to the computation of OLAP cuboids. 

These queries are computationally more expensive than the 

queries considered previously. More precisely, we consider 

here the generation of OLAP cuboids on combinations of 3 

dimensions. Computation times are shown in . The cuboids are 

denoted on the dimension attributes they group data on. For 

instance, c_city, s_city, p_brand stands for a cuboid that 

groups data on customer city, supplier city and part brand.  

Results are shown only on best performing datasets on 

PostgresSQL and MongoDB, namely on data model DFL and 

RSH. This is done because we observed that computation 

times became significantly important (unrealistic) on data 

models RFL and DSH.  

We observe that the situation is reversed on this query set: 

queries run faster (2 times) on MongoDB with data model 

DFL (singlenode); they run slower on PostgresSQL with data 

model RSH. We also observe a further improvement on the 

distributed setting. On these queries we have to keep in 

memory much more data than for queries in QS1, QS2 and 

QS3. Indeed, on the query sets QS1, QS2 and QS3, the 

amount of data to be processed is reduced by filters 

(equivalent of SQL where instructions). Then data is grouped 

on fewer dimensions (0 to 2). The result is fewer data to be 

kept in memory and fewer output records. Instead for 

computing 3 dimensional cuboids, we have to process all data 

and the output has more records. Data will not fit in main 

memory neither for MongoDB nor for PostgreSQL, but 

MongoDB seems suffering less than PostgreSQL.  

We can conclude that MongoDB scales better when the 

amount of data to be processed increases significantly. It can 

also take advantage of distribution. Instead, PostgresSQL 

performs very well when all data fits in main memory.  

OLAP cuboids and querying: Direct querying on raw 

data is rare; instead it is common to compute OLAP cuboids 

that will somehow cache results or intermediary results. We 

considered executing the queries from sets QS1,QS2, QS3 

directly on OLAP cuboids. For comparative reasons, we 

consider 4 data warehouse systems:  

!! S0: Data generated in MongoDB with model DFL without 

any OLAP cuboids;  

!! S1: Data generated in MongoDB with model DFL and 

OLAP cuboids;  



!! R0: Data generated in PostgreSQL with model RSH 

without any OLAP cuboids 

!! R1: Data generated in PostgreSQL with model RSH and 

OLAP cuboids.  

Table  3 Query execution times with or without OLAP cuboids, sf=10 

 QS1  QS2 QS3 avg 

S0 1255s 1232s 1335s 1274s 

S1 0.1s 0.1s 0. 2s 0.1s 

R0 88s 66s 61s 4.2s 

R1 0.1s 0.3s 0.5s 0.3s 

 

Average query times per query set are reported in Table  3, 

Results show that when we use OLAP cuboids to support  

query execution, query execution is significantly faster; more 

than 10000 times on MongoDB and about 600-800 times on 

PostgreSQL. The performance differences are no longer huge 

between PostgreSQL and MongoDB; they are more than 

comparable. This is because in the OLAP cuboids contain the 

results of the queries and we just need to find the right record. 

In cases, MongoDB is able to retrieve aggregated data from 

the respective OLAP cuboids faster than PostgreSQL.  

Concluding remarks: This set of experiments illustrates 

multidimensional data warehouse instantiation from loading to 

OLAP cuboid computation. It allows initial comparison 

among modeling and technology choices. Some findings are 

interesting, others intuitive. We observed that querying a 

document-oriented system is slower than on a RDBMS when 

queries are selective, but it performs better when a lot of data 

is to be processed. Document-oriented systems scale well with 

the increase of data volume; its performance is further 

improved through distribution. We also observe that querying 

time is significantly reduced when we use OLAP cuboids.  

C.! Extended OLAP cuboids 

In this section, we focus on extended cuboids defined earlier. 
We study their computation and their utility on two different 
workloads. We have computed nested and detail cuboids on 
different combination of dimensions. We use a document-
oriented system (MongoDB v3.0) with raw data following the 
data model DFL. During the experiments, we had some issues. 
MongoDB has a limit on document size (16MB). The records 
of nested or detail cuboids did not always fit within the 
document limit. In this case, we split the document into parts.  

Utility of extended cuboids: To assess the utility of 

nested cuboids and detail cuboids, we designed two 

experiments with query loads that include drill-down like 

queries and detail-level queries. We consider 3 types of data 

warehouse systems:  

!! S1: we have raw data and classical cuboids on all 

dimension combinations 

!! S2: we have raw data and nested cuboids on all dimension 

combinations 

!! S3: we have raw data and detail cuboids on all dimension 

combinations 

In all systems, we cache the result of the last executed 

query. This is useful if we want to drill-down in the result.  

We consider two different experimental settings: 

Setting 1: We consider a workload of OLAP queries followed 

by drill-down queries. This is a typical sequence of queries in 

OLAP; e.g. we start analyzing data by country and then we 

want to drill down to specific cities. More precisely, we 

consider a workload of 40 queries. They include 8 normal 

OLAP queries and for each of them we have produced 4 

random drill-down queries. More precisely, we have: 

!! QS1 ={Q1,Q2, Q3,Q4,Q5,Q6,Q7,Q8, Q9, Q10,…Q40} is a 

workload of 40 queries 

!! QT = {Q1, Q6, Q11, Q16, Q19, …Q36} are 8 random OLAP 

queries. For every query Qi in QT, we have produced 4 

random queries {Qi+1, Q i+2, Qi+3, Q i+4} that ask for 

aggregate functions at a lower level of granularity i.e. a drill 

down operation. 

Setting 2: We consider a workload of OLAP queries with the 

intrusion of some detail-level queries. This setting can also 

happen; e.g. we start analyzing data on some attributes and we 

want to explain the observed data showing raw data. More 

precisely, we consider a workload of multiple OLAP queries 

where every 4 queries we issue one query that asks for 

detailed data. We have: 

!! QS ={Q1,Q2, Q3,Q4,Q5,Q6,Q7,Q8, Q9, Q10,…Q40} a 

workload of 40 queries 

!! Queries {Q1,Q2, Q3,Q4,Q6,Q7,Q8, Q9,Q11,Q12… } are 

random OLAP queries whereas QD = {Q5, Q10, Q15, Q20, Q25, 
…} are detail-level queries and the other are normal OLAP 

queries. They retrieve raw data that concern the preceding 

OLAP query in the workflow. 

!! Results: In Fig 6 and Fig 7, we show the total query time 

on the evolution of the query load (query count). On the Fig 

6, we compare the system with classic cuboids (S1) to the 

system with nested cuboids (S2) using the workload from 

setting 1. We observe that S2 performs better than S1. In 

particular,  we observe that the major performance 

difference is met with drill-down queries. In fact, the 

system S1 has to query on another OLAP cuboid, while the 

system S3 can re-use the last query result that has data of 

lower-level detail. 

 



Table  4 Compute time and memory use of OLAP cuboids by types and number of dimensions 

No. of dimensions, 

Cuboid type 

OLAP cuboid example Computation time Memory use  

3D, classic c(supplier,date,part,T) 428s 4065MB

2D, classic c(supplier,date,T) 197s 86MB 

1D, classic c(date,T) 1s 0.3MB 

average  207s 1198MB 

3D, nested c(supplier,date,part, T,[customer,T]) 476s 4950MB 

2D, nested c(supplier,date,T[part,T]) 227s 1897MB 

1D, nested c(date,T,[supplier,T]) 10s 512MB 

average  189s 2373MB 

3D, detail c(supplier,date,part, T,[M]) 521s 5917MB

2D, detail c(supplier,date,T, [M]) 251s 2600MB 

1D, detail c(date,T,[M]) 59s 2110MB 

average  273s 3407MB 

 

In Fig 7, we compare the system (S1) with classic cuboids 

to the system with detail cuboids (S3) using the workload from 

setting 2. We observe that S3 performs better than S1. In 

particular, we observe that the main performance difference is 

met with the detail-level queries (one every 5 queries). This is 

because when the query asks for detail-level data, the system 

S1 has to query on raw data while the system S3 has already 

the detail data available from the last query result.  

 

Fig 6 Cuboids compared on different query loads. 

Memory use and computation times: In Fig 4, we 

compare classic cuboids, detail cuboids and nested cuboids 

computed on computation time and memory usage. On a given 

type of cuboid we generate OLAP cuboids for every 

combination of 3 dimensions, 2 dimensions and 1 dimension. 

We aggregate data on 3 measures. We average the 

computation time and memory use.  

Results show that the extended cuboids demand for more 

space and the computation time is higher. The difference 

increases on 2-dimensional cuboids and 1-dimensional 

cuboids. Concluding remarks: We analyze the utility of 

detail cuboids and nested cuboids. They are shown to answer 

efficiently workloads with drill-down and detail-level queries. 

 

 
Fig 7 Cuboids compared on different query loads 

 

VI.!CONCLUSION 

In this paper, we have studied the instantiation of 
multidimensional data warehouses with document-oriented 
systems. For this purpose, we formalized and analyzed two 
logical models. Our study highlights weaknesses and strengths 
across the models; it studies extended OLAP cuboids and we 
compare performance with a RDBMS.  

We show how to instantiate a multidimensional data 

warehouse with two data models: denormalized model (DFL) 

and star-like normalized model (DSH). We study data loading 



at different scale factors (10
7
 fact records – 2.5 x 10

8
 fact 

records). The star-like normalized model (DSH) requires less 

space and data loads faster. However, this latter model suffers 

on data joins that are not well supported by document-oriented 

systems. On the other side, the denormalized data model 

shows better querying performance and queries are easier to 

write.  

The document-oriented systems are compared with 

RDBMS on two equivalent data models. Results show that 

RDBMS is faster on querying raw data. But performance 

slows down quickly when data does not fit on main memory. 

Instead, the analyzed document-oriented system is shown 

more robust i.e. it does not have significant performance drop-

off with scale increase. As well, it is shown to benefit from 

distribution. This is a clear advantage with respect to RDBMS 

which do not scale well horizontally; they have a lower 

maximum database size than NoSQL systems. Querying times 

are shown to reduce significantly when we query directly on 

OLAP cuboids. This makes both RDBMS and document-

oriented systems comparable on OLAP querying performance.  

In the second phase of our experiments, we study two 

extended versions of OLAP cuboids (that are not possible in 

traditional RDBMS): nested cuboid and detail cuboid. They 

come at the cost of additional memory usage, but they are 

shown to perform well on specific workloads. More precisely, 

nested cuboids support well workloads with drill-down 

queries, while detail cuboid support well detail-level queries. 

These cuboids are not stored naturally in relational databases 

i.e. they need to be transformed and split in separate tables. In 

document-oriented systems, we can store naturally the 

extended cuboids records within documents due to arrays and 

nesting. The only limitation is the maximal document size. 

However, this is document specific and it can be solved by 

appropriate array spitting.  

We can conclude that document-oriented systems are a 

promising playground for data warehouses. There is more to 

be investigated. As future work, we recommend focusing on 

the novel queries that can be answered by document-oriented 

systems. Map-reduce like optimizations are to be investigated 

as well for making possible faster and more advanced analysis 

on data.  

Acknowledgements 

This work is supported by the ANRT funding under CIFRE-

Capgemini partnership.  

References 

[1]! D.J. Abadi, D.S. Myers, D.J. DeWitt and S.R. Madden. Materialization 

Strategies in a Column-Oriented DBMS. IEEE 23
rd 

Int. Conf. on Data 

Engineering (ICDE), IEEE, pp. 466-475, 2007.  

[2]! A. Bosworth, J. Gray, A. Layman, and H. Pirahesh. Data cube: A 
relational aggregation operator generalizing group-by, cross-tab, and 

sub-totals. ACM, 52(8):36{44, Aug. 2009. 

[3]! R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record 
39(4), ACM, pp. 12-27. 2011. 39, 4 (May 2011), 12-27. 

DOI=http://dx.doi.org/10.1145/1978915.1978919 

[4]! S. Chaudhuri and U. Dayal. An overview of data warehousing and 
OLAP technology. SIGMOD Record 26(1), ACM, pp. 65-74, 1997.  

[5]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, Ronan Tournier. Not 

Only SQL Implementation of multidimensional database. International 
Conference on Big Data Analytics and Knowledge Discovery (DaWaK 

2015a), p. 379-390, 2015.  

[6]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier. 

Implementation of multidimensional databases in column-oriented 
NoSQL systems. East-European Conference on Advances in Databases 

and Information Systems (ADBIS 2015b), p. 79-91, 2015. 

[7]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier. 

Benchmark for OLAP on NoSQL Technologies. IEEE International 
Conference on Research Challenges in Information Science (RCIS 

2015c), p. 480-485, 2015. 

[8]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier. How Can 
We Implement a Multidimensional Data Warehouse Using NoSQL? 

Dans : Enterprise Information Systems. Slimane Hammoudi, Leszek 
Maciaszek, Ernest Teniente, Olivier Camp, José Cordeiro (Eds.), 

Springer, p. 108-130, Vol. 241, Lecture Notes in Business Information 
Processing (LNBIP, 2015d). 

[9]! G. Colliat. OLAP, relational, and multidimensional database systems. 

SIGMOD Record 25(3), ACM, pp. 64.69, 1996.  

[10]! A. Cuzzocrea, I.-Y. Song, and K. C. Davis. Analytics over large-scale 
multidimensional data: The big data revolution! In Proceedings of the 

ACM 14
th
 International Workshop on Data Warehousing and OLAP, 

DOLAP '11, pages 101{104, New York, NY, USA, 2011. ACM. 

[11]! A. Cuzzocrea, L. Bellatreche and I.Y. Song. Data warehousing and 

OLAP over big data: current challenges and future research directions. 
16th international workshop on Data warehousing and OLAP (DOLAP), 

ACM, pp. 67-70, 2013.  

[12]! E. Dede, M. Govindaraju, D. Gunter, R.S. Canon and L. Ramakrishnan. 
Performance evaluation of a mongodb and hadoop platform for scientific 

data analysis. 4th ACM Workshop on Scientific Cloud Computing 
(Cloud), ACM, pp.13-20, 2013.  

[13]! K. Dehdouh, O. Boussaid and F. Bentayeb. Columnar NoSQL star 
schema benchmark. Model and Data Engineering, LNCS 8748, 

Springer, pp. 281-288, 2014.  

[14]! A. Floratou, N. Teletia, D. Dewitt, J. Patel and D. Zhang. Can the 
elephants handle the NoSQL onslaught? Int. Conf. on Very Large Data 

Bases (VLDB), pVLDB 5(12), VLDB Endowment, pp. 1712–1723, 
2012.  

[15]! M. Golfarelli, D. Maio and S. Rizzi. The dimensional fact model: A 

conceptual model for data warehouses. Int. Journal of Cooperative 
Information Systems 7(2-3), World Scientific, pp. 215-247, 1998.  

[16]! Adam Jacobs. 2009. The pathologies of big data. Commun. ACM 52, 8 

(August 2009), 36-44. DOI=http://dx.doi.org/10.1145/1536616.1536632 

[17]! F. M. Jiang, J. Pei, A. W. Fu. Ix-cubes: iceberg cubes for data 
warehousing and olap on xml data. In Conf. on Information and 

Knowledge Management (CIKM), ACM, pp. 905-908, 2007. 

[18]! A. Kanade, A. Gopal and S. Kanade. A study of normalization and 
embedding in MongoDB. IEEE Int. Advance Computing Conf. (IACC), 

IEEE, pp. 416-421, 2014.  

[19]! R. Kimball and M. Ross. The Data Warehouse Toolkit: The Definitive 

Guide to Dimensional Modeling. John Wiley & Sons, 3rd ed., 2013.  

[20]! Michael J. Mior. 2014. Automated schema design for NoSQL databases. 
In Proceedings of the 2014 SIGMOD PhD symposium (SIGMOD'14 

PhD Symposium). ACM, New York, NY, USA, 41-45. 
DOI=http://dx.doi.org/10.1145/2602622.2602624  

[21]! Konstantinos Morfonios, Stratis Konakas, Yannis Ioannidis, and 

Nikolaos Kotsis. 2007. ROLAP implementations of the data cube. ACM 
Comput. Surv. 39, 4, Article 12 (November 2007).  

[22]! Ameya Nayak, AnilPoriya, DikshayPoojary Type of NOSQL Databases 

and its Comparison with  Relational Databases International Journal of 
Applied Information Systems (IJAIS)  ISSN 2249-0868 Foundation of 

Computer Science FCS, New York, USA Volume 5 No.4,  March 2013 
www.ijais.org 

[23]! P. ONeil, E. ONeil, X. Chen and S. Revilak. The Star Schema 

Benchmark and augmented fact table indexing. Performance Evaluation 
and Benchmarking, LNCS 5895, Springer, pp. 237-252, 2009.  

[24]!  A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden and 

Michael Stonebraker. A comparison of approaches to large-scale data 
analysis. Int. Conf. on Management of data (SIGMOD), ACM, pp. 165-

178, 2009.  



[25]! F. Ravat, O. Teste, R. Tournier and G. Zuruh. Algebraic and graphic 

languages for OLAP manipulations. Int. J. of Data Warehousing and 
Mining (IJDWM), 4(1), IDEA, pp. 17-46, 2008.  

[26]! . Schindler. I/O characteristics of NoSQL databases. Int. Conf. on Very 
Large Data Bases (VLDB), pVLDB 5(12), VLDB Endowment, pp. 

2020-2021, 2012.  

[27]! J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, 
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae, 

T. Stancescu, H. Apte. F1: A distributed SQL database that scales. Int. 

Conf. on Very Large Data Bases (VLDB), pVLDB 6(11), VLDB 

Endowment, pp. 1068-1079. 2013.  

[28]! A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing etl processes in data 
warehouses. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st 

International Conference on, pages 564{575, April 2005. 

[29]! M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N. Hachem 
and P. Helland. The end of an architectural era: (it's time for a complete 

rewrite). 33
rd 

Int. conf. on Very large Data Bases (VLDB), ACM, pp. 
1150-1160, 2007.  

[30]! M. Stonebraker. New opportunities for New SQL. Comm. of the ACM, 

55(11), ACM, pp. 10-11, 2012.  

[31]! D. Tahara, T. Diamond, and D. J. Abadi. Sinew: a SQL system for 
multi-structured data. Int. Conf. on Management of data (SIGMOD). 

ACM, pp. 815-826, 2014.  

[32]! T. Vajk, P. Feher, K. Fekete and H. Charaf. Denormalizing data into 

schema-free databases. 4th Int. Conf. on Cognitive Infocommunications 
(CogInfoCom), IEEE, pp. 747-752, 2013. 

[33]! P. Zhao, X. Li, D. Xin and J. Han. Graph cube: on warehousing and 

OLAP multidimensional networks. In Int. Conf. on Management of Data 
(SIGMOD), ACM, pp. 853-864, 2011. 

[34]! H. Zhao and X. Ye. A practice of TPC-DS multidimensional 

implementation on NoSQL database systems. Performance 
Characterization and Benchmarking, LNCS 8391, Springer, pp. 93-108, 

2014. 

[35]! https://s3-eu-west-1.amazonaws.com/benstopford/nosql-comp.pdf 

[36]! https://hbase.apache.org/ 

 


