
HAL Id: hal-01474901
https://hal.science/hal-01474901

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Document-oriented data warehouses: models and
extended cuboids

Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan
Tournier

To cite this version:
Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan Tournier. Document-
oriented data warehouses: models and extended cuboids. 10th International IEEE Conference on
Research Challenges in Information Science (RCIS 2016) co-located witht the 34th French Conference
INFORSID, Jun 2016, Grenoble, France. pp. 13-14. �hal-01474901�

https://hal.science/hal-01474901
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17168

The contribution was presented at RCIS 2016 :
http://www.sense-brighton.eu/rcis2016/

To cite this version : Chevalier, Max and El Malki, Mohammed and Kopliku,
Arlind and Teste, Olivier and Tournier, Ronan Document-oriented data
warehouses: models and extended cuboids. (2016) In: 10th International IEEE
Conference on Research Challenges in Information Science (RCIS 2016) co-
located witht the 34th French Conference INFORSID, 1 June 2016 - 3 June 2016
(Grenoble, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Document-Oriented Data Warehouses: Models

and Extended Cuboids

Extended Cuboids in Oriented Document

Max Chavalier
1
, Mohammed El Malki

1,2
, Arlind Kopliku

1
, Olivier Teste

1
, Ronan Tournier

1

1
 - University of Toulouse, IRIT (UMR 5505)

Toulouse, France

http://www.irit.fr

{First name.Last name}@irit.fr

2
 - Capgemini

109, avenue du General Eisenhower

BP 53655, F-31036 Toulouse, France

http://www.capgemini.com

Abstract— Within the Big Data trend, there is an increasing

interest in Not-only-SQL systems (NoSQL). These systems are

promising candidates for implementing data warehouses

particularly due to the data structuration/storage possibilities

they offer. In this paper, we investigate data warehouse

instantiation using a document-oriented system (a special class of

NoSQL systems). On the one hand, we analyze several issues

including modeling, querying, loading data and OLAP cuboids.

We compare document-oriented models (with and without

normalization) to analogous relational database models. On the

other hand, we suggest improvements in order to benefit from

document-oriented features. We focus particularly on extended

versions of OLAP cuboids that exploit nesting and arrays. They

are shown to work better on workloads with drill-down queries.

Research in this direction is new. As existing work focuses on

feasibility issues, document-specific implementation features,

modeling and cross-model comparison.

Keywords— NoSQL, document-oriented system, big data

warehouse, OLAP cuboid.

I. INTRODUCTION

The data volume managed by computer systems is in a
continuous growth. Data management is becoming critical:
huge and diverse amounts of data are to be stored and analyzed
[16]. To ease data analysis, and decision making, it is common
to centralize them in data warehouses [4],[19]. These latter are
suitable for on-line analysis called OLAP (On-Line Analytical
Processing): they support efficiently interactive exploration of
data on different analysis dimensions and at different levels of
detail [4],[9]. The most successful data warehousing
implementations are primarily based on Relational Database
Management Systems (RDBMS), called R-OLAP approaches.

In the recent year, important changes have affected the

database domain mainly dictated by the growth of the Web.

Major Web companies such as Google, Facebook, Twitter or

Amazon had to face unprecedented amounts of data which is

not necessarily in a relational format, well-structured and

stable. Moreover, it is not convenient or possible to store all

the data on one machine. Big Data is mainly concerned by

data volume as well as data variety (heterogeneity) and

velocity (real time processing). Relational databases cannot

deal with all the big data issues [26],[29],[31] and a new class

of data-store systems has met commercial success, namely

NoSQL (Not Only SQL) systems [3].

In contrast to Relational Database Management Systems

(RDBMS), NoSQL systems are famous for horizontal scaling,

elasticity, availability and schema flexibility. There are 4

major classes of NoSQL systems: document-oriented, column-

family, graph-oriented and key-value systems. Investigating

new opportunities in NoSQL for data warehousing becomes

interesting and some research work have already considered

document-oriented [1]and column-oriented [5],[34] systems

for this purpose. However, related work is relatively new

[5],[6],[8],[10],[20],[34] and focuses rather on feasibility

issues and technology specific implementations.

Instantiating a multidimensional data warehouse [4],[9]

with this new technology is not an easy process. Data needs to

be extracted and transformed in a model more suitable for

document-oriented systems. OLAP queries must be rewritten

in a technology specific language, their execution optimized

and OLAP cuboids pre-computed for speeding them up. Most

data warehouse instantiations with NoSQL systems are direct

mappings of R-OLAP instantiations. However, we need to

distinguish NoSQL logical models from relational data models

(see Fig 1). We need an explicit document-oriented model

formalization but as what works well with relational databases

cannot be guaranteed to work well on document-oriented

systems, we also need to investigate for NoSQL specific

advantages for data warehousing. This paper investigates

further the potential of document-oriented systems for

multidimensional data warehousing.

Similarly to other NoSQL systems, document-oriented

systems are known for schema flexibility, scalability and

elasticity: handling heterogeneous data models; providing

richer structures (nesting, arrays, etc.) and offering options for

data processing (e.g. map-reduce or aggregation pipelines).
In this context, we bring forward our existing work on

document-oriented implementation of data warehouses [1]. We
study two data models for this purpose and provide two OLAP
cuboid extensions that can be implemented using documents.
The paper contributions can be summarized as follows:

i) We instantiate multidimensional data warehouses in
document-oriented systems using two different document
models that are equivalent to normalized and denormalized
data storage. It is known that some NoSQL systems work
better with flat data (denormalized) in contrast to relational
databases. We show the direct mapping from the
multidimensional model to these models. Advantages of
each model are shown by comparing different instantiations
on different data warehouse features including: loading and
querying data, as well as computing OLAP cuboids.

ii) Then, we propose and study extended versions of
OLAP cuboids that use nesting and arrays. These offer fast
drill-down capabilities and allow answering more queries.
These types of cuboids have already been studied for data
warehouses [17],[33], but they are not compatible with the
relational data model. However in document-oriented
systems, these cuboids can be stored using the document
data model, i.e. no need for non-document features or
specific extensions.

iii) We also compare our document-oriented models to
classical relational models. This comparison is technology
specific. Our goal is to illustrate current performance
differences.

The paper is organized as follows. The next section details

related work. In section III, we define our multidimensional

data model. In section IV we define the extended OLAP

cuboids. In section V, we detail and discuss experimental

results. The last section concludes and lists future works.

II.! RELATED WORK

In the past recent years, an increasing interest has focused on
NoSQL systems [12],[14],[26],[35]. They represent database
systems that are alternatives to relational databases, offering
interesting new features including new query languages (not
only SQL), new data storage techniques and new data
processing techniques. These different NoSQL solutions have
been compared with each other in different settings [32]. They
have also been compared to relational databases [14],[22]. In
[29], the authors compare a document-oriented system
(MongoDB) with a relational system (SQLServer) on OLTP

1

queries. In [14], the authors compare query execution using
map-reduce on NoSQL systems with query execution on
distributed RDBMS and identify the advantages on both
architectures. Consequently, we find work on how to map data
from relational databases to NoSQL systems and vice-
versa[6],[8]. Recently, a new class of approaches is being
studied called NewSQL systems [29], aiming to preserve

1
 OLTP (On-Line Transactional Processing) manages data

transactions rather than data analyses (i.e. OLAP).

relational database advantages while answering big data
requirements: scalability, elasticity and flexibility.

Recently, NoSQL systems have been tested on OLTP and
OLAP features and they are being considered for implementing
data warehouses [5],[6],[8],[14],[34]. In [34], the authors
implement a data warehouse on a column-oriented store
(HBase [35]). They show how to instantiate efficiently OLAP
cuboids with MapReduce-like functions. In [14], the authors
compare a column-oriented system (Hive on Hadoop) with a
distributed version of a relational system (SQLServer PDW) on
OLAP queries, where the relational system is shown to perform
better in most cases. In [5],[6],[8] , we have already studied
column-oriented and document-oriented models for
implementing multidimensional data warehouses. However,
the focus of the study was limited to mapping a conceptual
multidimensional model to logical NoSQL models.

Existing benchmarks for data warehousing are designed to
be compatible with relational systems: they generate uniform
and csv-like data, and the queries are in SQL. Complex but
more complete benchmarks (e.g. TPC-H or TPC-DS) need
substantial efforts to be adapted for evaluating NoSQL
systems. Until now, the only data warehouse benchmark that
has been adapted for NoSQL systems is the Star Schema
Benchmark [7],[13],[23].

Document-oriented systems offer interesting data structures
such as nested sub-documents and arrays. These features also
exist in object-oriented and XML-like systems. However, none
of the above has met the success of RDBMS for implementing
data warehouses and in particular for implementing OLAP
cuboids as we do in this paper. In [18], different document
logical models are compared to each other, using denormalized
and normalized data as well as models that use nesting.
However, this study is in a “non-OLAP” setting (i.e. OLTP).

III.! FROM A MULTIDIMENSIONAL DATA MODEL TO DOCUMENTS

A.! Multidimensional data model for data warehouses

We use the reference conceptual model in data warehouses is
the multidimensional data model.

Fig 1 Translation of a conceptual model into logical models

Fig 2 Graphical notations of the multidimensional conceptual model.

It is important to map this model into logical models

specific to document-oriented systems that we call “document

models”. This has already been done for relational databases

where we map a conceptual model (see figureFig 2 for an

example) into a logical star model or snowflake model.

We will first introduce our conceptual multidimensional

model. [15],[25], defined here after.

A multidimensional schema, denoted E, is defined by

(F
E
, D

E
, Star

E
) where:

!! F
E
 = {F1,…, Fn} is a finite set of facts;

!! D
E
 = {D1,…, Dm} is a finite set of dimensions;

!! Star
E
: F

E
 → !"

#
 is a function that associates each

fact to set of dimensions along which it can be

analyzed.

A dimension, denoted D ∈ D
E
 (noted abusively Di), is

defined by (N
D
, A

D
, H

D
,) where:

!! N
D
 is the name of the dimension,

!! $" % &'
" () &*

" + ,-." (&//"0 is a set of attributes,

!! 1"2 % 2,1'
"() (213

"02is a set hierarchies.

A hierarchy, denoted Hi∈H
D
, is defined by (N

Hi
, Param

Hi
,

Weak
Hi

) where:

!! N
Hi

 is the name of the hierarchy,

!! 4&5&678 2 % 2 9 -."(2:1'
8 () (2:138

8 (2&//" ;2is an ordered

set of attributes which are called parameters of the

relevant graduation scale, ∀k∈[1..vi], :<
78∈A

D
.

!! Weak
Hi

 : Param
Hi

 → !=
>?@ABACDE

 is a function

possibly associating with each parameter one or more

weak attributes.

A fact, noted F ∈ F
E
, is defined by (N

F
, M

F
) where:

!! N
F
 is the name of the fact,

!! FG 2 % 2,H'I6'
GJ() (2H3I63

GJ02 is a set of measures.

Typically, we apply aggregation functions on

measures.

A combination of dimensions represents the analysis axes,

while the measures and their aggregations represent the

analysis values.

An example of a multidimensional conceptual schema is

displayed in Fig 2 using notation from [15],[25] Here, the data

model is almost the same as the one used in the SSB

benchmark [6],[13],[23]. There are one fact LineOrder and 4

dimensions: Customer, Part, Date and Supplier. There are

attribute hierarchies such as {id, date, month, year, all}.

B.! Generic document model

Here, we provide key definitions and notation we will use to
formalize documents.

A document is defined as a set of key-values. Keys define
the structure of the document; they act as meta-data. Each
value can be an atomic value (number, string, date…) or a
document. Such documents within documents are called sub-
documents.

The document structure (or document schema)
corresponds to a generic document without atomic values i.e.
only keys. A document belongs to a collection C and has a
unique identifier. We refer to such a document as C(id). We
use the colon symbol “:” to separate a key from its value, “[]”
to denote arrays, “{ }” to denote documents and a comma “,”
to separate key-value pairs from each other.

Example. The document below belongs to the “Persons”
collection, it has 30001 as identifier and it contains keys such
as “name”, “addresses”, “phone”. The address values
correspond to an array and the phone value corresponds to a

sub-document. The document schema is: {name,
addresses: [{city, country}], phone: {prefix,

number}}.

Persons(30001):

{ name: “John Smith”,

 addresses: [{city: “London”, country:
“UK”}, {city: “Paris”, country: “France”}],

 phone: {prefix: “0033”, number:
“61234567”} }

C.! Logical document models for data warehousing

It is at the logical level that we have to make choices on
technology specific modeling. We consider here two logical
document models by analogy with the relational models used
for data warehousing. The models, denoted DFL and DSH, are
respectively equivalent to complete data denormalization (flat)
and star-like normalization in ROLAP [20]. Each model is
defined below. As an illustration, we use a conceptual model
example with one fact named “LineOrder” and measures
M

F
= {“l_quantity”, “l_shipmode”, “l_price”} and one

dimension “Customer” composed of the attributes
A

D
 = {“c_name”,“c_city”,“c_nation_name”}.

Model DFL (Document FLat) corresponds to a simple
(denormalized) flat model. Every fact F is stored in a collection
C

F
 with all attributes of its associated dimensions. It

corresponds to denormalized data (in RDBMS). Documents are
flat (no data nesting) where all attributes are at the same level.
The schema S

F
 of the collection C

F
 is:

2KL

% ,MNL(OP(OQ()O RL (SP
TP (SQ

TP () S
UTP

TP (SP
TQ (SQ

TQ () S
UTQ

TQ () 0

In our example, this corresponds to the schema {id,
l_quantity, l_shipmode, l_price, c_name,

c_city, c_nation_name} with a possible instance:
{id:1,l_quantity: 4,l_shipmode: “mail”,

l_price:400.0, c_id:4}V WXYZ[\]^[]
{id:4,c_name: “John”, c_city: “Rome”,

c_nation_name: “Italy”}V W_`abcd[]

Model DSH (shattered): It corresponds to a simple data

model where fact records are stored separately from

dimension records to avoid redundancy (equivalent to

normalization). The fact F is stored in a collection C
F
 and each

associated dimension D is stored in a collection C
D
. The fact

documents contain foreign keys towards the dimension

collections. The schema S
F
 of C

F
 and the schema e" of a

dimension collection C
D
 are as follows:

222eG % ,-.G (6'(6f()6 gh (-."i (-."j () 0222e"

% ,-."(&'
k(&f

k() &
=>
k 0

In our example, this corresponds to two collections, one for

the fact with the schema {id, l_quantity, l_shipmode, l_price}

and another collection for the dimension with schema

{c_name, c_city, c_nation_name}. Below, we provide two

possible instances:

{id:1,l_quantity: 4,l_shipmode: “mail”,l_price:400.0,c_id:4}V

lm8nopBqoB

{id:4,c_name: “John”, c_city: “Rome”, c_nation_name: “Italy”}V

lr*stuCoB

IV.!EXTENDED OLAP CUBOIDS

A.! OLAP cuboids

An OLAP cuboid corresponds to a materialized view on
aggregated data; it contains a subset of aggregated measures on
a subset of analysis dimensions. A cuboid is defined on a set of
attributes A from some dimensions of interest D, and T a set of
aggregation functions on M

F
, all the measures from some fact

F of interest. In a simplified manner, we will note a cuboid
with c(A,T) defined as a pre-computed view where we group
data on the dimension attributes from A and we compute
aggregation functions (e.g. min, max, sum) on the measures of
interest M

F
. An example of an OLAP cuboid with our notation

is c(day
Date

, c_id
Customer

, sum(revenue
Sales

), count(revenue
Sales

)).
In the latter, we group data on dimensions Date and Customer
respectively on attributes day and c_id. The aggregation
functions (sum and count) are applied on the measure revenue
from the fact LineOrder.

Partial ordering: Cuboids can be placed in a partially
ordered set based on the analysis detail level. The partial order
operator v is defined on attribute sets (analysis axis). We have
& v ,w0 when a and b are attributes in the same dimension

hierarchy and a is lower in a hierarchy than b e.g. 6xyz{ v
,|}~0. & v ,�0 means that we go to finer detail when we
analyze data on more attributes.

Cube, lattice: If an OLAP cuboid is generated for each
dimension combination, the resulting set of cuboids is called an
OLAP cube and the partially ordered set is called an OLAP
cube lattice.

B.! Extended OLAP cuboids

In addition to the traditional OLAP cuboids, we study other
types of cuboids that are not possible with relational databases.

A nested cuboid (N-cuboid) is an extension of a classic

OLAP cuboid where we nest at each record of the cuboid

arrays of aggregated measures at a finer level of granularity.

Let A and A' be sets of dimension attributes (at most one

attribute per dimension) such that $ v $'. A nested cuboid

c(A,T,[A',T']) is an extension of the classic cuboid c(A,T)

where data is grouped first on attributes from A and then on

attributes from A'. In each document, we have a distinct tuple

from A, aggregation results from T followed by an array of

dimensions at lower-granularity (combination of A and A') and

aggregation functions from T'. For instance, c(country,

sum(revenue),[city, sum(revenue)]) is a nested cuboid that can

have records such as:
{ country: “FRA”, sum_revenue: 45,0$,
 by_city: [
 {city: “Paris”, sum_revenue: 12,0$},
 {city: “Toulouse”, sum_revenue: 13,0$},
 {city: “Lyon”, sum_revenue: 20,0$}] }

We observe that the above cuboid groups data on the

attribute country and then it nests cities ({country}2v{city}).

The nested cuboid has the following advantages:

!! It can be used to group multiple cuboids in one, saving

memory.

!! It allows drilling-down directly using the cuboid data

without having to use the detailed data.

A detail cuboid (D-cuboid) is an extension of a classical

cuboid where we nest arrays of detailed data. Let M be a set of

measures. A detail cuboid c(A,T,[M]) contains data grouped on

attributes A, similar to the cube c(A,T), with the addition of

arrays of measure values from M; e.g. c(country, ,

sum(revenue),[id, revenue]) is a detail cuboid that can have

records such as:
 { country: “FRA”, sum_revenue: 45,0$,
 detail: [{id: 15, revenue: 2,0$},
 {id: 18, revenue: 3,0$}, …,
 {id: 10048, revenue: 3,5$}] }

The above cuboid groups data using “day” and “customer”

dimension attributes and it stores not only the aggregated

function result (sum) but also the detailed data of revenue and

product id-s. This extended model comes at the cost of

memory usage, but it has the following advantages compared

with the traditional approach:

!! We can drill down on data easily i.e. view fact details.

!! We can run faster random aggregation functions (not

known before hand) on data and not only the traditional:

max, min, count, average, sum.

!! We can compute set operations: intersection, union,

frequent items, etc. e.g. the common purchases on a

given group of customers.

!! The above notation is coherent with all types of cuboids

we described (classic, nested and detailed). We can also

imagine and denote nested cuboids with detailed data.

Note that the extended cuboids are not possible with

relational databases. Even if nesting arrays is possible in XML

or object-oriented databases, the latter has not been studied

thoroughly for an OLAP usage.

V.! EXPERIMENTS

A.! Experiments general settings

The experimental setup is briefly introduced here and then
detailed in the next paragraphs. We generate data according to
the SSB (Star Schema Benchmark) data model [7],[13],[23] .
Data is loaded in MongoDB v3.0, a popular document-oriented
system and PostgresSQL v8.4, a popular RDBMS. On both
systems we consider a flat model and a star-like normalized
model. On each dataset, we issue sets of OLAP queries and we
compute OLAP cuboids on different combinations of
dimensions. We also test extended versions of OLAP cuboids.
Experiments in MongoDB are done in both a single-node and a
distributed 3-nodes cluster setting. Experiments in PostgreSQL
are done in a singlenode setting. The rest of the experimental
setup is detailed below.

Data. We generate data using an extended version of the

Start Schema Benchmark SSB [1],[13],[23] because it is the

only data warehousing benchmark that has been adapted to

NoSQL systems [1],[22]. The SSB benchmark models a

simple product retail reality. It contains one fact “LineOrder”

and 4 dimensions “Customer”, “Supplier”, “Part” and “Date”.

The extended version is part of our previous work [22]. It

allows generating raw data directly as JSon which is the

preferable data format for loading data in MongoDB. We use

improve scaling factor issues that have been reported. In our

experiments we use different scale factors (sf) such as sf=1,

sf=10 and sf=25. In the extended version, the scale factor sf=1

corresponds to 10
7

records for the LineOrder fact, for sf=10

we have 10x10
7
 records and so on.

Settings/hardware/software. The experiments have been

done in two different settings: single-node architecture and a

cluster of 3 physical nodes. Each node is a Unix machine

(CentOs) with a 4 core-i5 CPU, 8GB RAM, 2TB disks, 1Gb/s

network. The cluster is composed of 3 nodes, each being a

worker node and one node acting also as a dispatcher. Each

node has a MongoDB v.3.0 running. In MongoDB

terminology, this setup corresponds to 3 shards (one per

machine) and one machine also acts both as configuration

server and client.

Models. We will refer to 4 data models depending on the

database system used and the logical data model underneath.

We will use the abbreviations DFL and DSH for respectively

flat and star-like normalized document models. In analogy, we

will consider flat and star-like normalization data models in

relational models that will be named RFL and RSH.

Fig 3 Memory usage (GB) by model on different scale factors.

B.! From data warehouse loading to OLAP cuboids

Loading. In Fig 3, we show the storage space required by each
approach (document models DFL and DSH and relational
models RSH and DSH) on 3 scale factors (sf=1, sf=10, sf=25).
Instantiation on PostgreSQL requires less space than in
MongoDB (from 3 to 5 times). This is easily explained:
document-oriented systems repeat field names on every
document and specifically in MongoDB data types are also
stored explicitly. To store data with flat models we need about
4 times more space, due to data redundancy. For instance, at
scale factor sf=10 (10

8
 line order records) we need 150GB and

Table 1 Query execution times per model for sf=10, in seconds.

 Mongo, singlenode PostgreSQL, singlenode Mongo, cluster

 DFL DSH RFL RSH DFL DSH

QS1.1 "#"$% "&'#% !"#$ %&'$ (")$ &##$

QS1.2 "&&(% ")($%)!!$ (#$)*)$ '+"$

QS1.3 "''"% "#")% '(&$ (#$ "#+%$ '**$

QS1 avg %"))$ %&''$))'$ **$ %%##$ '+'$

QS2.1 "*(&% "#(&% '++$ (!$ '(&$ +""$

QS2.2 "''*% "*'*% '+!$!#$ '!'$ **&$

QS2.3 "&""% "+""% &&'$ (#$ '(%$ **)$

QS2 avg %"'"$ %'++$ &%'$ (($ '(%$ *+!$

QS3.1 "&#(% "+&)% !'*$ (%$ '('$ +&"$

QS3.2 "&&*% "$'"% !&#$ (%$ &#&$ +))$

QS3.3 ""*$% "(*"% ()!$ (%$ '!&$ +('$

QS3 avg %'')$ %!""$!%%$ (%$ '*#$ +)'$

avg !"#$% !&!'% &&(% #!%)!*% #$#%

42GB for respectively DFL and DSH and 45GB and 12GB for
RFL and RSH.

In Fig 4, we show loading times by model at different

scale factors (single node). Denormalized data is loaded about

23% to 26% faster with PostgresSQL (model RFL) than with

MongoDB (model DFL). Instead, star-like normalized data is

loaded about 35-40% faster on MongoDB (model DSH) than

on PostgresSQL (model RSH). The latter observation is

explained by the fact that in PostgresSQL, the foreign key

constraint slows down the data loading process significantly.

If loading performance is analyzed using MB stored per

second, we observe that MongoDB stores about 18MB/s to

21MB/s while PostgresSQL stores about 3MB/s to 8MB/s.

This explains why the loading time for denormalized data

models is comparable across systems although MongoDB

requires about 4 times more storage space.

In we show loading times in two settings: single node and

cluster, both with a scale factor sf=1. Loading data is observed

to be slower in a distributed setting. For instance, data (sf=1)

is loaded into the DFL model in 588s on a single cluster, while

it needs 1912s on a distributed setting; about 3 times more.

This is mainly due to penalization related to network data

transfer: MongoDB balances data volumes and it tries to

distribute equally data across all shards implying more

network communication.

OLAP queries. Each model and server configuration is

tested using 3 sets of OLAP queries (QS1, QS2, QS3). To do

so, we use the SSB benchmark query generator that generates

3 query variants per set. The query complexity increases from

QS1 to QS3: QS1 queries filter on one dimension and

aggregate all data; QS2 queries filter data on 2 dimensions and

group data on one dimension; and QS3 queries filter data on 3

dimensions and group data on 2 dimensions.

Fig 4 Loading times by model and scale factor

In Table 1, we show query execution times on all query

variants with a scale factor sf=10, for all models. In

MongoDB we consider two settings (single node and cluster).

Table 2 Execution times on the computation of 3 dimensional OLAP cuboids

Cuboid DFL, singlenode RSH, singlenode DFL cluster

c_city, s_city, p_brand 7466s 9897s 6480s

c_city, s_city, d_date 3540s 6742s 2701s

c_city, p_brand, d_date 4624s 9302s 3358s

s_city, p_brand, d_date 4133s 8509s 3301s

avg 4941s 8612s 3960s

Query variant results are averaged (using an arithmetic

mean) for each query set.

In MongoDB, the execution is faster on the denormalized

data model (DFL) than on the star-like data model DSH. This

is explained by the poor support of joins by MongoDB. The

resuts on DSH are better than the ones that can be obtained on

a simple translation of the queries in MongoDB querying

language. We improved query execution by filtering data

before having to perform join-like operations. This kind of

optimizations will be manual until document-oriented systems

will provide better support for joins. Instead, with

PostgresSQL we observe that queries from these 3 sets run

significantly faster on the star-like normalized model RSH

than on the denormalized model RFL, from about 6 to 12

times. This is not surprising if we consider that RDBMS are

optimized on joins and the fact that on given circumstances we

need to load in memory less data with DSH.

We observe that these queries run faster on PostgresSQL

than on MongoDB. They run about 15 to 22 times faster on

PostgresSQL with data model RSH than on MongoDB with

data model RFL. On these query sets, PostgreSQL is shown

significantly superior to MongoDB. However, we observed

these queries are particularly selective. Due to compact

storage in relational systems, all data to be processed can fit in

main memory after filtering. This is an advantage to RDBMS

systems.

Fig 5 Loading times on single node versus cluster mode with sf=1.

With MongoDB, we observe that query execution times

are generally better in a distributed setting. For many queries,

execution times improve 2 to 3 times depending on the cases.

In a distributed setting, query execution is penalized by

network data transfer, but it is improved by parallel

computation.

OLAP cuboid queries: In addition, we considered OLAP

queries that correspond to the computation of OLAP cuboids.

These queries are computationally more expensive than the

queries considered previously. More precisely, we consider

here the generation of OLAP cuboids on combinations of 3

dimensions. Computation times are shown in . The cuboids are

denoted on the dimension attributes they group data on. For

instance, c_city, s_city, p_brand stands for a cuboid that

groups data on customer city, supplier city and part brand.

Results are shown only on best performing datasets on

PostgresSQL and MongoDB, namely on data model DFL and

RSH. This is done because we observed that computation

times became significantly important (unrealistic) on data

models RFL and DSH.

We observe that the situation is reversed on this query set:

queries run faster (2 times) on MongoDB with data model

DFL (singlenode); they run slower on PostgresSQL with data

model RSH. We also observe a further improvement on the

distributed setting. On these queries we have to keep in

memory much more data than for queries in QS1, QS2 and

QS3. Indeed, on the query sets QS1, QS2 and QS3, the

amount of data to be processed is reduced by filters

(equivalent of SQL where instructions). Then data is grouped

on fewer dimensions (0 to 2). The result is fewer data to be

kept in memory and fewer output records. Instead for

computing 3 dimensional cuboids, we have to process all data

and the output has more records. Data will not fit in main

memory neither for MongoDB nor for PostgreSQL, but

MongoDB seems suffering less than PostgreSQL.

We can conclude that MongoDB scales better when the

amount of data to be processed increases significantly. It can

also take advantage of distribution. Instead, PostgresSQL

performs very well when all data fits in main memory.

OLAP cuboids and querying: Direct querying on raw

data is rare; instead it is common to compute OLAP cuboids

that will somehow cache results or intermediary results. We

considered executing the queries from sets QS1,QS2, QS3

directly on OLAP cuboids. For comparative reasons, we

consider 4 data warehouse systems:

!! S0: Data generated in MongoDB with model DFL without

any OLAP cuboids;

!! S1: Data generated in MongoDB with model DFL and

OLAP cuboids;

!! R0: Data generated in PostgreSQL with model RSH

without any OLAP cuboids

!! R1: Data generated in PostgreSQL with model RSH and

OLAP cuboids.

Table 3 Query execution times with or without OLAP cuboids, sf=10

 QS1 QS2 QS3 avg

S0 1255s 1232s 1335s 1274s

S1 0.1s 0.1s 0. 2s 0.1s

R0 88s 66s 61s 4.2s

R1 0.1s 0.3s 0.5s 0.3s

Average query times per query set are reported in Table 3,

Results show that when we use OLAP cuboids to support

query execution, query execution is significantly faster; more

than 10000 times on MongoDB and about 600-800 times on

PostgreSQL. The performance differences are no longer huge

between PostgreSQL and MongoDB; they are more than

comparable. This is because in the OLAP cuboids contain the

results of the queries and we just need to find the right record.

In cases, MongoDB is able to retrieve aggregated data from

the respective OLAP cuboids faster than PostgreSQL.

Concluding remarks: This set of experiments illustrates

multidimensional data warehouse instantiation from loading to

OLAP cuboid computation. It allows initial comparison

among modeling and technology choices. Some findings are

interesting, others intuitive. We observed that querying a

document-oriented system is slower than on a RDBMS when

queries are selective, but it performs better when a lot of data

is to be processed. Document-oriented systems scale well with

the increase of data volume; its performance is further

improved through distribution. We also observe that querying

time is significantly reduced when we use OLAP cuboids.

C.! Extended OLAP cuboids

In this section, we focus on extended cuboids defined earlier.
We study their computation and their utility on two different
workloads. We have computed nested and detail cuboids on
different combination of dimensions. We use a document-
oriented system (MongoDB v3.0) with raw data following the
data model DFL. During the experiments, we had some issues.
MongoDB has a limit on document size (16MB). The records
of nested or detail cuboids did not always fit within the
document limit. In this case, we split the document into parts.

Utility of extended cuboids: To assess the utility of

nested cuboids and detail cuboids, we designed two

experiments with query loads that include drill-down like

queries and detail-level queries. We consider 3 types of data

warehouse systems:

!! S1: we have raw data and classical cuboids on all

dimension combinations

!! S2: we have raw data and nested cuboids on all dimension

combinations

!! S3: we have raw data and detail cuboids on all dimension

combinations

In all systems, we cache the result of the last executed

query. This is useful if we want to drill-down in the result.

We consider two different experimental settings:

Setting 1: We consider a workload of OLAP queries followed

by drill-down queries. This is a typical sequence of queries in

OLAP; e.g. we start analyzing data by country and then we

want to drill down to specific cities. More precisely, we

consider a workload of 40 queries. They include 8 normal

OLAP queries and for each of them we have produced 4

random drill-down queries. More precisely, we have:

!! QS1 ={Q1,Q2, Q3,Q4,Q5,Q6,Q7,Q8, Q9, Q10,…Q40} is a

workload of 40 queries

!! QT = {Q1, Q6, Q11, Q16, Q19, …Q36} are 8 random OLAP

queries. For every query Qi in QT, we have produced 4

random queries {Qi+1, Q i+2, Qi+3, Q i+4} that ask for

aggregate functions at a lower level of granularity i.e. a drill

down operation.

Setting 2: We consider a workload of OLAP queries with the

intrusion of some detail-level queries. This setting can also

happen; e.g. we start analyzing data on some attributes and we

want to explain the observed data showing raw data. More

precisely, we consider a workload of multiple OLAP queries

where every 4 queries we issue one query that asks for

detailed data. We have:

!! QS ={Q1,Q2, Q3,Q4,Q5,Q6,Q7,Q8, Q9, Q10,…Q40} a

workload of 40 queries

!! Queries {Q1,Q2, Q3,Q4,Q6,Q7,Q8, Q9,Q11,Q12… } are

random OLAP queries whereas QD = {Q5, Q10, Q15, Q20, Q25,
…} are detail-level queries and the other are normal OLAP

queries. They retrieve raw data that concern the preceding

OLAP query in the workflow.

!! Results: In Fig 6 and Fig 7, we show the total query time

on the evolution of the query load (query count). On the Fig

6, we compare the system with classic cuboids (S1) to the

system with nested cuboids (S2) using the workload from

setting 1. We observe that S2 performs better than S1. In

particular, we observe that the major performance

difference is met with drill-down queries. In fact, the

system S1 has to query on another OLAP cuboid, while the

system S3 can re-use the last query result that has data of

lower-level detail.

Table 4 Compute time and memory use of OLAP cuboids by types and number of dimensions

No. of dimensions,

Cuboid type

OLAP cuboid example Computation time Memory use

3D, classic c(supplier,date,part,T) 428s 4065MB

2D, classic c(supplier,date,T) 197s 86MB

1D, classic c(date,T) 1s 0.3MB

average 207s 1198MB

3D, nested c(supplier,date,part, T,[customer,T]) 476s 4950MB

2D, nested c(supplier,date,T[part,T]) 227s 1897MB

1D, nested c(date,T,[supplier,T]) 10s 512MB

average 189s 2373MB

3D, detail c(supplier,date,part, T,[M]) 521s 5917MB

2D, detail c(supplier,date,T, [M]) 251s 2600MB

1D, detail c(date,T,[M]) 59s 2110MB

average 273s 3407MB

In Fig 7, we compare the system (S1) with classic cuboids

to the system with detail cuboids (S3) using the workload from

setting 2. We observe that S3 performs better than S1. In

particular, we observe that the main performance difference is

met with the detail-level queries (one every 5 queries). This is

because when the query asks for detail-level data, the system

S1 has to query on raw data while the system S3 has already

the detail data available from the last query result.

Fig 6 Cuboids compared on different query loads.

Memory use and computation times: In Fig 4, we

compare classic cuboids, detail cuboids and nested cuboids

computed on computation time and memory usage. On a given

type of cuboid we generate OLAP cuboids for every

combination of 3 dimensions, 2 dimensions and 1 dimension.

We aggregate data on 3 measures. We average the

computation time and memory use.

Results show that the extended cuboids demand for more

space and the computation time is higher. The difference

increases on 2-dimensional cuboids and 1-dimensional

cuboids. Concluding remarks: We analyze the utility of

detail cuboids and nested cuboids. They are shown to answer

efficiently workloads with drill-down and detail-level queries.

Fig 7 Cuboids compared on different query loads

VI.!CONCLUSION

In this paper, we have studied the instantiation of
multidimensional data warehouses with document-oriented
systems. For this purpose, we formalized and analyzed two
logical models. Our study highlights weaknesses and strengths
across the models; it studies extended OLAP cuboids and we
compare performance with a RDBMS.

We show how to instantiate a multidimensional data

warehouse with two data models: denormalized model (DFL)

and star-like normalized model (DSH). We study data loading

at different scale factors (10
7
 fact records – 2.5 x 10

8
 fact

records). The star-like normalized model (DSH) requires less

space and data loads faster. However, this latter model suffers

on data joins that are not well supported by document-oriented

systems. On the other side, the denormalized data model

shows better querying performance and queries are easier to

write.

The document-oriented systems are compared with

RDBMS on two equivalent data models. Results show that

RDBMS is faster on querying raw data. But performance

slows down quickly when data does not fit on main memory.

Instead, the analyzed document-oriented system is shown

more robust i.e. it does not have significant performance drop-

off with scale increase. As well, it is shown to benefit from

distribution. This is a clear advantage with respect to RDBMS

which do not scale well horizontally; they have a lower

maximum database size than NoSQL systems. Querying times

are shown to reduce significantly when we query directly on

OLAP cuboids. This makes both RDBMS and document-

oriented systems comparable on OLAP querying performance.

In the second phase of our experiments, we study two

extended versions of OLAP cuboids (that are not possible in

traditional RDBMS): nested cuboid and detail cuboid. They

come at the cost of additional memory usage, but they are

shown to perform well on specific workloads. More precisely,

nested cuboids support well workloads with drill-down

queries, while detail cuboid support well detail-level queries.

These cuboids are not stored naturally in relational databases

i.e. they need to be transformed and split in separate tables. In

document-oriented systems, we can store naturally the

extended cuboids records within documents due to arrays and

nesting. The only limitation is the maximal document size.

However, this is document specific and it can be solved by

appropriate array spitting.

We can conclude that document-oriented systems are a

promising playground for data warehouses. There is more to

be investigated. As future work, we recommend focusing on

the novel queries that can be answered by document-oriented

systems. Map-reduce like optimizations are to be investigated

as well for making possible faster and more advanced analysis

on data.

Acknowledgements

This work is supported by the ANRT funding under CIFRE-

Capgemini partnership.

References

[1]! D.J. Abadi, D.S. Myers, D.J. DeWitt and S.R. Madden. Materialization

Strategies in a Column-Oriented DBMS. IEEE 23
rd

Int. Conf. on Data

Engineering (ICDE), IEEE, pp. 466-475, 2007.

[2]! A. Bosworth, J. Gray, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and

sub-totals. ACM, 52(8):36{44, Aug. 2009.

[3]! R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record
39(4), ACM, pp. 12-27. 2011. 39, 4 (May 2011), 12-27.

DOI=http://dx.doi.org/10.1145/1978915.1978919

[4]! S. Chaudhuri and U. Dayal. An overview of data warehousing and
OLAP technology. SIGMOD Record 26(1), ACM, pp. 65-74, 1997.

[5]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, Ronan Tournier. Not

Only SQL Implementation of multidimensional database. International
Conference on Big Data Analytics and Knowledge Discovery (DaWaK

2015a), p. 379-390, 2015.

[6]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier.

Implementation of multidimensional databases in column-oriented
NoSQL systems. East-European Conference on Advances in Databases

and Information Systems (ADBIS 2015b), p. 79-91, 2015.

[7]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier.

Benchmark for OLAP on NoSQL Technologies. IEEE International
Conference on Research Challenges in Information Science (RCIS

2015c), p. 480-485, 2015.

[8]! M. Chevalier, M. El Malki, A. Kopliku, O. Teste, R. Tournier. How Can
We Implement a Multidimensional Data Warehouse Using NoSQL?

Dans : Enterprise Information Systems. Slimane Hammoudi, Leszek
Maciaszek, Ernest Teniente, Olivier Camp, José Cordeiro (Eds.),

Springer, p. 108-130, Vol. 241, Lecture Notes in Business Information
Processing (LNBIP, 2015d).

[9]! G. Colliat. OLAP, relational, and multidimensional database systems.

SIGMOD Record 25(3), ACM, pp. 64.69, 1996.

[10]! A. Cuzzocrea, I.-Y. Song, and K. C. Davis. Analytics over large-scale
multidimensional data: The big data revolution! In Proceedings of the

ACM 14
th
 International Workshop on Data Warehousing and OLAP,

DOLAP '11, pages 101{104, New York, NY, USA, 2011. ACM.

[11]! A. Cuzzocrea, L. Bellatreche and I.Y. Song. Data warehousing and

OLAP over big data: current challenges and future research directions.
16th international workshop on Data warehousing and OLAP (DOLAP),

ACM, pp. 67-70, 2013.

[12]! E. Dede, M. Govindaraju, D. Gunter, R.S. Canon and L. Ramakrishnan.
Performance evaluation of a mongodb and hadoop platform for scientific

data analysis. 4th ACM Workshop on Scientific Cloud Computing
(Cloud), ACM, pp.13-20, 2013.

[13]! K. Dehdouh, O. Boussaid and F. Bentayeb. Columnar NoSQL star
schema benchmark. Model and Data Engineering, LNCS 8748,

Springer, pp. 281-288, 2014.

[14]! A. Floratou, N. Teletia, D. Dewitt, J. Patel and D. Zhang. Can the
elephants handle the NoSQL onslaught? Int. Conf. on Very Large Data

Bases (VLDB), pVLDB 5(12), VLDB Endowment, pp. 1712–1723,
2012.

[15]! M. Golfarelli, D. Maio and S. Rizzi. The dimensional fact model: A

conceptual model for data warehouses. Int. Journal of Cooperative
Information Systems 7(2-3), World Scientific, pp. 215-247, 1998.

[16]! Adam Jacobs. 2009. The pathologies of big data. Commun. ACM 52, 8

(August 2009), 36-44. DOI=http://dx.doi.org/10.1145/1536616.1536632

[17]! F. M. Jiang, J. Pei, A. W. Fu. Ix-cubes: iceberg cubes for data
warehousing and olap on xml data. In Conf. on Information and

Knowledge Management (CIKM), ACM, pp. 905-908, 2007.

[18]! A. Kanade, A. Gopal and S. Kanade. A study of normalization and
embedding in MongoDB. IEEE Int. Advance Computing Conf. (IACC),

IEEE, pp. 416-421, 2014.

[19]! R. Kimball and M. Ross. The Data Warehouse Toolkit: The Definitive

Guide to Dimensional Modeling. John Wiley & Sons, 3rd ed., 2013.

[20]! Michael J. Mior. 2014. Automated schema design for NoSQL databases.
In Proceedings of the 2014 SIGMOD PhD symposium (SIGMOD'14

PhD Symposium). ACM, New York, NY, USA, 41-45.
DOI=http://dx.doi.org/10.1145/2602622.2602624

[21]! Konstantinos Morfonios, Stratis Konakas, Yannis Ioannidis, and

Nikolaos Kotsis. 2007. ROLAP implementations of the data cube. ACM
Comput. Surv. 39, 4, Article 12 (November 2007).

[22]! Ameya Nayak, AnilPoriya, DikshayPoojary Type of NOSQL Databases

and its Comparison with Relational Databases International Journal of
Applied Information Systems (IJAIS) ISSN 2249-0868 Foundation of

Computer Science FCS, New York, USA Volume 5 No.4, March 2013
www.ijais.org

[23]! P. ONeil, E. ONeil, X. Chen and S. Revilak. The Star Schema

Benchmark and augmented fact table indexing. Performance Evaluation
and Benchmarking, LNCS 5895, Springer, pp. 237-252, 2009.

[24]! A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden and

Michael Stonebraker. A comparison of approaches to large-scale data
analysis. Int. Conf. on Management of data (SIGMOD), ACM, pp. 165-

178, 2009.

[25]! F. Ravat, O. Teste, R. Tournier and G. Zuruh. Algebraic and graphic

languages for OLAP manipulations. Int. J. of Data Warehousing and
Mining (IJDWM), 4(1), IDEA, pp. 17-46, 2008.

[26]! . Schindler. I/O characteristics of NoSQL databases. Int. Conf. on Very
Large Data Bases (VLDB), pVLDB 5(12), VLDB Endowment, pp.

2020-2021, 2012.

[27]! J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,

T. Stancescu, H. Apte. F1: A distributed SQL database that scales. Int.

Conf. on Very Large Data Bases (VLDB), pVLDB 6(11), VLDB

Endowment, pp. 1068-1079. 2013.

[28]! A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing etl processes in data
warehouses. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st

International Conference on, pages 564{575, April 2005.

[29]! M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N. Hachem
and P. Helland. The end of an architectural era: (it's time for a complete

rewrite). 33
rd

Int. conf. on Very large Data Bases (VLDB), ACM, pp.
1150-1160, 2007.

[30]! M. Stonebraker. New opportunities for New SQL. Comm. of the ACM,

55(11), ACM, pp. 10-11, 2012.

[31]! D. Tahara, T. Diamond, and D. J. Abadi. Sinew: a SQL system for
multi-structured data. Int. Conf. on Management of data (SIGMOD).

ACM, pp. 815-826, 2014.

[32]! T. Vajk, P. Feher, K. Fekete and H. Charaf. Denormalizing data into

schema-free databases. 4th Int. Conf. on Cognitive Infocommunications
(CogInfoCom), IEEE, pp. 747-752, 2013.

[33]! P. Zhao, X. Li, D. Xin and J. Han. Graph cube: on warehousing and

OLAP multidimensional networks. In Int. Conf. on Management of Data
(SIGMOD), ACM, pp. 853-864, 2011.

[34]! H. Zhao and X. Ye. A practice of TPC-DS multidimensional

implementation on NoSQL database systems. Performance
Characterization and Benchmarking, LNCS 8391, Springer, pp. 93-108,

2014.

[35]! https://s3-eu-west-1.amazonaws.com/benstopford/nosql-comp.pdf

[36]! https://hbase.apache.org/

