
HAL Id: hal-01474899
https://hal.science/hal-01474899v1

Submitted on 23 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Multidimensional Cubes from Warehoused
Data and Linked Open Data
Franck Ravat, Jiefu Song, Olivier Teste

To cite this version:
Franck Ravat, Jiefu Song, Olivier Teste. Designing Multidimensional Cubes from Warehoused Data
and Linked Open Data. 10th International IEEE Conference on Research Challenges in Information
Science (RCIS 2016) co-located witht the 34th French Conference INFORSID, Jun 2016, Grenoble,
France. pp. 199-200. �hal-01474899�

https://hal.science/hal-01474899v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17167

The contribution was presented at RCIS 2016 :
http://www.sense-brighton.eu/rcis2016/

To cite this version : Ravat, Franck and Song, Jiefu and Teste, Olivier
Designing Multidimensional Cubes from Warehoused Data and Linked Open
Data. (2016) In: 10th International IEEE Conference on Research Challenges
in Information Science (RCIS 2016) co-located witht the 34th French
Conference INFORSID, 1 June 2016 - 3 June 2016 (Grenoble, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Designing Multidimensional Cubes from

Warehoused Data and Linked Open Data

Franck Ravat
IRIT-Université Toulouse I Capitole

UMR5505, CNRS
Toulouse, France

ravat@irit.fr

Jiefu Song
IRIT-Université Toulouse I Capitole

UMR5505, CNRS
Toulouse, France

song@irit.fr

Olivier Teste
IRIT-Université Toulouse II Jean Jaurès

UMR5505, CNRS
Toulouse, France

teste@irit.fr

Abstract— A Data Warehouse (DW) is widely used as a

consistent and integrated data repository in Business Intelligence

systems. Under today's dynamic and competitive business context,

warehoused data alone no longer provide enough information for

decision-making processes. Business analyses should be enhanced

by including Linked Open Data (LOD) to offer multiple

perspectives to decision-makers. This paper provides a new

multidimensional model, named Unified Cube, which offers a

generic representation for both warehoused data and LOD at the

conceptual level. A two-stage process is proposed to build a

Unified Cube according to decision-makers' needs. As a first step,

schemas published with specific modeling languages are

transformed into a common conceptual representation. The

second step is to associate together related data to form a Unified

Cube containing all useful information about an analysis subject.

A high-level declarative language is provided to enable non-

expert users to define the relevance between data according to

their analysis needs. To demonstrate the feasibility of the

proposed concepts, we show how analyses over data from

different sources can be carried out through a Unified Cube.

Keywords—conceptual multidimensional modeling; linked

open data; unified business analyses

I. INTRODUCTION

For over a decade, Business Intelligence systems have
been widely used to provide complex information during a
decision-making process. Operational data are periodically
extracted, transformed and loaded in a consistent and
integrated repository, called Data Warehouse (DW), which
organizes data into multidimensional cubes. Decision-making
based only on warehoused data gives a partial view over the
activities of the organization. Under today's highly
competitive business context, additional information coming
from the outside of an organization, mostly found on the Web,
should also be included in analyses to provide multiple
perspectives to decision-makers [1].

Extending business analyses with external data requires
knowing the exact semantics of information. Using semantic
web formats, Linked Open Data (LOD)1 is designed to publish
semantically interconnected and machine-readable data on the
Web. By simply accessing data providers, numerous
multidimensional LOD can be extracted and used in a
decision-making context [2]. However, relevant warehoused

1 http://linkeddata.org

data and LOD are scattered in different schemas. During an
analysis, decision-makers should navigate among several
schemas to gather all useful information. The dispersion of
warehoused data and LOD leads to repetitive searches for
relevant information among various data sources, which
reduces the efficiency of analysis. Furthermore, warehoused
data and LOD follow specific models in each domain. The
differences between DW and LOD models make it hard for
decision-makers to carry out analyses over the two types of
data in a unified way, which complicates the analysis tasks.

Facing these issues, our aim is to make full use of all
relevant data in a decision-making context. To this end, we
represent warehoused data and multidimensional LOD in a
unified way and independently of the specific modeling
languages of each domain. To facilitate the analysis tasks of
decision-makers, the unified representation should only
include concepts close to business terms.

In this paper, we describe a generic modeling solution for
both warehoused data and LOD. We also define a process of
unifying all useful data for analyses. First, we define a
conceptual multidimensional model, named Unified Cube,
which corresponds to a generic representation of data from
several sources relating to one analysis subject. Second, based
on the generic modeling language of Unified Cubes, we
propose a two-stage process to (a) transform various schemas
into a generic conceptual representation and (b) link together
relevant data to form a unified schema for all useful data. At
the end of the process, decision-makers obtain a Unified Cube
containing as much related information as possible to make
effective and well-informed decisions. To validate the
feasibility of the two propositions, we develop a prototype
containing a Unified Cube built upon a relational DW and two
online LOD datasets. By illustrating how a Unified Cube can
be queried, we demonstrate the feasibility of analyzing both
warehoused data and LOD in a unified way.

The rest of the paper is organized as follows. Section 2
introduces a running example of unified analyses over data
from multiple data sources. Section 3 presents the
multidimensional modeling language composed of conceptual
definitions and related graphical notations for Unified Cubes.
Section 4 describes the process of building a Unified Cube
from different schemas in the DW and LOD domains.
Section 5 presents some experimental assessments to
demonstrate the feasibility of the proposed concepts. Section 6

discusses related work on unifying relevant element from
different schemas in the fields of DW and LOD.

II. RUNNING EXAMPLE

In a company specializing in air conditioning devices, a
decision-maker refers to an internal R-OLAP DW to assess the
performance of sales staff. The DW relates to an analysis
subject (i.e. fact), named Sales, which contains a set of
numeric indicators (i.e. measure), namely quantity, unit price
and revenue of sales. Each measure can be computed
according to three analysis axes (i.e. dimensions): salesman,
product and date. In Fig. 1, dimensions are implemented
through a set of dimension tables. For instance, the dimension
named product is composed of four dimension tables, namely
PRODUCT, BRAND, RANGE and SECTOR. Each dimension
table represents a granularity level. The dimension tables at
lower levels contain one or several foreign keys pointing to
the higher levels. For instance, the dimension table
PRODUCT reveals the granularity level P_Key with two
foreign keys leading to its parent levels BRAND and RANGE.
The fact is implemented with a fact table. The set of foreign
keys of a fact table points to the lowest granularity levels of
the associated dimensions. For instance, the fact table SALES
includes three foreign keys associated with the lowest
granularity level (i.e. P_KEY, S_KEY and D_KEY) of the
three related dimensions.

Fig. 1. R-OLAP implementation of the warehoused data.

The R-OLAP DW alone does not provide enough
information to support effective and well-informed decisions.
The decision-maker must search for additional information to
obtain other complementary perspectives over the sales
activities. Since she/he notices that the promotion of air-
conditioning device is more efficient when the customers in a
city experience unusual weather changes. To get more insight
into the relationships between the promotion activities and the
climatic changes, the decision-maker browses in an online
LOD dataset revealing the monthly average temperature
according to cities and countries during the promotion period
of the company. The LOD are published in RDF Data Cube
Vocabulary (QB)2 format, which is the current W3C standard
to publish multidimensional statistical data. In brief, a QB
dataset includes a set of qb:observations3 (close to the
definition of facts in DW terminology) that describes
qb:measureProperty (i.e. measures) with related
qb:dimensionProperty (i.e. dimensions). For instance, in
Fig. 2 the qb:dataset named Climate Changes includes two
instances of qb:observation identified by eg:ob1 and

2 http://www.w3.org/TR/vocab-data-cube
3 Details about the prefixes are available on http://prefix.cc/

eg:ob2 (cf. lines 15-24). Each instance of qb:observation
relates an instance of eg:M_TEMPERATURE with an instance of
associated dimensions, namely eg:GEOGRAPHY and eg:TIME.

Fig. 2. Extract of the LOD published in QB format.

It is worth noticing that unlike the hierarchical definition
of dimension in DWs, a dimension in QB is a non-hierarchical
concept. The unique granularity level within a QB dimension
is represented by skos:hasTopConcept at the schema level.
For instance, in Fig. 3 the attributes eg:CITY and
eg:COUNTRY share an unspecified granularity level on the
dimension eg:GEOGRAPHY (cf. line 29).

Fig. 3. Dimension GEOGRAPHY in the QB datset.

Since the retail sales may compete with the company's
promotions in the same catchment area, the decision-maker
consults another online LOD dataset about the outlet prices
offered by rival retailers, This dataset is published in
QB4OLAP; it involves the retail price for a type of
merchandise offered by a retailer. In the field of LOD,
QB4OLAP is the only vocabulary that covers the most used
characteristics of multidimensional models, like multiple
granularity levels (i.e. qb4o:levelInHierarchy) within
multiple aggregation paths (i.e. qb4o:hierarchyProperty)
and the specification of the aggregation functions associated to
a measure (i.e. qb4o:aggregateFunction). Even though
QB4OLAP covers most features of multidimensional models,
the decision-maker has difficulties to explore directly such a
schema due to the complex syntax (cf. Fig. 4).

Fig. 4. Extract of the LOD published in QB4OLAP format.

Despite sharing some common features, warehoused data
and multidimensional LOD follow different models defined by
specific modeling languages in each domain at the logical
level [3], [4]. The complex syntax of these modeling
languages complicates the tasks of analysis, especially for
non-expert users. Moreover, since each of schemas provides a
partial view over the analysis subject, the decision-maker
should look into several schemas one after another to obtain
multiple perspectives. Confronted with these issues, the
decision-maker wants to build a conceptual multidimensional
schema that includes both the data from the R-OLAP DW and
the relevant QB and QB4OLAP datasets.

In the remainder of this paper, we will present how a
Unified Cube can help make full use of both warehoused data
and LOD in a decision-making context.

III. CONCEPTUAL MODELING OF UNIFIED CUBES

In this section, we describe a multidimensional modeling
language composed of a set of conceptual definitions of
Unified Cubes. The modeling language is generic enough to
include both warehoused data and multidimensional LOD
within a single schema.

Besides the differences in the syntax of modeling
languages, the communities of DW and LOD do not share the
same principles while publishing data: the domain of DW
mainly focuses on the structure of data (i.e. schema), while the
LOD domain encourages interconnecting independent

instances without necessarily being associated to a data
schema. In order to represent both warehoused data and LOD,
the multidimensional modeling language should include
conceptual definitions for components at both schema level
and instance level. Graphical notations are also proposed to
facilitate the understanding of non-expert users.

A. Dimension Schema

A dimension schema represents the structure of an
analysis axis composed of attributes organized in one or
multiple aggregation levels. The definition of dimension
schemas should be generic enough to cooperate with different
DW and LOD models containing (a) multiple attributes within
a level, (b) mono-hierarchical dimensions, (c) multiple-
hierarchical dimensions and (d) non hierarchical dimensions.

Definition 1. A dimension schema is a triple Di= ,
L , , such as:

• is the dimension's name;

• L is a finite set of pairs of lx, Ax , such that lx is a level
and Ax is a set of attributes associating to a level;

o among the levels, there exist at least a unique root
level and a unique extreme level;

o among the attributes of a level, the unique attribute
identifying the level is called parameter, denoted px,
while the other attributes describing the semantics of
the parameter are called weak attribute, denoted
Weakx, Weakx=Ax\{px}. The domain of an attribute ak
(ak∈Ax) is denoted as dom(ak).

• is a set of asymmetric and transitive binary relations
which reveals the aggregation path between a pair of
levels. Remember that the asymmetry means that ∃lm,
ln, lk∈ L : (lm ln)∧(ln lm) lm=ln, while the
transitivity means that (lm ln)∧(ln lk) lm lk.

Remark. In the case of a non hierarchical dimension (e.g.
dimensions in a QB schema), the root level contains all non-
extreme attributes, while the set of binary relations only
includes the one between the root level and the extreme level.

We propose the following graphical notation of dimension
schema for non-expert users (cf. Fig. 5). For simplicity, the
extreme level is omitted in the graphical notation.

Fig. 5. Graphical notation of a dimension schema.

In the remainder of this paper, we abusively note L
instead of Li and when it is clear that L and represents the
element of the dimension D in question.

B. Dimension Instance

The conceptual definition of dimension instances is
required to ensure the interoperability between schema-
centered DW models and instance-centered LOD models. A

dimension instance (a) maps the parameter at each level with
the corresponding parameter instances, (b) describes the
hierarchical aggregation relationships between parameter
instances and (c) associates the values of a weak attribute to
the related parameter instance.

Definition 2. A dimension instance consists of:

• a function between an attribute ak (ak∈Ax) at the level lx

(lx∈L) and its instances (i.e. any constant in lL D 4);
• a rollup function revealing the part-whole relationship

between a child attribute and a parent attributes, denoted

px

py, from px to py, such that lx ly, px

py: dom(px)→ dom(py);

• an association function Map
px

Weakx mapping an instance of

the parameter px to the values of its weak attributes Weakx,
such that Map

px

Weakx: dom(px)→2 dom(ak)ak Weakx

C. Unified Cube Schema

A Unified Cube schema represents the multidimensional
structure of data coming from one or multiple sources. Related
dimensions from different sources are linked together, so that
decision-makers can obtain new perspectives and more
complete information during analyses.

Definition 3. An Unified Cube schema is denoted as ucn,
D, M, ExtLink , such as:

• ucn is the name of the Unified Cube;

• D={D1;…;Dn}is a finite set of dimensions;

• M={m1;…;mk} is a finite set of numeric indicators
called measures;

• ExtLink is a set of extrinsic links depicting the
relevance between data. An extrinsic link is an inter-
dimension mapping which associates together two
disparate levels on different dimensions. The starting
point of an extrinsic link is called mapping level, while
the end point is called mapped level.

Remark. The definition of Unified Cube schemas is
generic enough to represent the structure of data from one or
multiple sources. In the case where only one data source is
involved, we obtain a Unified Cube without extrinsic links (i.e.
ExtLink=∅). If multiple sources are included in a Unified

Cube, a set of extrinsic links should be built to associate
relevant data together. Details about different types of
extrinsic link will be discussed in the section IV.B.

Fig. 6 shows the graphical notation of Unified Cube built
upon the warehoused data. Measures sharing the same related
dimensions are grouped together within the graphical notation.

Fig. 6. Graphical notation of a Unified Cube with only warehoused data.

4 represents the projection operator of the relational algebra

D. Unified Cube Instance

A Unified Cube instance (a) associates each measure value
to the instances of parameters on the related dimensions and (b)
connects the parameter instances at the mapping level with
relevant ones at the mapped level.

Definition 4. Let {p1,..., pn} be a set of parameters, in
which px is a parameter of the dimension Dx, dom(mj) is the
values of the measure mj, a Unified Cube instance consists of:

• a function between a set of parameter instances and the
related measure values, such as ∀mj∈M : 2 dom(p)x [1,n]

→dom(mj)

• an instance of extrinsic link revealing the relevance
between data. Each extrinsic link instance associates
the parameter instances at a mapping level li with the
relevant parameter instances at a mapped level lj, such
as → dom(pj)

5.

IV. PROCESS OF BUILDING A UNIFIED CUBE

Based on the generic multidimensional modeling language
of Unified Cubes, warehoused data and LOD can be unified
together in a single schema. In this section, we present a two-
stage process allowing building a Unified Cube from multiple
sources in the domains of DW and LOD.

As is shown in Fig. 7, the first step is to transform data
schemas published with specific modeling vocabularies into a
generic conceptual representation with a common modeling
language. The multidimensional modeling language of Unified
Cube can be used in the step 1, since it is generic enough to
cover all the features embedded in multidimensional models.
The conceptual representation obtained after the first step is
called exportation cube whose aim is to facilitate the
combination of different schemas in a Unified Cube.

Fig. 7. Building a Unified Cube from multiple data sources.

The second step aims at linking together relevant data to
obtain a unified schema. To do so, the multidimensional
modeling language of Unified Cube provides a component,
named extrinsic link, which allows representing the relevance
between two dimensions. To facilitate the linking operations
for non-expert users, we propose a high-level declarative
language in the form of algebraic operator which translates a

5 represents the selection operator in the relational algebra

decision-maker's need into a mapping between two relevant
dimensions. An algorithm is also proposed for the linking
operator to automate its execution and guarantee the overall
validity of a Unified Cube .

The outcome of the process is a Unified Cube which
represents all useful data for analyses at the conceptual level
along with the relevance between different dimensions.

A. Step I: Generic Conceptual Representation

Warehoused data and LOD are published according to
different models. Each data model follows a specific modeling
language expressed with the terminology of the corresponding
domain. The differences between various modeling languages
in DW and LOD domains make it impossible to analyze all
useful data in a unified way. To overcome this problem,
different data sources should be firstly transformed into a
generic representation with a common modeling language.

The modeling language of Unified Cube is rich enough in
expressivity to cover the complete multidimensional features
embedded in OLAP, QB and QB4OLAP schemas (cf. section
III). As the first step of building a Unified Cube, different data
sources are transformed into a generic conceptual
representation, named exportation cube, which aims at
facilitating the combination of all useful data in a Unified
Cube. No user intervention is needed for the first step. An
exportation cube is automatically obtained by referring to the
translation rules presented in this section.

1) From an OLAP Schema to an Exportation Cube
The transformation of an OLAP schema into a conceptual

representation has been thoroughly studied during the last
decade [5]. Since the modeling language of Unified Cube
covers all multidimensional features of OLAP models, the
transformation of an OLAP schema into exportation cube is
quite straightforward and thus does not need to be repeated in
this paper. The graphical notations of the obtained exportation
cube of the R-OLAP DW (cf. Fig. 1) can be found in Fig. 6.

2) From a QB4OLAP Schema to an Exportation Cube
As an extension of QB vocabulary, the main idea of

QB4OLAP is to use RDF triples to represent the most
common features of a multidimensional model. More
specifically, QB4OLAP adds classes and properties (prefixed
by qb4o) to represent multiple attributes (i.e. a parameter and
its weak attributes) within a level, hierarchical dimensions
with multiple levels and the set of aggregate functions
associated to a measure. TABLE I. gives an overview of the
conceptual definitions of exportation cubes and their
corresponding QB4OLAP triples. Note that in the domain of
LOD, a variable starts with a question mark.

TABLE I. UNIFIED CUBE CONCEPTS AND QB4OLAP TRIPLES

Unified Cube

Concept
QB4OLAP triples

Dimension
schema (?dim)

?dim a qb:DimensionProperty;

Level (?lvl)
?dim qb4o:hasHierarchy ?hierarchy;
?hierarchy a qb4o:hierarchyProperty;
?hierarchy qb4o:hasLevel ?lvl.

Unified Cube

Concept
QB4OLAP triples

Parameter
(?para)

weak attribute
(?att)

?lvl a qb4o:levelInHierarchy;
?lvl qb4o:levelComponent ?para;
? para a qb:levelProperty;
?para qb4o:hasAttribute ?att.

Binary Relation
(?biRel)

?biRel a qb4o:hierarchyStep;
?biRel qb4o:childLevel ?lvlChild;
?biRel qb4o:parentLevel ?lvlParent;
?biRel qb4o:cardinality ?cardinalityParentChild

Dimension
Instance
(?dimIns,
?dimInsParent

?dimIns qb4o:inLevel ?lvlChild;
?dimIns rdfs:label ?InsChild;
?dimIns skos:broader ?dimInsParent.
?dimInsParent qb4o:inLevel ?lvlParent;
?dimInsParent rdfs:label ?InsParent.

Cube Schema
(?cube)

?cube a qb:dataSet;
?cube rdfs:label ?cubeName;
?cube qb:structure ?cubeStructure;
?cubeStructure a qb:DataStructureDefinition;
?cubeStructure qb:component [qb4o:level ?lvlRoot;

qb4o:cardinality ?cardinalityCubeDim];
?cubeStructure qb:component [qb:measure ?measure].

Measure
(?measure)

?measure a qb:measureProperty;
?measure rdfs:label ?mName.

Cube Instance
(?ob)

?ob a qb:Observation;
?ob qb:dataSet ?cube;
?ob ?dim ?dimIns;
?ob ?measure ?value.

Based on the TABLE I. we translate the LOD dataset about
the outlet sales into an exportation cube. Its graphical
notations are shown in Fig. 8.

3) From a QB Schema to an Exportation Cube
QB is the current W3C standard to publish statistical LOD.

In terms of multidimensional features, QB allows defining the
structure of a fact via qb:DataStructureDefinition.
However, it does not support the same hierarchical structure of
dimension as a multidimensional model does. In a
multidimensional model, a dimension schema corresponds to a
hierarchical structure whose attributes are organized according
to multiple granularity levels. A dimension schema defined in
QB, on the contrary, may only contain one granularity level
with a non-hierarchical list of attributes.

One way to find the hierarchical relationship between two
attributes within a QB dimension is to look into dimension
instances. However, obtaining a hierarchical dimension
schema from a QB dataset is not straight-forwards as it seems
to be. For instance, the property skos:hasTopConcept (or
qb:hierarchyRoots in the case of non-skos hierarchies) is,
by convention, used to link a dimension schema to the topmost
attribute in a hierarchy. However, on the contrary to a
hierarchy in a multidimensional schema, there is no integrity
constraint enforcing the top-most convention in a QB schema.
By consequence, publishing the following dimension schema,
which is strictly forbidden according to a multidimensional
model, is nevertheless consistent with the QB specifications.

eg:dimSchema skos:hasTopConcept eg:oneAtt

eg:oneAttribute skos:broader eg:anotherAtt

eg:anotherAtt skos:inScheme eg:dimSchema

Facing these issues, we propose the following algorithm to
obtain an exportation cube from a QB dataset.

Fig. 8. Exportation Cube for LOD in QB4OLAP format.

Fig. 9. Exportation Cube for LOD in QB4OLAP format.

Algorithm Creating an exportation cube from a QB schema
Input: A QB schema qbCube where cubeStructure is the
stucture of the schema; DQB is the set of dimensions; MQB is
the set of measures.
Output: A conceptual exportation cube.
Begin

1. For each di∈DQB (di a qb:dimensionProperty)
2. Create a dimension with the name dimN such as

di rdfs:label dimN;
3. For each attribute ak of di (di qb:codeList cli; cli a

skos:ConceptScheme; cli skos:hasTopConcept ak)
4. Create a level lk for ak;
5. Associate lk, ak to di;
6. For all attribute instances Ik of ak (Ik a ak)
7. If Ik skos:broader Ik+1 (Ik+1 a ak+1)
8. Create a binary relation lk lk+1;
9. ElseIf Ik skos:narrower Ik-1 (Ik-1 a ak-1)
10. Create a binary relation lk-1 lk;
11. End If
12. End for
13. End For
14. End For
15. Create an exportation cube named cubeN such as qbCube

a qb:dataSet; qbCube rdfs:label cubeN;
16. For each mj∈MQB (mj a qb:measureProperty)
17. Create a measure in the exportation cube with the name

meN such as mj rdfs:label meN;
18. Associate this measure with its associated dimensions

Dmj⊆DQB, such as ∀dx∈Dmj: cubeStructure a

qb:DataStructureDefinition; cubeStructure

qb:component [qb:dimension dx], qb:component
[qb:measureProperty mj];

19. End for
End.

Remark. As the authors of [6] mention, the QB format is
not always correctly used in some real-world application cases.
To avoid bringing inaccurate information to decision-makers,
error-detection methods such as those presented in [7] should
be applied to a QB schema before applying the proposed
algorithm.

We apply the algorithm to the QB dataset about climate
changes. The obtained exportation cube is shown in Fig. 9.
After each data source is transformed into a corresponding
exportation cube, we regroup together all exportation cubes in
a preliminary Unified Cube. The preliminary Unified Cube
aims at providing a unified view of all useful data for analyses,
so that decision-makers can associate relevant data together
during the second step of the process.

B. Step II: Cube Linking

The multidimensional modeling language of Unified
Cubes includes relationships between data within one source
and inter-schema relationships representing the relevance

between data from disparate sources (i.e. extrinsic links). In
the previous sections, we discuss how different relationships
embedded in one data source can be automatically
transformed into exportation cubes. The aim of this section is
to present how inter-schema relationships are established and
managed in a Unified Cube, which corresponds to the second
step of the process. First, we describe two types of extrinsic
links that a decision-maker can define between two related
dimensions. Second, we propose a high-level declarative
language in the form of algebraic operator, named DLink,
which builds extrinsic links between relevant data according to
decision-makers' needs. An algorithm is proposed to automate
the execution of the DLink operator while ensuring the validity
of the built Unified Cube.

1) Types of Extrinsic Links
The relevance between data from disparate sources may

take many forms. Among different types of relevance, the
correlation and the aggregation relations are particularly useful
in the context of business analysis.

a) Correlation Links

Classically an analysis granularity includes only one level
of dimension. In the context of Unified Cubes, the notion of
analysis granularity needs to be generalized, since several
levels of dimension from different data sources may refer to
the same analysis granularity. To this end, we propose
correlation links which associate together two relevant levels
that belong to the same analysis granularity.

A correlation link allows associates a pair of levels on two
dimensions that are considered equivalent in term of analytical
needs. The parameters involved in the levels associated by a
correlation link may be semantically equivalent (i.e. referring
to the same concept), such as the parameter named YearMonth
in the QB dataset and the one named Month in the R-OLAP
DW (cf. Fig. 10(a)). In the graphical notation of a Unified
Cube, correlation links are represented by dotted lines.

(a) Semantically equivalent elements (b) Analytically equivalent elements

Fig. 10. Correlation links at the schema level.

Two levels that are semantically heterogeneous but share
the same role in business analyses (i.e. analytically equivalent)
may also be connected together through a correlation link. For
instance, the salesmen's team and the city are two semantically
heterogeneous concepts. However, in a specific analysis
context where each team is in charge of sales in one city,
analyses involving a team may as well be carried out with the
corresponding city. In this case, the salesmen's team and the
city can be considered as two analytically equivalent concepts,
which can also be connected together through a correlation
link (cf. Fig. 10(b)).

b) Aggregation Links

Classical multidimensional schemas allow decision-
makers to carry out analyses only according to aggregation
paths situated within one dimension. Within a Unified Cube, a
level within a dimension may be aggregated to another level
on a different dimension. To provide additional aggregation
paths for analyses, we propose aggregation links which reveal
the parent-child relation between two relevant levels on
different dimensions.

An aggregation link gathers parts into a whole by
associating one or several instances of the parameter at the
mapping level to at most one parameter instance at the
mapped level. An aggregation link may be inferred through
the semantics embedded in the corresponding parameters. For
instance, in Fig. 11(a) since each Type of merchandise may
correspond to several product (i.e. P_Key), we can build an
aggregation link between the levels lType and lP_Key. An
aggregation link is represented by a dotted arrow in the
graphical notation of a Unified Cube.

(a) Semantic parent-child relation (b) Analytical parent-child relation

Fig. 11. Aggregation links at the schema level.

In the previous case, the aggregation link represents the
parent-child relation between a product and a type which can
be deduced independently of the analysis context. An
aggregation link may also be placed between two levels whose
parent-child relations holds only under a given analysis
context. For instance, the aggregation link in Fig. 11(b)
between salesman's team and retailer's catchment area cannot
be detected through the semantics embedded in the parameters.
It is valid only under a specific analysis context where a
catchment area of a retailer attracts the same clientele of the
nearby salesman's teams.

2) Establishing Extrinsic Link
As one of the key characteristics of the next generation of

BI, the internal complexity of a system should be hidden from
end-users. In the context of a Unified Cube, it comes down to
empower non-expert users with the ability to associate by
themselves relevant data together according to their needs.
Ideally, decision-makers could be able to express their needs
through a high-level declarative language to a system. To this
end, we define an user-oriented linking operator presented in
an algebraic form, named DLink. The DLink operator allows
associating relevant dimensions and producing a Unified Cube
of all useful information as output. An algorithm is proposed
to automate the execution of the DLink operator and ensure
the validity of the obtained Unified Cube.

a) Algebraic Linking Operator

The DLink operator builds an extrinsic link according to a
specified type between a pair of levels on two dimensions.
TABLE II. shows the algebraic representation of DLink.

TABLE II. ALGEBRAIC DLINK OPERATOR

DLink (Dmapping; lmapping; Dmapped; lmapped; Type)=Unified Cube

Input - Dmapping: the starting dimension of the extrinsic link;

- lmapping: the starting level of the extrinsic link;

- Dmapped: the ending dimension of the extrinsic link;

- lmapped: the ending level of the extrinsic link;

- Type={correlation link; aggregation link}: the type
of extrinsic link to establish between levels.

Output Unified Cube: a Unified Cube with an updated set of
extrinsic links.

At the schema level, the DLink operator associates a pair
of levels with a correlation link or an aggregation link. At the
instance level, different mapping functions are created
between a parameter instance at the mapped level and the
corresponding one(s) at the mapping level.

Fig. 12. Extrinsic links at the schema level and mappings at the instance level.

As is shown in Fig. 12, the correlation link corresponds to
an injective function between the mapping level and the
mapped level. The injection implies an instance of the
parameter at the level lmapping is mapped to at most one instance
of the parameter at the level lmapped. The correlation link in Fig.
12 is built via the following operator: DLink(DDATE; lMonth;
DTIME; lYearMonth; {correlation link}).

The aggregation link is a many-to-one function between
the mapping level and the mapped level. A many-to-one
function associates one or several child instances at the level
lmapping to at most one parent element at the level lmapped (cf. Fig.
12). For instance, the aggregation link associating one or
several products to their corresponding type is built through
the following operator: DLink(DPRODUCT; lP_Key; DMARCHANDISE;
lType; {aggregation link}).

b) Execution Algorithm of the DLink Operator

To facilitate the tasks of non-expert users, we propose an
algorithm to automate the execution of the DLink operator.
Two types of operations are included in the algorithm, namely
dimension mapping and validity verification. The dimension
mapping operations aim at creating automatically or semi-
automatically an extrinsic link between a pair of relevant
levels on two dimensions, while the validity verification

operation aim at removing inconsistent or redundant extrinsic
links in the new Unified Cube. The execution algorithm is as
follows.

Algorithm Execution of DLink
Input: Dmapping, lmapping: the starting dimenison and level of
the new extrinsic link; Dmapped, lmapped: the ending dimenison
and level of the new extrinsic link; Type: the type of the new
extrinsic link to build.
Output: A Unified Cube with an updated set of extrinsic links.
Begin

1. If the chosen Type is correlation link
2. If there exists an aggregation link between lm and ln

(lm∈Lmapping∧lm lmapping, ln∈Lmapped∧lmapped ln)
3. Remove the aggregation link between lm and ln;
4. End if
5. Create a correlation link between lmapping and lmapped;
6. Else If the chosen Type is aggergation link
7. If there exists an aggregation link between lm and ln

(lm∈Lmapping∧lm lmapping, ln∈Lmapped∧lmapped ln)
8. Remove the aggregation link between lm and ln;
9. End If
10. If there exists an extrinsic link (correlation or

aggregation) between lp and lq (lp∈Lmapping∧ lmapping lp,
lq∈Lmapped∧lq lmapped)

11. Display a warning message: Impossible to place an

aggregation link between lmapping and lmapped;
12. Else
13. Create an aggregation link between lmapping and

lmapped;
14. End If
15. End If
End

The dimension mapping operations establish a new
extrinsic link between relevant dimensions (cf. lines 5 and 13).
During the dimension mapping operations, relevant
dimensions are associated together at both schema level and
instance level. If the two dimensions correspond semantically
(e.g. Date and Time, Product and Merchandise), the execution
of dimension mapping operations may be automated. In this
case, we may refer to the approaches presented in [8] to
automatically establish mappings at the schema level as well
as instance level. When two dimensions are relevant only
under certain analysis contexts (e.g. Salesman and Retailer,
Salesman and Geography), a semi-automatic approach should
be adopted. In this case, the system proposes to decision-
makers several possibilities of mappings between two
dimensions based on domain ontology, semantic annotations
or integrity constraints [9], [10]. Then decision-makers can
choose or modify a proposed mapping according to a given
analysis context.

Through the dimension mapping operations, decision-
makers can associate, according to their analysis needs,
relevant dimensions within a Unified Cube. At the same time,
the algorithm of the DLink operator must make sure the global
validity of all extrinsic links in the new Unified Cube,
especially when each new extrinsic link seems to be valid if
being built individually. To do so, the algorithm carries out

validity verification operations to check the validity of the new
extrinsic link and the existing ones. Decision-makers do not
need to worry about the order in which the set of extrinsic
links should be placed, because inconsistent or redundant
extrinsic links are automatically removed from the Unified
Cube after the validity verification operations.

More specifically, the algorithm checks if the new
extrinsic link can replace a redundant extrinsic link already
existing in a Unified Cube. Firstly, a correlation link can
substitute an aggregation link built with a lower mapping
level and/or a higher mapped level (cf. lines 2-4 of the
following algorithm). For instance, suppose there was an
aggregation link between the level lYearMonth of the dimension
TIME and the level lYear on the dimension DATE. Once the
correlation link between lYearMonth and lMonth (cf. Fig. 10(a)) is
built, the aggregation link between lYearMonth and lYear should
be removed from the Unified Cube, since it can be deduced
from the new correlation link along with the binary relation
lMonth lYear.

Similarly, an aggregation link can replace another
aggregation link built with a lower mapping level and/or a
higher mapped level (cf. lines 7-9 of the following algorithm).
For instance, building the aggregation link between lTeam and
lCatchmentArea would replace an aggregation link between lS_Key

and lCatchmentArea, because the latter can be deduced from the
new aggregation link and the binary relation lS_Key lTeam (cf.
Fig. 11(a)).

On the other hand, a new aggregation link should not be
built if a correlation link or an aggregation link already exists
at a higher mapping level and/or a lower mapped level in the
same Unified Cube (cf. lines 10 and 11 of the algorithm). For
instance, since there is already a valid correlation link
between lCity and lTeam (cf. Fig. 10(b)), no more aggregation
link is allowed between lCity and lS_Agency since it can be
deduced from the correlation link and the binary relation
lTeam lS_Agency.

After the execution of four DLink operators, two
correlation links and two aggregation links are built within
the Unified Cube as shown in the Fig. 13.

Fig. 13. Unified Cube for warehoused data and LOD

V. EXPERIMENTAL ASSESSMENTS

In this section, we carry out some experimental
assessments to demonstrate the feasibility of analyzing both
warehoused data and LOD in a unified way. The advantage of
unified analyses is that decision-makers can obtain complete
and coherent information about an analysis subject and new
analysis possibilities by following the relationships established
between relevant data from different sources.

A. Protocol

1) Configuration for Data Implementation
To simulate the distributed nature of warehoused data and

LOD, we use three identical Microsoft Windows 7 work
stations located on the same LAN for the experimental
assessments (Interl(R) i7-4510U 2GHz CPU, 8GB RAM, SSD
500GB disk). Each work station hosts one source of the
running example: the DBMS Oracle 11g manages the
warehoused data implemented with a snowflake schema,
while a native triple store with an integrated SPARQL end-
point provided by Apache Jena API [11] is used for LOD
published in QB and QB4OLAP formats. Several warm-up
runs are carried out in each work station after the installation.
We implement the Unified Cube in a virtual machine installed
on the same work station hosting the R-OLAP DW. Only one
dedicated core of CPU, 500M RAM and 1GB disk are
allocated to the virtual machine, since managing a Unified
Cube is not resource-consuming; it only requires hosting a
non-materialized view for the Unified Cube and an ontology
implementing the set of extrinsic links by associating together
relevant data at the instance level.

Fig. 14. Procedures for processing analyses in a Unified Cube.

An analysis need over a Unified Cube is translated into one
or several queries which are applied to the corresponding
component data sources. The analysis processing procedures
are as follows (cf. Fig. 14). First, by identifying all useful
measures and attributes in a Unified Cube, a decision-maker
expresses an analysis need. This analysis need is manually
divided into a set of user-oriented algebraic operators. Each
algebraic operator involves data from one source. Two
existing tools with graphical interface developed within our
research team [12], [13] are used to automate the translation of
an algebraic operator into an executable query over a R-OLAP
DW or a LOD dataset. Then, each of the three work stations
receives a SQL or SPARQL query and produces a partial
result based on the hosted source. Each partial result is cleaned
up, especially for SPARQL queries in which the URI of each
returned triple is simplified to keep only useful information for
analyses. At last, we query the ontology implementing the
extrinsic links to associate relevant data scattered among the
partial results. In this way, a unified result is created before
being presented to decision-makers.

2) Queries and Data Collection
To support analyses over both warehoused data and LOD,

different types of queries should be correctly generated and
executed in a Unified Cube. We carry out analyses covering
the most widely used types of queries in the context of
multidimensional analyses, i.e. queries containing joins,
projections, selection criteria and aggregation functions with
grouping clauses (i.e. Group By). More details are available
in TABLE III.

TABLE III. ANALYSIS NEEDS, QUERY TYPES AND DATA SOURCES

Analysis Need Query Source

1. Find the sale quantities for heaters (product
range) according to the country in which the
salesmen promote.

Join,
Select

R-OLAP
QB

2. Find the average price and quantity of products
sold by each salesman's team, associating the price
with the average outlet retail price for the products
of the same type offer by the retailers in the
corresponding catchment area.

Join,
Selection,
Projection
Group By

R-OLAP,
QB4OLAP

In consideration of the computing capacity of the three
work stations, we populate the three datasets with a reasonable
amount of synthetic data to avoid query execution timeout.
The R-OLAP DW contains over 16 million tuples while the
QB and QB4OLAP schemas respectively include about 1.44
million and 1.21 million triples6.

B. Result and Discussion

In this section, we present and discuss the results of our
experimental assessments. To separate the fundamental
operations from the complex syntax of querying languages,
the generated SQL and SPARQL queries are presented in the
form of relational algebra and SPARQL algebra7 respectively.
Note that although the SPARQL algebra has not yet become a
W3C standard, it is already supported by several frameworks
for querying LOD: all algebraic expressions of SPARQL
queries in this section are generated by Apache Jena API.

The first analysis corresponds to a cross-source analysis
which calculates measures from one data source according to
parameters in another data source. During this analysis, the
Unified Cube offers additional perspectives of analysis to
decision-makers by aggregating sale quantities from R-OLAP
DW according to the parameter named Country from the QB
dataset. This cross-source analysis is feasible within the
Unified Cube owning to the correlation link between lS_Key on
DSalesman and lCity on DGeography as well as the binary relation
lCity lCountry within the dimension Salesman.

Two queries are generated for the first analysis (cf. Fig.
15). The SQL query searches for sale quantities of heaters by
salesmen, while the SPARQL query returns the list of
countries in the QB dataset.

6 The source code and generated queries are available at
http://olap-sw.weebly.com/blog/rcis-2016-source-code-and-

queries
7 https://www.w3.org/2001/sw/DataAccess/rq23/rq24-
algebra.html

Fig. 15. Generated SQL and SPARQL queries for the first analysis.

After querying the ontology implementing the extrinsic
links, relevant instances of parameters S_Key and City are
associated together. Then, by referring to the rollup function
between the instances of City and Country, a country is
associated with a corresponding group of salesmen within the
unified analysis result which regroups the results of SQL and
SPARQL queries. Through the result shown in Fig. 16, the
decision-maker realizes that the salesmen who have difficulty
in selling the heaters are in fact located in hot countries where
the demand of heaters remains relatively low. Without the
Unified Cube, it would be difficult to obtain multiple
perspectives in such an intuitive way if the analysis was
carried out with separate data sources.

Fig. 16. Unified result of the first analysis.

The second analysis corresponds to a comparative analysis
which requires including relevant information from different
data sources in one analysis result. A Unified Cube allows
displaying measures from different sources according to
related dimensions which are interconnected through extrinsic
links. During the second analysis, the measures quantity and
unit price from the R-OLAP DW can be displayed along with
the retail price from the QB4OLAP dataset starting from the
levels associated by the aggregation link between DProduct and
DMerchandise as well as the one between DSalesman and DRetailer.

The second analysis need is translated into a SQL query
and a SPAQL query (cf. Fig. 17). The SQL query searches for
the unit prices and the sale quantities by products and
salesman' teams, while the SPARQL query reveals the retail
price of the same product's type offered by retailers in the
catchment areas sharing the same clientele of salesman's
teams.

Fig. 17. Generated SQL and SPARQL quereis for the second analysis.

After the execution of these two partial queries, each
product is associated with its corresponding type through the
aggregation link between lP_Key on DProduct and lType on
DMerchandise. Meanwhile, via the aggregation link between lTeam
on DSalesman and lCatchmentArea on DRetailer each salesman's team is
aggregated to the related catchment area which shares the
same clientele of the company. The unification of relevant
dimensions makes it possible to combine measures from R-
OLAP DW with the one from QB4OLAP dataset. By
comparing with the price offered by other retailers (cf. Fig.
18), the decision-maker notices that the higher the sale prices
fixed by the company, the lower the sale quantities promoted
by the salesmen. It would be less easy to obtain such a
comprehensive analysis result without gathering relevant data
in dispersed sources into a Unified Cube.

Fig. 18. Unified result of the second analysis.

We record the execution time of each analysis from the
moment where an analysis need is submitted from the
decision-maker till the moment where a unified result is
produced by gathering all partial results. Without any
optimization technique for query execution, all analyses return
the result within one minute (cf. TABLE IV. column
Execution Time). The execution time remains reasonable in
consideration of the laptop-level configuration of the working
stations.

TABLE IV. EXECUTION TIME OF EACH ANALYSIS

Analysis

Need

Execution Time

(Seconds)

Working Station's Response Time (Seconds)

R-OLAP QB QB4OLAP

1 29.8 7.9 27 n/a
2 56.5 8.5 n/a 51.0

A Unified Cube increases the efficiency of analysis by
allowing decision-makers to analyze all useful data in a
unified way. The execution time of each analysis is much
lower than the sum of response time of all working stations,
which is impossible if decision-makers query different data
sources separately and wait for all partial results one after
another. Meanwhile, each working station receives and
executes a partial query individually without any influence on
others. Thus, another advantage of Unified Cubes is the
possibility of parallelizing the execution of partial queries,
which helps further reduce the execution time of analysis.

VI. RELATED WORK

In today's highly dynamic business context, well-informed
and effective decisions require enriching warehoused data
with other data that fall outside of the scope of internal DWs
[1], [14]. Establishing relationships between elements from
different sources belongs to the field of schema matching.
Being studied for the first time as an independent research
topic in [15], schema matching refers to a set of techniques
allowing generating correspondences between several formal
structures that represent an engineered artifact. Within the
scope of this paper (i.e. the fields of DW and LOD), the
classical application cases of schema matching include ETL
and ontology alignment [8].

In the DW domain, an ETL (extract-transform-load)
process integrates one or several disparate data sources (e.g.
operational databases) into the warehouse format. With the
arrival of web published data in business analyses, the DW
community intuitively treated LOD as external data sources
that should be centralized in a DW through an ETL process
[16], [17]. The shortcoming of this approach was found soon
afterwards due to the poor freshness of warehoused LOD and
the high cost of non-automatic ETL process [18]. To
overcome these drawbacks, [6] and [19] propose solutions to
querying directly LOD published in QB or other
multidimensional formats derived from QB. Among the
derived LOD formats, the QB4OLAP vocabulary allows
representing the complete multidimensional structure of LOD
at the logical level [4]. However, the previous work is limited
to representing LOD from one data source with a
multidimensional structure expressed through semantic web
languages. No solution is proposed to deal with the problems
about how disparate data sources can be represented and
analyzed in a unified way. In this paper, we define a generic
conceptual model allowing including both warehoused data
and LOD. Differing from the semantic web approaches whose
main goal is fixing a common vocabulary and a set of
interpretation constraints (i.e., inferring rules) to describe the
data semantics, our model aims at including all useful data in a
generic and unified multidimensional schema.

In the field of semantic web, ontology alignment is the de
facto application case of schema matching [20], [21].
Ontology alignment allows matching semantically relevant

elements in different schemas. In term of practical utility for
business analyses, ontology alignment is not generic enough to
represent common analytical relationships that are
semantically irrelevant. For instance, in our running example
the statement "a salesman's team is a equivalent concept to city
in an analytical context about the sales of air-conditioners"
cannot be represented through any standardized ontology
property without violating the strict logical semantics of
identity: by no means team and city may refer to the same
concept in terms of semantic. Our work is more generic since
both semantically and analytically relevant data can be
associated together according to decision-makers' needs.

VII. CONCLUSION AND DISCUSSIONS

Our aim is to make full use of all relevant data to support
effective and well-informed decisions. To this end, we define
a generic multidimensional model, named Unified Cube,
which allows including as much useful information as possible
for analyses. The multidimensional modeling language of
Unified Cubes includes both conceptual definitions and
graphical notations.

To build a Unified Cube, we describe a two-stage process
which unifies relevant data from disparate sources. As a first
step, schemas published with specific modeling languages in
the DW and LOD domains are transformed into a common
conceptual representation named exportation cube. Defined
through a generic multidimensional modeling language,
exportation cubes allow facilitating the combination of useful
data in a Unified Cube. The second step of building a Unified
Cube is to associate relevant data according to decision-
makers' needs. The multidimensional modeling language
includes a set of mappings, named extrinsic links, which
allows modeling inter-dimension analysis granularities (i.e.
correlation links) and parent-child relations between levels on
different dimensions (i.e. aggregation links). An algebraic
linking operator named DLink is proposed to enable non-
expert users to establish extrinsic links according to their
needs. We propose an algorithm to automate the execution of
the DLink operator while guaranteeing the overall validity of
all extrinsic links within a Unified Cube.

To demonstrate the feasibility of the proposed concepts,
we develop a prototype including a Unified Cube built from a
R-OLAP DW and two LOD datasets published in QB and
QB4OLAP formats. By translating analysis needs into queries
applicable to Unified Cubes, we show how warehoused data
and LOD can be analyzed in a unified way.

One of our ongoing research efforts is focused on an
analysis framework compatible with Unified Cubes. Following
an automatic approach of federated queries processing, this
analysis framework aims at enabling non-expert users to carry
out on-the-fly analyses including multiples data sources within
a Unified Cube. We also intend to generalize the definition of
extrinsic links to represent more sophisticated analysis needs.
For instance, an n-ary link will be defined to model the
relevance between three or more dimensions. A more long-
term objective is to study the influences of the materialization
of source data over the efficiency of analyses carried out in
Unified Cubes.

References

[1] A. Abelló, O. Romero, T. B. Pedersen, R. Berlanga, V. Nebot, M. J.
Aramburu, and A. Simitsis, “Using Semantic Web Technologies for
Exploratory OLAP: A Survey,” IEEE Trans. Knowl. Data Eng., vol. 27,
no. 2, pp. 571–588, Feb. 2015.

[2] M. E. Zorrilla, J.-N. Mazón, Ó. Ferrández, I. Garrigós, F. Daniel, and J.
Trujillo, Eds., Business Intelligence Applications and the Web: Models,

Systems and Technologies. IGI Global, 2012.
[3] C. Ciferri, R. Ciferri, L. Gómez, M. Schneider, A. Vaisman, and E.

Zimányi, “Cube Algebra: A Generic User-Centric Model and Query
Language for OLAP Cubes,” Int. J. Data Warehous. Min., vol. 9, no. 2,
pp. 39–65, 32 2013.

[4] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying
Data Warehouses on the Semantic Web Using QB4OLAP,” in Data

Warehousing and Knowledge Discovery, vol. 8646, Cham: Springer
International Publishing, 2014, pp. 45–56.

[5] S. Chaudhuri and U. Dayal, “An overview of data warehousing and
OLAP technology,” ACM SIGMOD Rec., vol. 26, no. 1, pp. 65–74,
Mar. 1997.

[6] B. Kämpgen and A. Harth, “Transforming statistical linked data for use
in OLAP systems,” in Proceedings of the 7th international conference

on Semantic systems, Graz, Austria, 2011, pp. 33–40.
[7] D. Fleischhacker, H. Paulheim, V. Bryl, J. Völker, and C. Bizer,

“Detecting Errors in Numerical Linked Data Using Cross-Checked
Outlier Detection,” in The Semantic Web – ISWC 2014, vol. 8796,
Cham: Springer International Publishing, 2014, pp. 357–372.

[8] E. Rahm, “Towards Large-Scale Schema and Ontology Matching,” in
Schema Matching and Mapping, Springer Berlin Heidelberg, 2011, pp.
3–27.

[9] A. DOAN and A. Y. HALEVY, “Semantic integration research in the
database community: A brief survey.,” AI Mag., vol. 26, no. 1, pp. 83–
94, 2005.

[10] G. Cabanac, C. Max, F. Ravat, and O. Teste, “Decisional Annotations:
Integrating and Preserving Decision-Makers’ Expertise in
Multidimensional Systems,” in Complex Data Warehousing and

Knowledge Discovery for Advanced Retrieval Development: Innovative

Methods and Applications, IGI Global, 2009, pp. 65–81.
[11] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.

Wilkinson, “Jena: implementing the semantic web recommendations,”
in Proceedings of the 13th international World Wide Web conference,
New York, NY, USA, 2004, pp. 74–83.

[12] R. Saad, O. Teste, and C. Trojahn, “OLAP Manipulations on RDF Data
following a Constellation Model,” in Proceedings of International

Workshop on Semantic Statistics (SemStats 2013) collocated with

International Semantic Web Conference (ISWC-2013), Sydney, 2013.
[13] F. Ravat, O. Teste, R. Tournier, and G. Zurfluh, “Algebraic and Graphic

Languages for OLAP Manipulations,” Int. J. Data Warehous. Min., vol.
4, no. 1, pp. 17–46, 2008.

[14] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J.-N. Mazón, F.
Naumann, T. Pedersen, S. B. Rizzi, J. Trujillo, P. Vassiliadis, and G.
Vossen, “Fusion Cubes: Towards Self-Service Business Intelligence,”
Int. J. Data Warehous. Min., vol. 9, no. 2, pp. 66–88, 32 2013.

[15] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic
schema matching,” VLDB J., vol. 10, no. 4, pp. 334–350, Dec. 2001.

[16] V. Nebot, R. Berlanga, J. M. Pérez, M. J. Aramburu, and T. B.
Pedersen, “Multidimensional Integrated Ontologies: A Framework for
Designing Semantic Data Warehouses,” in Journal on Data Semantics

XIII, vol. 5530, Springer Berlin Heidelberg, 2009, pp. 1–36.
[17] O. Romero and A. Abelló, “Automating multidimensional design from

ontologies,” in international workshop on Data warehousing and

OLAP, 2007, pp. 1–8.
[18] L. Etcheverry and A. A. Vaisman, “Enhancing OLAP Analysis with

Web Cubes,” in The Semantic Web: Research and Applications, vol.
7295, Springer Berlin Heidelberg, 2012, pp. 469–483.

[19] L. Etcheverry, S. Gomez, and A. Vaisman, “Modeling and Querying
Data Cubes on the Semantic Web,” ArXiv Prepr. ArXiv151206080,
2015.

[20] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching,
ten years later,” Proc. VLDB Endow., vol. 4, no. 11, pp. 695–701, 2011.

[21] J. Euzenat, Ontology matching, 2nd edition. New York: Springer, 2013.

