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Abstract

Today’s state-of-art in speech recognition involves deep neu-

ral networks (DNN). These last years, a certain research effort

has been invested in characterizing the feature representations

learned by DNNs. In this paper, we focus on convolutional neu-

ral networks (CNN) trained for phoneme recognition in French.

We report clustering experiments performed on activation maps

extracted from the different layers of a CNN comprised of two

convolution and sub-sampling layers followed by three dense

layers. Our goal was to get insights into phone separability

and phonemic categories inferred by the network, and how they

vary according to the successive layers. Two directions were

explored with both linear and non-linear clustering techniques.

First, we imposed a number of 33 classes equal to the num-

ber of context-independent phone models for French, in order

to assess the phoneme separability power of the different lay-

ers. As expected, we observed that this power increases with

the layer depth in the network: from 34% to 74% in F-measure

from the first convolution to the last dense layers, when using

spectral clustering. Second, optimal numbers of classes were

automatically inferred through inter- and intra-cluster measure

criteria. We analyze these classes in terms of standard French

phonological features.

Index Terms: Convolutional Neural Network, phonemic cate-

gories, clustering

1. Introduction

Through advances in machine learning training algorithms,

hardware computing capabilities, and the availability of very

large data sets, deep neural networks (DNNs) have become the

state-of-the-art technique in acoustic modeling [1, 2] and end-

to-end large vocabulary automatic speech recognition (ASR) [3,

4]. To get insights on the feature representations learned by

DNNs, several recent studies characterized how the high in-

trinsic variability in speech is reduced by the successive layers

in deep networks [5, 6]. In [6], for example, 2-d representa-

tions of the same speech segments spoken by different speak-

ers align better when using projections of unit activations of

the deepest layers in a network. The 2-d visualizations were

extracted using the t-Distributed Stochastic Neighbor Embed-

ding (t-SNE) dimension reduction technique that we also use

in this study [7]. More recently, Nagamine et al. [8] studied

how invariant phonemic categories are formed within a DNN

trained for phone recognition, elucidating patterns of feature or-

ganization similar to the ones observed in the human auditory

cortex. They found that some nodes are selective to broad pho-

netic features such as voicing, manner and place of articulation,

by plotting average node responses to phonemes and by clus-

tering them according to a phoneme selectivity index. In the

present work, we report similar experiments but carried out on

a convolutional neural network (CNN) rather than a DNN com-

prised of dense hidden layers only. An important difference

between these types of models lies in the fact that DNNs ig-

nore input topology (input feature order is of no importance for

DNNs), whereas convolution filters try to model local correla-

tions that do exist and that are strong in spectral representations

of speech [9]. Hence, similarly to the findings of [8], we can

expect activation maps of convolution layers to exhibit patterns

specific to certain phonetic or phonological properties. To ex-

plore this direction, we carried out two sets of clustering exper-

iments on activation maps of a CNN trained for phone recog-

nition for French. First, we imposed a number of 33 classes

equal to the number of context-independent phone models for

French, in order to assess the phoneme separability power of

the different layers. Second, an optimal number of classes was

automatically inferred through inter- and intra-cluster measure

criteria. We analyze the resulting classes in terms of standard

French phonological features.

The paper is organized as follows. First, we describe the

CNN model used in this work. Then, we give a brief overview

of the two dimension reduction techniques: principal compo-

nent analysis (PCA) and t-SNE, the linear and non-linear clus-

tering approaches (k-means and spectral clustering) at the core

of our study, and their evaluation metrics. We report and ana-

lyze the clustering experiments in Section 4 before concluding.

2. CNN model

The model used in this work comprises an input layer composed

of 11 frames of 40 log filter bank static, delta, and delta-delta

coefficients for each frame, extracted from a 20 ms frame to

which have been added the five previous and following neigh-

boring frames for a total of 11 consecutive frames. Two adjacent

frames are separated by 10 ms. Two convolution layers with

3×5 filters, followed by respectively 1×3 and 1×2 downsam-

pling (max-pooling) layers, produce respectively 32 and 64 ac-

tivation maps that serve as input parameters for three 1024 unit

dense hidden layers with a rectified linear unit (ReLu) activation

function. Pooling is applied on frequency only and not time, as

it was shown optimal for ASR [10]. Finally, the output dense

layer comprises 33 units and uses a sigmoid activation func-

tion. The network weights were initialized using the ”Xavier”

method [11], and trained with gradient descent with Nesterov

momentum, with a categorical cross-entropy cost function. The

regularization dropout method (p = 0.5) was used with the

dense hidden layers only. This model is not very deep but ap-

pears to be sufficient to get insights on its phonetic feature rep-

resentation capabilities. To carry out our work, we used the



Theano [12] and Lasagne toolkits1.

To train the model, we used the BREF corpus, com-

prised of 100 hours of read speech collected from 120 native

French speakers, who read texts from the French newspaper Le

Monde [13]. We divided the corpus into a training and a devel-

opment (Val) sub-corpora, in the 90%/10% proportions equiva-

lent to 1M/150K examples, respectively. The development part

was used to tune the learning hyper-parameters of the CNN

(learning rate, stopping criterion). Training stopped if the cost

computed on Val did not decrease more than 1e-3 for at least

one over three consecutive epochs. The final model achieved a

26.7% phone error rate (PER) on Val. For information, a 20.1%

PER on the TIMIT corpus was reported in [10] with a CNN

trained for U.S. English phone recognition. We were not look-

ing for the best performance possible but rather for a network

which size allows the study of its parameters.

3. Methods

In order to characterize the CNN internal layers in terms of

phone/phonetics modeling, we feed-forwarded 100 input sam-

ples per phone through the network. These samples were cho-

sen within Val samples that were correctly classified by the

model. Phones typically have a duration larger than 20 ms,

hence, several successive samples separated by 10 ms (our hop

size for feature extraction) share a same phone label. We sys-

tematically chose the third samples with the idea that these cen-

tral samples are good representatives of the phones of interest.

The outputs of each layer (activations) are extracted and

clustering is performed on them after reshaping them in 2-d ma-

trices, if needed. For instance, the second max-pooling layer

gives a tensor of dimension 3300 × 64 × 7 × 4, where 3300,

64 and 7× 4 correspond respectively to the number of samples

(100 per phone), the number of maps and the filter size of this

layer. This tensor is reshaped into a 3300× 1792 matrix before

clustering.

3.1. Dimension reduction

Due to the fact that we attempt to identify phonemes and pho-

netic features with high-dimensional activation maps, embed-

ding techniques may help in extracting pertinent piece of in-

formation on these data distributions. We consider two pre-

processing steps: Principal Component Analysis (PCA) and t-

Distributed Stochastic Neighbor Embedding (t-SNE) [7].

PCA is processed on the whole activation maps. Since the

contrast could vary from one layer to another, we set for each

layer the number of principal components that keeps at least

90% of the covariance matrix spectrum.

The t-SNE method relies on random walks on neighbor-

hood graphs to extract the local structure of the data and also

reveal important global structure. Based on the pair-wise sim-

ilarities in both the original data space and in the embedding

space defined by conditional probabilities, the divergence be-

tween the two distributions is then minimized. For the initial-

ization of the algorithm, a PCA is first performed to reduce the

dimensionality of the initial data. We used the same numbers of

principal components as the experiment with PCA only.

3.2. Clustering techniques

To study the impact of CNN for determining single phoneme or

clusters of phonemes, we consider the two most popular clus-

1https://github.com/Lasagne/Lasagne

tering techniques based on either linear separation or non-linear

separation: K-means and spectral clustering. K-means is com-

puted with Manhattan distances [14] to take into account the

main directions of the data distribution. As the dataset contains

100 samples per phoneme, the initialization of the centroı̈ds is

based on preliminary clustering 10% of the data.

Spectral Clustering (SC), which has a theoretical connec-

tion with weighted kernel k-means and normalized graph cut

[15], aims at selecting dominant eigenvectors of a parametrized

Gaussian affinity matrix in order to build an embedding space in

which the clustering is made [16]. This method can detect arbi-

trarily shaped clusters with an appropriate choice of the Gaus-

sian kernel similarity function. The inherent parameter of the

Gaussian affinity measure which role is to threshold the affinity

measure is based on both the distribution and the dimension of

the dataset [17].

In Section 4.1, we report clustering experiments with a

fixed number of clusters equal to 33, the number of distinct

phones we use for French. In Section 4.2, we derived optimal

numbers of clusters automatically, in order to analyze which

phones the network groups together in terms of standard pho-

netic characteristics. To do so, two different clustering quality

assessment criteria for K-means and SC have been used. These

criteria rely on the same principle: the comparison between

intra- and inter-cluster affinity. A good quality clustering is per-

formed, in terms of affinity, when the affinity values between

and within the clusters are low and high, respectively [18]. In

terms of distances, the distance between the data points that be-

long to different clusters must be larger than the distance be-

tween points within a same cluster.

For K-means, the within- and between-cluster sums (WCS

and BCS) of point-to-centroı̈d distances are computed for each

possible number of clusters, up to 33 clusters. Mean ratios be-

tween WCS and BCS are computed and the optimal number of

clusters corresponds to the one that gives the smallest ratio.

For SC, the Gaussian affinity matrix is exploited after in-

dexing the data points with their assigned cluster label [19].

Thus, the off-diagonal blocks will represent the affinity between

clusters and the diagonal ones the affinity within clusters. The

mean ratios between the Frobenius norm of the off-diagonal

blocks and that of the diagonal ones is then computed for each

candidate number of clusters. The optimal number of clusters

is again defined so as to minimize this ratio.

3.3. Evaluation

To evaluate the resulting clusters with a fixed number of 33

clusters, we use Precision, Recall and F-measure. Precision,

denoted P , is the fraction of retrieved phonemes in the clus-

ters. Recall, denoted R, is the fraction of the phonemes that are

relevant in the clusters and that are successfully retrieved. F-

Measure, denoted F , combines precision and recall as the har-

monic mean of precision and recall. These measures are sum-

marized by the following equations:

P =
tp

tp+ fp
, R =

tp

tp+ fn
, F = 2

P.R

P +R

where tp, fp and fn respectively represent the number of

true positives, false positives and false negatives. To compute

these metrics, the phoneme assigned to a given cluster is the one

that is the most represented in that cluster. The best possible

cluster for a phone would be a cluster regrouping all the 100

samples of that phones, with no samples of any other phone.



Figure 1: Clustering performance in F-measure with K-means

(left) and SC (right), both without dimension reduction, with

PCA and with t-SNE. Here, a number of 33 clusters equal to

the number of target phones was imposed (cf. Section 4.1).

4. Results

4.1. Phone-specific clusters become more explicit with layer

depth

Figure 1 shows clustering F-measure values obtained with K-

means (left hand-side) or with SC (right-hand side), both with-

out dimension reduction, with PCA or t-SNE. Each curve is

made of 7 points: the leftmost point denoted ”Raw” corresponds

to the F-measure obtained when clustering the raw acoustic in-

put features, and from left to right the clustering results with the

activation maps outputted from the successive network layers:

’conv1’, ’mp1’, ’conv2’, ’mp2’ for the convolution and max-

pooling layers, followed by ’D1’, ’D2’ and ’D3’ the three dense

hidden layers. We did not perform clustering on the output

layer, which provides the phone probabilities for the 33 units,

since we were interested in characterizing the inner layers’ be-

havior. Clustering with the raw input features gives F-measure

values between 0.3 and 0.4, with the best one obtained with t-

SNE and SC. As expected, clustering the activations of the sub-

sequent layers progressively improves the results. It can happen

that multiple clusters are assigned to a same phone, it happened

indeed with the shallower layers but not with the deepest ones.

For both K-means and SC, t-SNE (green curves) outperforms

significantly the two other approaches (no dimension reduction

and PCA) when using the convolution/sub-sampling layer ac-

tivations as input. It suggests that t-SNE indeed captures the

global structure of the complex speech signal more efficiently

than PCA does. Then, with the dense layer activations used as

input (D1 to D3), the advantage of using t-SNE vanishes and

similar performance is obtained in all the three conditions. Fur-

thermore, K-means and SC achieve similar performance val-

ues. This indicates that a linear clustering algorithm such as

K-means is as efficient as a more sophisticated non-linear ap-

proach such as SC. We can eventually relate these results of a

performance increase when going deeper into the network to

the idea that successive layers reduce data variability and pro-

gressively linearize the complex latent structure of speech [20].

This idea that DNNs, and CNNs in particular, are markedly

successful thank to their structural linearizing capabilities has

been illustrated with nice images in [21], in which simple arith-

metic operations such as addition, subtraction and interpolation,

are applied on the linearized feature representations of images

learned by a network.

4.2. Broad phonetic classes are learned by the network

Our phone set for standard French is comprised of 33 context-

independent units, modeling 17 consonants, 3 semi-vowels,

10 oral and 3 nasal vowels. There are three more vowels in

French (two oral and one nasal) that we did not consider be-

cause of their lower number of occurrences in the speech cor-

pus. In [8], the authors observed that some neuron units acti-

vate for phones that share phonetic features, for instance, plo-

sives. In the present study, our findings with convolution acti-

vation maps are similar. In this paper, we use symbols from the

SAMPA French Phonetic Alphabet.

By applying automatic Spectral Clustering, an optimal

number of clusters of 7 was identified in order to minimize the

ratio of inter- and intra-cluster affinity. Distinct single clusters

regroup 82.7% of the closed vowels /y/, /i/, /e/, also grouped

with the semi-vowel /H/, 81.3% of the /S/, /s/, /f/, /Z/ frica-

tives, 93% of medium to open vowels /a/, /E/, /9/, 92% of the

nasal consonants /n/, /m/ and /J/, 60% of the nasal vowels /a~/,

/o~/, /U~/, 68% of the plosives consonants /p/, /t/, /k/, /b/, /d/,

/g/ and 76% with the rounded vowels /o/,/u/, /O/ and the /w/

semi-vowel. These clusters are completely coherent in terms of

the phonological characteristics typical from the French sound

system. But some specific phoneme like /R/ or /l/ are not well

detected and are spread across several clusters. Very similar

clusters were obtained with K-means but due to the fact that the

optimized number of clusters is 17 for K-means, some phono-

logical clusters are subdivided. For example, the plosive conso-

nants /p/, /t/, /k/, /b/, /d/, /g/ are subdivided in three clusters: one

with 71.3% of /b/,/d/, /g/, another one with 87% of the phoneme

/t/ and a last one with 92% of /p/ and /k/.

In the remaining of the paper, we further illustrate these re-

sults. Figure 2 is a 3-d PCA projection of the first convolution

layer activation maps obtained for the 33 phones. The maps

correspond to averaged activation maps obtained when feed-

forwarding 100 input samples per phone through the first layer.

One can see clusters of similar phones, which have a phonetic

interpretation. On the right-hand side, a cluster regroups the

/p/, /t/ and /k/ voiceless plosives, close to another cluster with

the /b/, /d/, /g/ voiced counterparts. Similarly, the /f/, /s/ and /S/

voiceless and /v/, /z/, /Z/ voiced fricatives also form two clus-

ters. In the central part of the figure lies an axis with the three

semi-vowels /H/, /J/ and /w/, and, behind, almost all the vow-

els are grouped together. The /m/ and /n/ nasal consonants are

closed to each other, so as the /a~/ and /o~/ nasal vowels. We

made available online interactive versions of this figure2 and

also of the figure obtained with t-SNE3.

Figure 3 illustrates an example activation map for the three

non-rounded front vowels /i/, /e/, /E/, the three rounded back

vowels /u/, /o/, /O/, and the /a/ back vowel. They correspond to

one map among the 32 maps of the ’conv1’ layer, and they are

the maps averaged on the 100 samples per phone. The seven

maps are represented within the F1-F2 formant plane, with F1

being the vertical axis, and F2 the horizontal one. The map

positions in the plane are just indicative, based on standard for-

mant values for French vowels [22]. One can see a pattern in

this figure according to the F1 axis: the activation maps of two

vowels with close F1 values are very similar, and the strong

activation values depicted in red become more central as F1 in-

creases. It indicates that this map is sensitive to F1 variations,

2https://www.irit.fr/˜Thomas.Pellegrini/

research/pca3d.html
3https://www.irit.fr/˜Thomas.Pellegrini/

research/tSNE3d.html



Figure 2: 3-d PCA projections of the first convolution layer activations averaged over 100 examples per phone. An interactive figure is

available online.

Figure 3: Example activation map of layer ’conv1’ for closed to

open vowels. F1 and F2 axes stand for first and second formant

values. Vowel positions are indicative.

F1 being related to mouth aperture in the literature, and rel-

atively insensitive to the F2 axis, usually associated to vowel

anteriorityposteriority, which qualifies the place of articulation

of the oral vowels. Figure 4 shows an example mean map of

the first convolution layer for the voiced and voiceless plosives,

which are very similar to each other and very different from the

vowels activation maps of Figure 3.

5. Conclusions

In this paper, we reported our first attempts in elucidating the

capacity of a CNN model trained for phoneme recognition in

French to learn broad phonemic and phone specific features.

For this purpose, clustering experiments were performed on

activation maps extracted from the different layers of a CNN

comprised of two convolution and sub-sampling layers fol-

lowed by three dense layers. Two directions were explored

with both linear and non-linear clustering techniques. First,

we imposed a number of 33 classes equal to the number of

Figure 4: Example activation map of layer ’conv1’ for plosives.

context-independent phone models for French, in order to as-

sess the phoneme separability power of the different layers. As

expected, we observed that this power increases with the layer

depth in the network: from 34% to 74% in F-measure from the

first convolution to the last dense layers, when using t-SNE as

a dimension reduction technique followed by spectral cluster-

ing. Second, optimal numbers of classes were automatically

inferred through inter- and intra-cluster measure criteria. Stan-

dard French phonological features such as place of articulation

of French oral vowels was illustrated by representing activation

maps as heat maps on a F1-F2 formant plane. We used 100

samples for each phone of interest and these samples were ex-

tracted 20 ms after the first occurring of the phones. We plan

to repeat our experiments with more samples and we will try

to use samples averaged on the whole speech segments labeled

with a same phone label. We expect to increase the clustering

performance by this way. Another question that we would like

to tackle would be to characterize the phonetic modeling capa-

bilities of the convolution layers at filter-level by considering

their weights instead of the activation maps.
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