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Abstract. Traditional static query optimization is not adequate for
query federation over linked data endpoints due to unpredictable data
arrival rates and missing statistics. In this paper, we propose an adaptive
join operator for federated query processing which can change the join
method during the execution. Our approach always begins with symmet-
ric hash join in order to produce the first result tuple as soon as possible
and changes the join method as bind join when it estimates that bind
join is more efficient than symmetric hash join for the rest of the process.
We compare our approach with symmetric hash join and bind join. Per-
formance evaluation shows that our approach provides optimal response
time and has the adaptation ability to the different data arrival rates.

Keywords: Distributed query processing + Linked data - Query feder-
ation - Join methods - Adaptive query optimization

1 Introduction

Linked data, which is a way of publishing and connecting structured data on
the web, provides connected distributed data across the web. In other words,
linked data creates a global data space on the web. Link traversal and query
federation are the two approaches for querying this space on the distributed
data sources. Link traversal [1] finds the related data sources during the query
execution whereas query federation [2] selects the related data sources before
the execution. In short, link traversal has the disadvantage of not guaranteeing
complete results. For this reason, we turn our attention to query federation.
Query federation divides the query into subqueries and distributes them to
the SPARQL endpoints of the selected data sources. The intermediate results
from the data sources are aggregated and the final results are generated. These
processes are employed via a federated query engine whose objective is to min-
imize the response time and the completion time. Response time refers to the



time to receive the first result tuple whereas completion time refers to the time to
receive all the result tuples. Response time and completion time include commu-
nication time, I/O time and CPU time. Since the communication time dominates
the other costs, the main objective can be stated as to minimize the communica-
tion cost. Schwarte et al. [3] use heuristics in query optimization whereas Quilitz
and Leser [4], Gortlitz and Staab [5] and Wang et al. [6] concentrate on static
optimization which produces an execution plan at query compilation time and
uses statistics to estimate the cardinality of the intermediate results. However,
federated query processing is done on the distributed data sources on the web
which causes unpredictable data arrival rates. In addition, most of the statis-
tics are missing or unreliable. For these reasons, we think that adaptive query
optimization [7] is a need in this unpredictable environment. There are only
two engines ANAPSID [8] and ADERIS [9,10] which consider adaptive query
optimization for query federation. Acosta et al. [8] propose a non-blocking join
method based on symmetric hash join [11] and Xjoin [12] whereas Lynden et al.
[10] propose a cost model for dynamically changing the join order. To the best
of our knowledge, there is not any study that exploits an adaptive join operator
that aims to reduce both response time and completion time.

As mentioned earlier, communication time has the highest effect on overall
cost and therefore join method has an important role in query optimization.
However, there is not any study which changes the join method during the exe-
cution according to the data arrival rates. In this study, we propose an adaptive
join operator for federated query processing on linked data which can change the
join method during the execution by using adaptive query optimization. Perfor-
mance evaluation shows that our proposal has both the advantage of optimal
response time and the adaptation ability to the different data arrival rates. By
this adaptation ability, completion time is minimized as well.

The rest of the paper is organized as follows: Sect. 2 introduces our approach
for both single join queries and multi-join queries. Section 3 points out the results
of our performance evaluation. Section4 presents a brief survey of query opti-
mization methods in relational databases and query federation over linked data.
Finally, we conclude the paper and give remarks for the future work in Sect. 5.

2 Proposed Adaptive Join Operator

Bind join [13] passes the bindings of the intermediate results of the outer relation
to the inner relation in order to filter the result set and is substantially efficient
when the intermediate results are small. Symmetric hash join [11] maintains a
hash table for each relation. Thus, symmetric hash join is a non-blocking join
method which produces the first result tuple as early as possible. Equations 1
and 2 [4] are the cost functions of bind join and symmetric hash join respectively,
where R1 and R2 are relations, card(R) is the number of tuples in R, ¢; is the
transfer cost for receiving one result tuple, and ¢, is the transfer cost for sending
a SPARQL query. R2' is the relation with the bindings of R1. card(R2") is equal
to card(R1xR2) when we assume that the common attribute values are unique.



Equation 2 is used for nested loop join in [4]. However, the cost functions of nested
loop join and symmetric hash join are the same when only communication time
is considered.

cost(R1 xgy R2) = card(R1) - ¢; + card(R1) - ¢, + card(R2') - ¢; (1)

cost(R1 Xgpy R2) = card(R1) - ¢t + card(R2) - ¢t + 2 - ¢, (2)

Deciding the join method by using a cost model before the query execution
has some problems. The join cardinality, card(R1xR2), and the data arrival
rates of relations are unknown before the query execution. Using bind join can
cause response time problem if the data arrival rate of the first relation is slow.
On the other hand, symmetric hash join can produce the first result tuple as
soon as there is a match between R1 and R2, without waiting for all tuples of
R1 to arrive. However, if R2 is very large while join cardinality is low, the query
completion time of symmetric hash join can be longer than the completion time
of bind join. We notice that, the data arrival rates of relations are known after
a short time of execution. So, the remaining completion time can be estimated.
For these reasons, we propose to set the join method as symmetric hash join
in the beginning and to use cost functions after having information about the
data arrival rates of endpoints. We decide whether to change the join method as
bind join according to the cost estimations. In order to learn the cardinalities,
we send count queries in the beginning of the execution. As mentioned before,
the communication time dominates the I/O time and CPU time. So the cost of
count queries is negligible. In brief, our approach is based on the idea of changing
the join method during the query execution according to the data arrival rates.

2.1 Adaptive Join Operator for Single Join Queries

Adaptive join operator for single join queries is depicted in Algorithm 1. Firstly,
we send count queries to the endpoints of datasets R1 and R2 in order to learn
their cardinalities. We always begin with symmetric hash join. During the execu-
tion, if all the tuples from one dataset arrive and the tuples from the other dataset
continue to arrive, we estimate the remaining time of continuing with symmetric
hash join and switching to bind join. We decide the join method according to
these cost estimations. If we switch to bind join, we emit the duplicate results
of symmetric hash join and bind join. The join cardinality estimation formula
and the remaining time estimation formulas will be presented in the following
subsections.

Join Cardinality and Remaining Time Estimations. In this subsection, we
introduce our join cardinality estimation formula and remaining time estimation
formulas for symmetric hash join and bind join. We use the estimated join cardi-
nality in order to estimate the remaining times. Equation 3 is our join cardinality
estimation formula where |R; M R;_qrrived| is the cardinality of R; M R; qrrived, |R;|
is the cardinality of R;, and |R; qrrivea| is the cardinality of arrived tuples of R;.



Algorithm 1. Adaptive Join Operator for Single Join Queries

|R1| «— cardinality of R1 received from the COUNT query

|R2| «— cardinality of R2 received from the COUNT query

|Rlarrived| <— cardinality of arrived R1 tuples

|R24rrived| <— cardinality of arrived R2 tuples

Set JOIN method as Symmetric Hash Join (SHJ)

while (|Rlarrived| < |R1| or |R24rrived| < |R2|) do

if (|[Rlarrived| == |R1| and |R2qrrived| < |R2| or

|R2urrived| == |R2| and |Rlarrived| < |R1|) then

8 ERTspy «— estimated remaining time if continued using SH.J
9 ERTpj «— estimated remaining time if switched to Bind Join (BJ)

10 if (ERTsps > ERTp;) then

11 Set JOIN method as BJ

12 Emit the duplicate results of SHJ and BJ

13 end

14 end

15 end

BW N =

N O >

We use this formula in order to calculate the estimated cardinality of R;xR;
when all the tuples of R; arrive. We expect that there is a directional proportion
between the join cardinality and number of tuples of R;.

A Ri% R arriveal - |R;
JomC’ardmalztyestimatwn:‘ i% By arriveal - | |

|Rj_arm'ved| (3)

As stated earlier, when all the tuples of R; arrive, the algorithm estimates
the remaining time if adaptive join operator continues with symmetric hash join
and the remaining time if it changes the join method as bind join. We have an
idea about the data arrival rate of R; during the execution, so the estimation is
possible. Equation 4 shows the estimated remaining time if adaptive join operator
continues with symmetric hash join where ERTsp s is the estimated remaining
time if it continues with symmetric hash join, |R,| is the cardinality of Rj,
|R; arrived| is the cardinality of arrived tuples of R;, and tr; qrrivea is the time
for |R; arrived| tuples to arrive.

Ri|—|R j_arrived|) * tR j_arrived
ERTsyj = (Rl J‘R, '|)d| . (4)
j_arrive

Equation5 shows the estimated remaining time, EFRTpj, if the algo-

rithm switches to bind join where |R;| is the cardinality of R;, tgq is
tRj-arrived

|Rj_a'r"r‘ived| )7

|JoinCardinalityestimation| is the estimated cardinality of R; X R;, |Rj_arrived| 15

the cardinality of arrived tuples of R;, and tr;_arrived is the time for |R;_qrrived|
tuples to arrive. The estimated remaining time for bind join includes sending all
tuples of R; to the endpoint of R; and the retrieving time of R;xR; from the
endpoint of R;.

the time for sending one query to a SPARQL endpoint (=



|JOincardinalityestimation| : tRj_arm'ved

ERITg; = <|RZ’ 'tSQ) + (5)

’Rj_arm'ved|

2.2 Adaptive Join Operator for Multi-join Queries

Different from the single join queries, we use multi-way symmetric hash join [14]
in the beginning. The algorithm for multi-join queries is depicted in Algorithm 2.
When all tuples from a relation arrive, called R;, the algorithm estimates the
remaining time if adaptive join operator switches to bind join for each relation
which has a common attribute with R;. The algorithm chooses the relation
with minimum estimated bind join cost, called R;, and compares the estimated
remaining time if it changes the join method as bind join for R;xR; with the
estimated remaining time if the operator continues with multi-way symmetric
hash join for all relations. The above procedure is repeated every time a relation
is completely received.

Algorithm 2. Adaptive Join Operator for Multi-join Queries

15— {R1,R2,R3,...,Rn}
2 MIN_ERTBJ — OO
3 BJ_Candidate «+— &
4 Start MSHJ(S)
5 while (S is not empty) do
6 if (all the tuples of R; arrive) then
7 ERTyvsuys «— ERT if continued with MSH.J
8 foreach R; having a common attribute with R; do
9 ERTBJ_Rij «—— ERT if switched to BJ for R; and R;
10 if (ERTBJ_RM < MIN_ERTBJ) then
11 MIN_ERTp; «— ERTBJ Ry
12 BJ_Candidate «— {R;, R;}
13 end
14 end
15 if (MIN_ERTBJ < ERTMSHJ) then
16 Ri «— BJ(Ri, R;)
17 S «— S — BJ_Candidate + {R;}
18 Run M SHJ(S) and eliminate duplicate results
19 end
20 end
21 end

Join Cardinality Estimation and Remaining Time Estimations. We
use the same formula to calculate the join cardinality estimation for single join
queries and multi-join queries. Thus, we use Eq. 3 for join cardinality estimation
for multi-join queries as well. We need this estimation in order to calculate the



estimated remaining time if adaptive join operator switches to bind join or if the
algorithm continues with multi-way symmetric hash join.

Equation 6 shows the estimated remaining time if adaptive join operator
uses bind join for R; and R;, and uses multi-way symmetric hash join for the
other relations which are involved in the query. |R;| is the cardinality of R;, tsg
is the time for sending one query to the SPARQL endpoint containing R;(~

t j_arrive : : : : :
H), |RixR;| is the estimated cardinality of R;XR;, |R; arrived| 1S the
j_arrive

cardinality of arrived tuples of R, trj_arrivea is the time for |R;_arrived| tuples
to arrive, ERT,..s: is the estimated remaining time for the rest of other relations
to arrive and it is calculated by using Eq.7, where k& € (1,...,n) and k # ¢ and
k # j. Lastly, Eq. 7 shows the estimated remaining time if adaptive join operator
continues with multi-way symmetric hash join. Completion time is equal to the
maximum completion time of the relations which compose the query.

’Rz X Rj ’ . tRj_arm'ved

ERTgy r,, = maz((|R;| - tsq + ); ERT est) (6)

|Rj_arm'ved|

((‘Rk| - |Rk_arm'ved|) : tRk-arrived)

ERTyspg = max where k € (1,...,n) (7)

|Rk_arm’ved |

3 Performance Evaluation

In this section, we present the evaluation results on the performances of sym-
metric hash join/multi-way symmetric hash join, bind join and adaptive join
operator for single join queries and for multi-join queries. The reason of compar-
ing our proposal with symmetric hash join and bind join is as follows. Bind join
is the most popular join method in query federation engines and symmetric hash
join provides efficient response time by being a non-blocking join method [15]. As
stated in the previous sections, the goal of the query optimization in query feder-
ation is to minimize the response time and the completion time. For this reason,
we use response time and completion time as the evaluation metrics. Query cost
in distributed environment is mainly defined by communication cost. In order to
simulate the real network conditions and consider only the communication cost,
we conducted our experiments in the network simulator ns-3!.

We assume that the size of all queries is the same and each result tuple is
considered to have the same size, as well. Each query size is accepted as 500
bytes whereas each result tuple size is employed as 250 bytes. Each count query
size is assumed as 750 bytes and the message size is set to 100 tuples. Each
selectivity factor is 0.5/ (max(cardinality of R1, cardinality of R2)) [16]. We set
the low, medium and high cardinality as 1000 tuples, 5000 tuples and 10000
tuples respectively.

! https://www.nsnam.org/.



3.1 Performance Evaluation for Single Join Queries

In this subsection, we compare adaptive join operator (AJO) with symmetric
hash join (SHJ) and bind join (BJ) in two cases. We aim to show the impact of
data sizes in the first case whereas we focus on the effect of different data arrival
rates in the second case.

Impact of Data Sizes. The behaviors of the SHJ, BJ and AJO are analyzed
when the data arrival rates of both endpoints are fixed to 0.5 Mbps and the
delays to 10ms while the data sizes of R1 and R2 are changed. In order to
analyze all conditions, we evaluated the response time and the completion time
when the data sizes of R1 and R2 are low-low (LL); low-medium (LM); low-high
(LH); medium-low (ML); medium-medium (MM); medium-high (MH); high-low
(HL); high-medium (HM) and high-high (HH) respectively.

As Fig. 1a shows, BJ has the worst response time for all conditions whereas
SHJ and AJO behave similar to each other. As the data sizes of R1 increases,
the response time of BJ increases as well due to waiting for the arrival of all
results of R1 and sending them to the endpoint of R2. On the other hand, SHJ
and AJO can generate the first result tuple as soon as there is a match between
R1 and R2, without waiting for all tuples of R1 to arrive. As shown in Fig. 1b,
the completion time of BJ is shorter than others when the cardinality of R1 is
low and the cardinality of R2 is medium or high. On the other hand, SHJ and
AJO perform better than BJ in seven of nine conditions. AJO’s completion time
is the best when the cardinality of R1 is medium or high and the cardinality of
R2 is low. Also, AJO’s completion time is faster than SHJ’s when the cardinality
of R1 is low and the cardinality of R2 is medium or high.

The speedup? values between AJO and SHJ can be seen in Fig. 1c. Although
they have almost the same response time for all cases, the completion time of
AJO is 3 times as fast compared to SHJ when one of the relation’s cardinality is
high and the other one’s is low. As shown in Fig. 1d, AJO can provide speedup in
response time from 5.9 times to 45.5 times compared to BJ. AJO also provides
speedup in completion time up to 6 times except two cases.

Impact of Data Arrival Rates. In this case, we fixed the data arrival rate
of R1 to 2Mbps and changed the data arrival rate of R2. We conducted the
simulations for two different cardinality options: (i) low cardinality of R1 and
high cardinality of R2; (ii) high cardinality of R1 and low cardinality of R2.

Low Cardinality of R1 and High Cardinality of R2. As Fig.2a shows, the
response time of BJ is always longer than SHJ and AJO. The gap between
the response times of BJ and the others increases when the data arrival rate of
R2 gets slower. As shown in Fig.2b, the completion time of BJ is better than

2 Speedup of = compared to y (response time) = response time of y / response time of
Speedup of & compared to y (completion time) = completion time of y / completion
time of x.
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others for all conditions because the first relation’s cardinality is low. As the
data arrival rate of the second relation gets faster, the difference between BJ
and others decreases. The completion time of AJO is always faster than SHJ.

As shown in Fig. 2¢, compared to SHJ, AJO has almost the same response
time, however it can provide speedup in completion time up to 3.4 times.
Although the speedup decreases while the second relation’s data arrival rate
increases, we expect it to be nearly 1in the worst case. Compared to BJ, AJO
degrades completion time up to 0.8 times, however it can improve the response
time up to 4.9 times, as shown in Fig. 2d.

High Cardinality of R1 and Low Cardinality of R2. The results observed from
Fig.3a are similar to the results in Fig.2a. Since the cardinality of the first
relation is high in this case, response time of BJ is dramatically longer than SHJ
and AJO. The response times of SHJ and AJO are nearly the same.

As shown in Fig. 3b, the completion times of SHJ and AJO are shorter than
the completion time of BJ in all of the conditions because the first relation’s
cardinality is high. AJO performs better than SHJ in all the cases. Compared to
SHJ, AJO has almost the same response time, however the speedup in completion
time varies from 1.4 times to 2.2 times as shown in Fig. 3c. Compared to BJ,
AJO improves both the response time and the completion time as illustrated
in Fig. 3d. The speedup in response time increases from 11 times to 34.3 times
while the speedup in completion time varies from 2.8 to 6.2 times.



10

OSH)

4 BJ
2 BAJO
0

051152253354455556657758
Data arrival rate of R2 (Mbps)

Response time (sec)

(a) Response time

Speedup

“e-
-
1.5 ®-9-_o-
9-0-9-0-0-9-9

051152 253354455556 657 758
Data arrival rate of R2 (Mbps)

%
=]

.5_3.40

:E: 30

= OsH
g% @B

Ew [HHE BAIO
8. bl i P

051152253354455556657758
Data arrival rate of R2 (Mbps)

(b) Completion time

| —#—Response Time ~ --@=--Completion Time |

Speedup
w -~ %] [=1]

N

1l g-#--0--0-0-0-0-0--0-0-4-0-0--0-9
0
05115 2 25335 4 455 55 6 657 75 8
Data arrival rate of R2 (Mbps)

| —&— Response Time  =-@==-Completion Time |

Speedup of AJO compared to SHJ

—~
o
~

(d) Speedup of AJO compared to BJ

Fig. 2. Data sizes of R1 and R2 are fixed with card(R1) < card(R2)

[S-]
==

S
=]

OSHJ
=]

ARG =

051152253354455556657758
Data arrival rate of R2 (Mbps)

o

Completion time (sec)
= w
o o o

[=}

(b) Completion time

100
o
2
L]
E
: 10 O SHJ
“
5 BJ
&
2 HAIO
1
051152253354455556657758
Data arrival rate of R2 (Mbps)
(a) Response time
2.5
o-0-0-0--0-0-0--0-0-0-0--0-0
2 Lo
-
o .
31 g
8
o 1
wy
0.5
0

051152 253354455 556657758
Data arrival rate of R2 (Mbps)

| —um— Response Time  --@--Completion Time |

64
32
o 16
3
=3 “e.
wv -9
N Rttt e-0-0-0-s-0
2
1

051 152 25 3 35 4455 556657758
Data arrival rate of R2 (Mbps)

| —um— Response Time  --@-- Completion Time |

(c¢) Speedup of AJO compared to SHJ

(d) Speedup of AJO compared to BJ

Fig. 3. Data sizes of R1 and R2 are fixed with card(R1) > card(R2)




3.2 Performance Evaluation for Multi-Join Queries

In this subsection, we compare AJO with multi-way symmetric hash join (MSHJ)
and BJ when there are three relations in the query. A query example that we
use in our experiments is shown below. R1 (servicel) and R2 (service2) have a
common attribute, ?student, R2 and R3 (service3) have a common attribute,
?course.

SELECT ?student 7level ?course ?7instructorName WHERE {
SERVICE <:servicel> { 7student :name :studentName .
?student :level 7level . }
SERVICE <:service2> { ?student :enroll 7course . }
SERVICE <:service3> { ?course :instructor ?7instructorName . }

Impact of Data Sizes. We fixed the data arrival rates of all relations to
0.5 Mbps and the delays to 10 ms. We conducted our experiments when the data
sizes of R1, R2, R3 are low-low-high (LLH); low-medium-high (LMH); and low-
high-high (LHH).

As Fig. 4a shows, the response times of MSHJ and AJO are almost the same
whereas BJ’s response time is substantially slower. BJ’s completion time is the
fastest as illustrated in Fig.4b, because the first relation’s cardinality is low.
However, AJO’s completion time is much better than MSHJ and close to BJ’s.
BJ’s both response time and completion time would increase, if the first relation’s
cardinality were medium or high.

As shown in Fig. 4c, compared to MSHJ, AJO has almost the same response
time, however it can provide speedup in completion time up to 2.3 times. Speedup
values between AJO and BJ can be seen in Fig.4d Compared to BJ, AJO
degrades completion time up to 0.85 times, however it can improve the response
time up to 5.75 times.

Impact of Data Arrival Rates. In order to show the impact of data arrival
rates on MSHJ, BJ and AJO, we fixed the data arrival rates of R1 and R3 to
2 Mbps and changed the data arrival rate of R2. We conducted the simulations
for two different cardinality options: (i) low cardinality of R1, high cardinality of
R2, and low cardinality of R3 (LHL); (ii) low cardinality of R1, high cardinality
of R2 and R3 (LHH).

Low Cardinality of R1, High Cardinality of R2, Low Cardinality of R3. Figure 5a.
shows that BJ performs worser response time than MSHJ and AJO in this case
as well. As can be seen from Fig. 5b, BJ’s completion time is faster than MSHJ
because the first relation’s cardinality is low. On the other hand, AJO performs
the best in seven of nine cases due to having the adaptation ability.

Compared to MSHJ, AJO has almost the same response time but it can pro-
vide speedup in completion time up to 3.4 times as shown in Fig. 5c. Compared
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Fig. 5. Data sizes of R1, R2 and R3 are fixed with card(R1) = card(R3) < card(R2)




to BJ, AJO can improve the response time and the completion time up to 5.8
times and 1.2 times respectively as illustrated in Fig. 5d.

Low Cardinality of R1, High Cardinality of R2, High Cardinality of R3. The
results observed from Fig. 6a are similar to the results in Fig. 5a. BJ has the worst
response time again, whereas MSHJ and AJO have almost the same response
time. However, as shown in Fig. 5b, BJ’s completion time is better than MSHJ’s
completion time which has the disadvantage of waiting all the tuples of R2 and
R3. On the other hand, AJO performs much better than MSHJ. Its completion
time is close to BJ’s completion time because it can change the join method
when it decides that is more efficient.

The speedup values between AJO and MSHJ can be seen from Fig. 6¢. Com-
pared to MSHJ, AJO has almost the same response time but it can provide
speedup in completion time up to 3.4 times. Compared to BJ, AJO degrades
the completion time up to 0.8 times, however it can improve the response time
up to 3.5 times as shown in Fig. 6d.
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4 Related Work

Adaptive query optimization [7] responds to the unforeseen variations of run-
time environment to provide a better response time or more efficient CPU uti-
lization. In our concept, the run-time environment is on the web and the main



objective is to minimize the response time and the completion time. Thus, adap-
tive query optimization is a need to manage the changing conditions of the
web. Although, adaptive query optimization is a new research area for linked
data, it has been studied in detail in relational databases. Evolutionary methods
which provide inter-operator adaptation, focus on generating plans that can be
switched during execution according to delays or estimation errors. Query scram-
bling [17], mid-query re-optimization [18], Tukwilla/ECA rules [19], progressive
query optimization [20-22] and proactive re-optimization [23] are some known
examples of evolutionary methods. On the other hand, revolutionary methods
provide intra-operator adaptation. First group of intra-operator methods are
adaptive operators like double hash join [19], XJoin [12] and mobile join [24,25],
where the operator itself is able to adapt its way of execution according to varia-
tions encountered during its execution. Second group of intra-operator methods
optimize the query processing in tuple level [26-31].

Another work for distributed database environment is also quite relevant
to our work. Khan et al. [32] propose an adaptive probing mechanism to have
statistics about the data and choose the optimal execution plan during query
execution. Compared to our work, the probe phase of their method delays the
response time since the first result tuple is generated before the end of probing
and decision for adaptability.

When we look at the adaptive methods of query federation engines on linked
data, we see only two adaptive methods, intra-operator adaptivity of ANAP-
SID [8] and inter-operator adaptivity of ADERIS [10]. ANAPSID focuses on
the problem of bursty data traffic and endpoint unavailability. In order to over-
come these problems, ANAPSID implements a non-blocking join method which
is based on symmetric hash join [11] and XJoin [12]. The proposed method
continues to produce new results when one of the endpoints becomes blocked.
ADERIS generates predicate tables for each predicate which cover the related
subjects and objects of that predicate. The first version of ADERIS [9] joins two
predicate tables as they become complete while the other predicate tables are
being generated. In the second version, Lynden et al. [10] propose an adaptive
cost model to determine the join order. In other words, ADERIS uses adaptive
query optimization by changing the join order during the execution. In addition
to these studies, Basca and Bernstein [33] propose a technique which gathers
statistics on the fly before query execution. It produces only the first k results.
In addition, Verborgh et al. [34] and Acosta et al. [35] focus on adaptive query
optimization for triple pattern fragments. However, triple pattern fragments are
beyond the scope of this paper.

Intra-operator adaptivity of ANAPSID and inter-operator adaptivity of
ADERIS have showed that adaptive query optimization is well suited to unpre-
dictable characteristics of linked data environment. Although they provide adap-
tive solutions for query federation, none of them use adaptive query optimiza-
tion in order to change the join method during the execution according to the
data arrival rates to minimize both response time and completion time at the
same time.



5 Conclusion

In this paper, we presented an adaptive join operator for single join queries and
multi-join queries which aims to minimize both response time and completion
time. It begins with symmetric hash join in order to provide optimal response
time and changes the join method to bind join when it decides that bind join is
more efficient than symmetric hash join for the rest of the query.

The results of the performance evaluation have shown the efficiency of the
proposed adaptive join operator. It has almost the same response time with
symmetric hash join and multi-way symmetric hash join, but it provides faster
completion time. Compared to bind join, adaptive join operator performs sub-
stantially better with respect to the response time and can also improve the
completion time. Bind join can provide slightly better completion time than
adaptive join operator when the first relation’s cardinality is low.

In conclusion, adaptive join operator provides both optimal response time
and completion time for single join queries and multi-join queries. It performs
quite well both in fixed and different data arrival rates. We plan to make exper-
iments with more joins. We are also motivated to consider the case where a
relation is distributed over multiple sources.
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