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Cost-based Optimizers choose query execution plans using a cost model. The latter relies on the accuracy of estimated statistics. Unfortunately, compile-time estimates often differ significantly from runtime values, leading to a suboptimal plan choices. In this paper, we propose a compile-time strategy, wherein the optimization process is fully aware of the estimation inaccuracy. This is ensured by the use of intervals of estimates rather than single-point estimates of error-prone parameters. These intervals serve to identify plans that provide stable performance in several run-time conditions, so called robust. Our strategy relies on a probabilistic approach to decide which plan to choose to start the execution. Our experiments show that our proposal allows a considerable improvement of the ability of a query optimizer to produce a robust execution plan in case of large estimation errors.

Introduction

In database query processing, query optimization constitutes a critical stage due to its impact on query processing performance. During this stage, a query optimizer 1 generates several execution plans for a query, estimates the cost of each plan using a cost model and chooses the plan with the lowest estimated cost to execute the query [START_REF] Selinger | Access path selection in a relational database management system[END_REF]. This plan is called best plan [START_REF] Kabra | Efficient mid-query re-optimization of sub-optimal query execution plans[END_REF][START_REF] Markl | Robust query processing through progressive optimization[END_REF][START_REF] Selinger | Access path selection in a relational database management system[END_REF]. Best plan selection requires accurate estimates of the costs of alternative plans. Unfortunately, these estimates are often significantly erroneous with respect to values encountered at run-time. Such errors, which may be in orders of magnitude [START_REF] Ioannidis | On the propagation of errors in the size of join results[END_REF], arise due to a variety of reasons [START_REF] Christodoulakis | Implications of certain assumptions in database performance evaluation[END_REF]. One of the main reasons is the imprecision of statistics about data (e.g., sizes of temporary relations) as well as the use of outdated statistics. Indeed, values of parameters which are important for costing possible query plans may vary unpredictably between compile-time and run-time (e.g., available memory amount).

An adverse effect of estimation errors is to lead the optimizer to a sub-optimal plan choice, resulting in inflated response time. A considerable body of literature was dedicated to find solutions to this problem. These solutions include mainly: (i) techniques for better quality of the statistical metadata [START_REF] Chen | Adaptive selectivity estimation using query feedback[END_REF][START_REF] Deshpande | Independence is good: dependencybased histogram synopses for high-dimensional data[END_REF][START_REF] Getoor | Selectivity estimation using probabilistic models[END_REF][START_REF] Poosala | Improved histograms for selectivity estimation of range predicates[END_REF][START_REF] Tzoumas | Lightweight graphical models for selectivity estimation without independence assumptions[END_REF][START_REF] Tzoumas | Efficiently adapting graphical models for selectivity estimation[END_REF], (ii) run-time techniques [START_REF] Bruno | Continuous cloud-scale query optimization and processing[END_REF][START_REF] Kabra | Efficient mid-query re-optimization of sub-optimal query execution plans[END_REF][START_REF] Karanasos | Dynamically optimizing queries over large scale data platforms[END_REF][START_REF] Markl | Robust query processing through progressive optimization[END_REF][START_REF] Neumann | Taking the edge off cardinality estimation errors using incremental execution[END_REF] to monitor a query execution and trigger reoptimization of the plan when a sub-optimality is detected, and (iii) compile-time strategies [1-3, 9, 12] that permit the optimizer to generate an execution plan, being aware of the imprecision of used estimates.

Accurate cost estimates remain, though, very difficult as this requires a detailed and a prior knowledge about data (e.g., sizes of temporary relations) and run-time characteristics such as resource availability (e.g., system load). Run-time techniques are able to adapt an execution plan to changes in run-time conditions with a risk of an important cost-increase resulting from many possible adaptations of the plan. Compile-time strategies proposed to date suppose that it is often possible to find a single execution plan whose performance remains stable regardless of changes in the run-time conditions compared to the compiletime expectations of the run-time conditions. This assumption is not always valid. In some situations, especially in case of large uncertainty about run-time characteristics, find such a plan becomes hard to achieve. In this paper, we focus on this issue. We propose a compile-time strategy for identifying plans, each of which provides stable performance over a range of possible run-time values of error-prone parameters. Throughout this paper, these plans are said robust.

Our optimization method uses an interval of estimates for each uncertain parameter, rather than specifying estimates for single points. Such an interval fully quantifies estimation inaccuracy and is then used to generate robust plans. Note that a plan providing stable performance over the whole interval is a single robust plan. Otherwise, the interval is divided into sub-intervals so as to find execution plans, each of which is associated with the sub-interval within which the plan is robust. Our method relies on a probabilistic approach to decide which plan to choose to start the execution. The major contribution of our optimization method is to maximize the ability of a query optimizer to produce a robust execution plan in the presence of large estimation errors.

The rest of the paper is organized as follows: Sect. 2 presents the problem formulation. Section 3 details our contribution. The experimental evaluation results are highlighted in Sect. 4. Related work is overviewed in Sect. 5. We conclude and outline our future work in Sect. 6.

Problem Formulation

In this section, we start with the preliminaries. Then, we provide our problem definition.

Preliminaries

Motivated by the difficulty of providing precise estimates needed for costing query plans as well as the complexity of cost models, researchers focused their efforts on introducing new optimization algorithms. Their aim is to avoid significant performance regression caused by the use of erroneous estimates. Researches on this purpose fall into two main approaches [START_REF] Moumen | Estimation error-aware query optimization: an overview[END_REF]. A first approach, called Single Point-based Optimization [START_REF] Bruno | Continuous cloud-scale query optimization and processing[END_REF][START_REF] Kabra | Efficient mid-query re-optimization of sub-optimal query execution plans[END_REF][START_REF] Karanasos | Dynamically optimizing queries over large scale data platforms[END_REF][START_REF] Neumann | Taking the edge off cardinality estimation errors using incremental execution[END_REF] consists in monitoring a plan execution so as to detect estimation errors and a resulting sub-optimalty. This latter is corrected by interrupting the current execution and re-optimizing the remainder of the plan using up-to-date statistics. At each invocation, the optimizer considers the used estimates as though they were completely precise and accurate. It uses specific estimate for each parameter. The generated plan is thus the best plan for specific run-time conditions. The ability of methods relying on this approach to accurately collect statistics is limited [START_REF] Babu | Proactive re-optimization[END_REF]. Consequently, when re-optimizing, the optimizer may use new erroneous estimates. This may result in several plan re-optimization and so performance regression.

While Single Point-based Optimization uses exclusively single points for estimates ignoring possible estimation errors, a conceptually different approach called Multi Point-based Optimization was introduced. Besides to providing a solution to estimation errors, this approach avoids performance regression due to several re-optimizations of a plan. Contrary to the first approach which reacts after an estimation error is detected, Multi Point-based Optimization aims to predict plan sub-optimalities and anticipate the reaction to this. The methods proposed as part of this approach consider the possibility of estimation errors at the optimization phase. They produce plans that are likely to perform reasonably well in many run-time conditions. These methods [1-3, 9,14] aim at preventing rather than correcting. The key concept of these methods is the use of intervals of estimates, which models the estimation inaccuracy. In the literature, there are different techniques for computing such intervals. For instance, [START_REF] Chaudhuri | Estimating progress of long running SQL queries[END_REF] uses strict upper and lower bounds, [START_REF] Babu | Proactive re-optimization[END_REF][START_REF] Kabra | Efficient mid-query re-optimization of sub-optimal query execution plans[END_REF] model estimation uncertainty by means of discrete buckets that depend on the way the estimate was derived, etc. Once computed, the interval of estimates is used by the optimizer to generate an execution plan that is likely to provide stable performance within this interval.

Problem Definition

Existing methods proposed as part of the Multi Point-based Optimization approach suppose that it is always feasible to find a single robust plan within an interval of estimates. We believe that this assumption is not always valid. When the interval of estimates is large, it becomes difficult to find a plan generating stable performance over the whole interval. Execution plans may be robust at only some points of the interval. In the remainder of this paper, we adopt the following definition for a robust plan: let V e be an estimate of an error-prone parameter, let I be an interval of estimates around V e exhibiting the uncertainty about the estimate of this parameter. Let P best be the best plan for a specific value V i in I. Finally, let λ be a (user-defined) cost-increase threshold (expressed in percentage). A plan P alt is robust with respect to estimation errors if:

∀ V i ∈ I, cost(P alt ) cost(P best ) ≤ 1 + λ 100 (1) 
For instance, if users tolerate a minor cost increase (λ) of at most 20 %, the cost of P alt is at most 1, 2 times the cost of the best plan.

Generation of a Robust Query Execution Plan

In this section, we detail our method called Identification of Robust Plans (IRP), which is part of the Multi Point-based Optimization approach. The key concept in our work is the uncertainty of estimates used by a query optimizer to choose an appropriate execution plan along with the difficulty to find a single robust execution plan when the estimation uncertainty is large. We present below an example that underlines our motivations before detailing our method.

A Motivating Example

We first study the case wherein the size of only one input-relation for a join operation is error-prone. then, we extend it to the general case. Best plan selection for this query requires accurate estimate of selectivity of the predicates C.country = 'France' and C.city = 'Paris'. However, even with the existence of histograms on attributes C.country and C.city, the optimizer can not maintain multi-dimensional histograms for all possible combinations of attributes [START_REF] Poosala | Selectivity estimation without the attribute value independence assumption[END_REF]. It may so assume independence to compute the joint selectivity of the two predicates. This assumption may lead to large estimation errors while costing plans due to an eventual correlation between the predicates. To avoid sub-optimal plan choice, resulting from these errors, we consider σ(C), which is the result of C.country = 'France' and C.city = 'Paris', as error-prone. We define an interval of estimates around σ(C), denoted I. This interval is then used to select an appropriate execution plan. In this process, one of the following cases may occur: (i) there is a single plan that is robust at all points of I, (ii) there are several plans, each of which is robust at only some points of I. Existing multi point-based optimization methods assume that the first case is often feasible, that is to say a plan providing stable performance within an interval of estimates can be founded. This assumption is not always valid. Consider the scenario of Example, suppose that there is an index on an attribute of the relation O. Through repeated invocations of a query optimizer, plans labelled "Plan1", "Plan2" and "Plan3" (Cf. Fig. 1) are enumerated as possible execution plans for Q.

Based on a cost model, a query optimizer estimates the costs of these plans with respect of variation of σ(C) so as to determine the execution plan that offers robust performance within the interval of estimates. This plan must respect robustness definition presented in Sect. 1. Assume that the tolerated cost-increase (λ) is about 20 %. This value is chosen based on the works of [START_REF] Abhirama | On the stability of plan costs and the costs of plan stability[END_REF][START_REF] Babu | Proactive re-optimization[END_REF]. Figure 2 plots the plans' costs with respect to variations of σ(C) in MB. In this Figure, we observe that for λ = 20 %, none of plans P1, P2 and P3 is robust within I. This example highlights the necessity to divide the interval of estimates into sub-intervals and to associate a robust plan with each sub-interval. An important question concerns the choice of only one plan to start the execution. A solution could be to determine the sub-interval covering the most possible run-time values and choose the plan associated with this sub-interval to execute the query.

Robust Optimization Method

The above mentioned discussion motivates the necessity of incorporating estimation uncertainty in the query optimization process. In order to design and develop such an optimization method, it is suitable to offer first a method for one-join operation. This method constitutes the building block for a robust execution of a multi-join query. In this regard, we present a method that consists of two main modules: (1) Identification of Robust Plans, and (2) Selection of an Execution Plan. We will examine them in more detail in the subsections below.

Identification of Robust Plans: IRP is a compile-time strategy for identifying robust plans. It relies on intervals of estimates to model the estimation uncertainty. Such intervals are used to select the plan that minimizes a potential sub-optimality resulting from possible estimation errors. To conduct our experiments we use the method in [START_REF] Babu | Proactive re-optimization[END_REF] to compute these intervals.

Let Q = Join(T, R1) be a query to join T and R1, where T is a temporary relation and R1 is a base relation. The size of T is denoted |T|. The point estimate of |T| is denoted T est . Let us assume that the interval of estimates around T est is defined, i.e., I = [L, U], where L and U are the lower and the upper bound of the interval. Let S be a set of possible execution plans for Q. This module consists in determining -for each plan P in S-the interval I p within which P is robust (Cf. [START_REF] Moumen | Handling estimation inaccuracy in query optimization[END_REF]). Calculate I p may be converted into a numerical solving problem. We vary T est in I and compute the lower bound of I p by solving the inequality:

Cost(P, T est , R1 val ) ≤ (1 + λ 100 ) × CostBestP lan(S, T est , R1 val ) (2) 
T est is considered as the variable of the inequality. We choose then the minimum root to be the lower bound of I p . R1 val refers to the size of the base relation R1.

CostBestP lan(S, T est , R1 val ) returns the cost of the best plan in S for T est and R1 val while Cost(P, T est , R1 val ) returns the execution cost of P. Similarly, the upper bound is determined as the minimum root of the inequality below:

(1 + λ 100 ) × CostBestP lan(S, T est , R1 val ) < Cost(P, T est , R1 val ) (3) 
Due to space limitation, this algorithm is described in greater detail in [START_REF] Moumen | Handling estimation inaccuracy in query optimization[END_REF]. The robustness of a plan is checked at different points in the interval. To avoid a large computational complexity, these points are computed based on the secant method, which is very effective and can be extended to n-parameters space [START_REF] Papakonstantinou | Origin and evolution of the secant method in one dimension[END_REF].

Selection of an Execution Plan: After identifying robust plans, only one plan should be selected to start the query execution. This plan is chosen based on a probabilistic approach. We propose to compute, for each plan, its probability prob(P ) to handle run-time variation of estimates. The greater is the probability the higher is the likelihood of the plan to minimize sub-optimality. We process estimates as random variables and compute prob(P ) as:

prob(P ) = length of the robustness range associated with P length of the interval of estimates I (4)

The plan with the higher probability is chosen to start the execution. When two plans have equal probabilities, the plan that maximizes the worst-case performance is selected. The study of this issue is available in [START_REF] Moumen | Handling estimation inaccuracy in query optimization[END_REF].

Extension to Multiple Parameters. So far, we have assumed that the size of only one join input-relation is error-prone. This approach can be generalized to the multi parameter case. In this case, the size of each relation is modelled by an interval of estimates. The intersection of these intervals forms a bounding box. We compute -for each plan-a robustness box rather than a robustness range. In addition, the plan associated with the robustness box covering the most space of uncertainty is chosen to start the execution. Notwithstanding these changes, the basic mechanism of the IRP algorithm is similar to the first case. This algorithm can be found in detail in [START_REF] Moumen | Handling estimation inaccuracy in query optimization[END_REF].

In this section we describe the experimental evaluation of our optimization method, termed IRP. We compare IRP with a method that relies on the single point-based optimization approach [START_REF] Selinger | Access path selection in a relational database management system[END_REF] (termed TRAD) and with RIO [START_REF] Babu | Proactive re-optimization[END_REF]. RIO is a method using the multi point-based optimization approach. We study the behaviours of these methods with respect to error in estimates. We consider that an estimation uncertainty may be high, medium or low. We conducted our experiments using a simulation model that we describe below.

Simulation Model

To perform our experiments, we used a query builder and a simulator. The simulator includes the simulated optimization method and a meta-base. The simulated method consists of two main modules: (1) Query Optimizer, and

(2) Query Executor. The meta-base includes information describing the runtime environment (e.g., CPU performance) as well as information about data (e.g., sizes of base relations). The dataset used in the experiments is shown in Table 1. In the next subsections, we present the results of our experiments. First, we study the case wherein only one input-relation for a join is prone to an estimation error. Second, we extend our experiments to the case wherein both inputsrelations are prone to estimation errors. During our experiments, we consider that the cost-increase threshold for robustness condition is 20 %.

Experimental Results

For this experiment, we use a set of 100 queries which we call SQ. Queries in SQ include only one join operation and verify all, the followings conditions: (i) One of the inputs relations is a base relation, denoted R1, and (ii) One of the inputs relations is a temporary relation, denoted T and is resulting from a selection operation on a base relation named R2. The following query Q ′ is a sample of queries in SQ:

Q ′ = select * f rom R1, R2 W here R1.a = R2.b and R2.c < V 1 and R2.d > V 2
Q ′ can be represented as Join(R1,T), where T is the result of "select * from R2 Where R2.c < V1 and R2.d > V2". Estimates of the temporary relations sizes while costing execution plans for queries in SQ, may be erroneous. This is due to eventual correlations between the selection predicates. For each query, the uncertainty about |T| is modelled by an interval of estimates. To calculate such an interval, we use the method proposed in [START_REF] Babu | Proactive re-optimization[END_REF]. We consider three uncertainty levels: high, medium, and low. Note that a high uncertainty in estimates involves a large interval of estimates. This interval is then used by RIO and IRP to generate a robust query execution plan. As for TRAD, it relies on a single-point estimate of |T|, i.e., T est , to select an execution plan expected to be the best.

Impact of Estimation Errors on Execution Times:

The first experiment consists in assessing the impact of estimation errors on the execution time of each method. Figure 3 shows the variation of the execution time of plans produced by TRAD, RIO and IRP for queries in SQ. We vary the error between the estimate of the temporary relation size and its actual value. This is repeated for each query in SQ. Figure 3 also shows the execution time of the best plan.

The execution time for a method is computed as the median of the execution times of all queries in SQ by this method. Error in estimates plotted on the x-axis is calculated as ( |T actual | |T estimate | -1) [START_REF] Babu | Proactive re-optimization[END_REF]. A positive error indicates an underestimate while a negative error indicates an overestimate of the actual run-time value compared to the compile-time estimated value. Figure 3 shows that the performance of TRAD remains acceptable when the error on |T|, is very low. However, when the error becomes large, i.e., greater than 2, we observe a significant increase in the execution times of plans produced by TRAD. Indeed, TRAD selects an execution plan whose performance is heavily dependent on the accuracy of compile-time estimates. This plan is optimal for only the single-point estimate of |T|. Plans chosen by TRAD are very sensitive to estimation errors.

Figure 3 shows that RIO generates better performance compared with TRAD. However, the performance of RIO may deteriorate. Indeed, when RIO does not find a single robust plan within the interval of estimates of |T|, it behaves like TRAD. It produces a plan expected to be optimal for the compiletime estimate of |T|. Unlike RIO, IRP remains based on multi-point estimates. It generated an execution plan that provides stable performances within a subinterval of the interval of estimates. Using a sub-interval of estimates rather than a single-point estimate for |T| allows to IRP to produce plans whose execution times are usually more stable compared with RIO and TRAD. We also notice in Fig. 3 that when the uncertainty is low, the performance of TRAD and IRP becomes close. This is because when the interval of estimates is narrow, it becomes more feasible for RIO to find a plan that is robust within an interval.

Impact of Estimation Errors on the Consistency of Methods: The consistency of a method refers to its ability to cope with estimation errors and/or changes in run-time conditions compared to compile-time expectation of runtime conditions. A method is said highly consistent if its performance does not degrade significantly in the presence of estimation errors [START_REF] Wiener | Benchmarking query executionrobustness[END_REF]. To measure the consistency of TRAD, RIO and IRP, we compute the variance of performance of each method and compare it to the variance in case of best performance. Note that the consistency is inversely proportional to the variance [START_REF] Wiener | Benchmarking query executionrobustness[END_REF]. To achieve this experiment, we use the same set of queries previously used, i.e., SQ. The results of this evaluation are shown in Fig. 4.

As we can see Fig. 4, the variances of RIO and IRP are close when the estimation uncertainty is low. However, when the uncertainty is large (high or medium), the gap between the variances of methods increase. A high variance means a significant dispersion of execution times. Figure 4 demonstrates that plans generated by IRP are more stable than those generated by RIO. This figure also proves that estimation errors have a pronounced impact on the consistency of TRAD. This figure confirms the evaluation results previously obtained.

When Both Inputs-Relations are Prone to Estimation Errors. We performed more experiments under the assumption that both join-inputs relations, denoted T1 and T2, are prone to estimation errors. As RIO assumes that at least one of the inputs-relations is a base relation [START_REF] Babu | Proactive re-optimization[END_REF], we only compared our method with TRAD. The experiments are done using the same dataset (Cf. Table 1) as previously. Unsurprisingly, the experimental results confirm the results obtained in the first case. IRP generates execution plans that provide stable performance in the presence of estimation errors. Always because of space limitation, more details of these experiments and figures can be found in [START_REF] Moumen | Handling estimation inaccuracy in query optimization[END_REF].

Related Work

A variety of optimization strategies have been proposed in the literature to identify robust plans. [START_REF] Yin | Robust query optimization methods with respect to estimation errors: a survey[END_REF] overviews these works. In this section, we compare our proposal with the most closely related prior research, i.e., [START_REF] Babu | Proactive re-optimization[END_REF][START_REF] Hulgeri | Parametric query optimization for linear and piecewise linear cost functions[END_REF][START_REF] Markl | Robust query processing through progressive optimization[END_REF]. Similarly to this paper, these methods address the problem of query optimization due to the uncertainty in estimates. These methods make use of intervals to manage estimation uncertainty. These intervals are then used by the optimizer to pick an appropriate execution plan. However, our work defers from these works on several aspects. In the initial optimization phase of Rio [START_REF] Babu | Proactive re-optimization[END_REF], if the plan chosen by the optimizer at the lower and the upper bounds of the interval is the same as that chosen for the single-point estimate, then the plan is assumed robust within the whole interval. In our method, we adopt a different way to check the robustness of a plan. We verify the robustness of a plan at different points in the interval. These points are determined using our modified secant method, which provides reduced computation complexity and precise results. In addition, Rio assumes that at least one of the join inputs-relations is a base relation. We extend this by considering the case wherein both relations are prone to estimation errors.

Among previous related research, the work by Markl et al. [START_REF] Markl | Robust query processing through progressive optimization[END_REF]. In [START_REF] Markl | Robust query processing through progressive optimization[END_REF], and later in [START_REF] Bizarro | Progressive parametric query optimization[END_REF], validity ranges are computed for each sub-plan of a query execution plan. The best plan is first chosen based on single-point estimates. The upper and lower bounds wherein the plan remains the best plan are then computed. These methods aim for optimal performance while IRP aims for robustness. Robust plans choices are especially important to safely process queries when the uncertainty about estimates is large.

The use of intervals may seem similar to the principle of parametric optimization [START_REF] Cole | Optimization of dynamic query evaluation plans[END_REF][START_REF] Hulgeri | Parametric query optimization for linear and piecewise linear cost functions[END_REF] where different plans are generated for different intervals of the optimization parameters. The main limitation of this approach is the large number of plans to generate, store and compare at the optimization phase. We reduce this complexity by computing robustness ranges. We accept a minor cost-increase that reduces the number of plans generated. In addition, parametric optimization is particularly attractive in the case of queries that are compiled once and executed several times, possibly with minor modifications of parameters. Unlike our work, its objective being to avoid compiling multiple instances of the same query, but not to ensure robustness against estimation errors.

Conclusion and Future Work

This paper proposes an optimization strategy to handle uncertainty in compiletime estimates. Uncertainty is modelled by means of intervals of estimates. These intervals are then used to identify robust plans. We characterize a plan as robust if its cost remains stable and acceptable in case of estimation errors. Our method relies on a probabilistic approach to select the plan by which to start the execution. The experiments show that the proposed strategy may improves the ability of a query optimizer to generated a robust execution plan, especially in the presence of large estimation errors.

The proposed method performs in a uniprocessor environment. As future work, we plan to extend it to a multiprocessor environment. It would be interesting to study the importance of the parallelism degree choices over the identification of a robust query execution plan.

Example.

  Consider the query Q = select * from customer as C, order as O where C.customerId = O.customerId and C.country = 'France' and C.city = 'Paris'.
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 12 Fig. 1. Possible execution plans for the query Q = σ(C) ⊲⊳ O

Fig. 3 .

 3 Fig. 3. Variation of execution times with respect to errors on |T|
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 4 Fig. 4. Variance of execution times with respect to errors on |T|

Table 1 .

 1 Summary of dataset used in the experiments

	Parameter	Value	Parameter	Value
	Buffer size	400 MB	CPU performance	100 000 MIPS
	Disk bandwidth	100 MB/s	Average disk latency 2 ms
	Size of a page on disk 4 KB	Size of a record	1-3 KB
	Size of a relation	100-1000 MB Size of an attribute 10-500 Bytes

We only focus on the Cost-based Query Optimizers.