
HAL Id: hal-01474881
https://hal.science/hal-01474881

Submitted on 3 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Estimation Inaccuracy in Query Optimization
Chiraz Moumen, Franck Morvan, Abdelkader Hameurlain

To cite this version:
Chiraz Moumen, Franck Morvan, Abdelkader Hameurlain. Handling Estimation Inaccuracy in Query
Optimization. 18th International Asia-Pacific Web Conference (APWeb 2016), Sep 2016, Suzhou,
China. pp.355-367, �10.1007/978-3-319-45817-5_28�. �hal-01474881�

https://hal.science/hal-01474881
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17164

The contribution was presented at APWeb 2016 :
http://ada.suda.edu.cn/apweb2016/

To cite this version : Moumen, Chiraz and Morvan, Franck and Hameurlain,
Abdelkader Handling Estimation Inaccuracy in Query Optimization. (2016) In:
18th International Asia-Pacific Web Conference (APWeb 2016), 23 September
2016 - 25 September 2016 (Suzhou, China).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Handling Estimation Inaccuracy

in Query Optimization

Chiraz Moumen(B), Franck Morvan, and Abdelkader Hameurlain

IRIT Laboratory, Paul Sabatier University,
118 Route de Narbonne, 31062 Toulouse Cedex 9, France

{moumen,morvan,hameurlain}@irit.fr

Abstract. Cost-based Optimizers choose query execution plans using
a cost model. The latter relies on the accuracy of estimated statistics.
Unfortunately, compile-time estimates often differ significantly from run-
time values, leading to a suboptimal plan choices. In this paper, we pro-
pose a compile-time strategy, wherein the optimization process is fully
aware of the estimation inaccuracy. This is ensured by the use of intervals
of estimates rather than single-point estimates of error-prone parameters.
These intervals serve to identify plans that provide stable performance
in several run-time conditions, so called robust. Our strategy relies on a
probabilistic approach to decide which plan to choose to start the exe-
cution. Our experiments show that our proposal allows a considerable
improvement of the ability of a query optimizer to produce a robust
execution plan in case of large estimation errors.

Keywords: Query optimization · Robust plans · Estimation errors

1 Introduction

In database query processing, query optimization constitutes a critical stage due
to its impact on query processing performance. During this stage, a query opti-
mizer1 generates several execution plans for a query, estimates the cost of each
plan using a cost model and chooses the plan with the lowest estimated cost to
execute the query [24]. This plan is called best plan [17,19,24]. Best plan selection
requires accurate estimates of the costs of alternative plans. Unfortunately, these
estimates are often significantly erroneous with respect to values encountered at
run-time. Such errors, which may be in orders of magnitude [16], arise due to
a variety of reasons [8]. One of the main reasons is the imprecision of statistics
about data (e.g., sizes of temporary relations) as well as the use of outdated
statistics. Indeed, values of parameters which are important for costing possible
query plans may vary unpredictably between compile-time and run-time (e.g.,
available memory amount).

An adverse effect of estimation errors is to lead the optimizer to a sub-optimal
plan choice, resulting in inflated response time. A considerable body of literature

1 We only focus on the Cost-based Query Optimizers.

was dedicated to find solutions to this problem. These solutions include mainly:
(i) techniques for better quality of the statistical metadata [7,11,13,22,27,28],
(ii) run-time techniques [5,17–20] to monitor a query execution and trigger re-
optimization of the plan when a sub-optimality is detected, and (iii) compile-time
strategies [1–3,9,12] that permit the optimizer to generate an execution plan,
being aware of the imprecision of used estimates.

Accurate cost estimates remain, though, very difficult as this requires a
detailed and a prior knowledge about data (e.g., sizes of temporary relations)
and run-time characteristics such as resource availability (e.g., system load).
Run-time techniques are able to adapt an execution plan to changes in run-time
conditions with a risk of an important cost-increase resulting from many possible
adaptations of the plan. Compile-time strategies proposed to date suppose that
it is often possible to find a single execution plan whose performance remains
stable regardless of changes in the run-time conditions compared to the compile-
time expectations of the run-time conditions. This assumption is not always
valid. In some situations, especially in case of large uncertainty about run-time
characteristics, find such a plan becomes hard to achieve. In this paper, we focus
on this issue. We propose a compile-time strategy for identifying plans, each of
which provides stable performance over a range of possible run-time values of
error-prone parameters. Throughout this paper, these plans are said robust.

Our optimization method uses an interval of estimates for each uncertain
parameter, rather than specifying estimates for single points. Such an interval
fully quantifies estimation inaccuracy and is then used to generate robust plans.
Note that a plan providing stable performance over the whole interval is a single
robust plan. Otherwise, the interval is divided into sub-intervals so as to find
execution plans, each of which is associated with the sub-interval within which
the plan is robust. Our method relies on a probabilistic approach to decide
which plan to choose to start the execution. The major contribution of our
optimization method is to maximize the ability of a query optimizer to produce
a robust execution plan in the presence of large estimation errors.

The rest of the paper is organized as follows: Sect. 2 presents the problem for-
mulation. Section 3 details our contribution. The experimental evaluation results
are highlighted in Sect. 4. Related work is overviewed in Sect. 5. We conclude and
outline our future work in Sect. 6.

2 Problem Formulation

In this section, we start with the preliminaries. Then, we provide our problem
definition.

2.1 Preliminaries

Motivated by the difficulty of providing precise estimates needed for costing
query plans as well as the complexity of cost models, researchers focused their

efforts on introducing new optimization algorithms. Their aim is to avoid signifi-
cant performance regression caused by the use of erroneous estimates. Researches
on this purpose fall into two main approaches [25]. A first approach, called Single
Point-based Optimization [5,17,18,20] consists in monitoring a plan execution
so as to detect estimation errors and a resulting sub-optimalty. This latter is cor-
rected by interrupting the current execution and re-optimizing the remainder of
the plan using up-to-date statistics. At each invocation, the optimizer considers
the used estimates as though they were completely precise and accurate. It uses
specific estimate for each parameter. The generated plan is thus the best plan
for specific run-time conditions. The ability of methods relying on this approach
to accurately collect statistics is limited [3]. Consequently, when re-optimizing,
the optimizer may use new erroneous estimates. This may result in several plan
re-optimization and so performance regression.

While Single Point-based Optimization uses exclusively single points for esti-
mates ignoring possible estimation errors, a conceptually different approach
called Multi Point-based Optimization was introduced. Besides to providing a
solution to estimation errors, this approach avoids performance regression due
to several re-optimizations of a plan. Contrary to the first approach which reacts
after an estimation error is detected, Multi Point-based Optimization aims to
predict plan sub-optimalities and anticipate the reaction to this. The methods
proposed as part of this approach consider the possibility of estimation errors
at the optimization phase. They produce plans that are likely to perform rea-
sonably well in many run-time conditions. These methods [1–3,9,14] aim at
preventing rather than correcting. The key concept of these methods is the use
of intervals of estimates, which models the estimation inaccuracy. In the liter-
ature, there are different techniques for computing such intervals. For instance,
[6] uses strict upper and lower bounds, [3,17] model estimation uncertainty by
means of discrete buckets that depend on the way the estimate was derived, etc.
Once computed, the interval of estimates is used by the optimizer to generate an
execution plan that is likely to provide stable performance within this interval.

2.2 Problem Definition

Existing methods proposed as part of the Multi Point-based Optimization app-
roach suppose that it is always feasible to find a single robust plan within an
interval of estimates. We believe that this assumption is not always valid. When
the interval of estimates is large, it becomes difficult to find a plan generating
stable performance over the whole interval. Execution plans may be robust at
only some points of the interval. In the remainder of this paper, we adopt the
following definition for a robust plan: let Ve be an estimate of an error-prone
parameter, let I be an interval of estimates around Ve exhibiting the uncertainty
about the estimate of this parameter. Let Pbest be the best plan for a specific
value Vi in I. Finally, let λ be a (user-defined) cost-increase threshold (expressed
in percentage). A plan Palt is robust with respect to estimation errors if:

∀ Vi ∈ I,
cost(Palt)

cost(Pbest)
≤ 1 +

λ

100
(1)

For instance, if users tolerate a minor cost increase (λ) of at most 20%, the cost
of Palt is at most 1, 2 times the cost of the best plan.

3 Generation of a Robust Query Execution Plan

In this section, we detail our method called Identification of Robust Plans
(IRP), which is part of the Multi Point-based Optimization approach. The key
concept in our work is the uncertainty of estimates used by a query optimizer
to choose an appropriate execution plan along with the difficulty to find a single
robust execution plan when the estimation uncertainty is large. We present below
an example that underlines our motivations before detailing our method.

3.1 A Motivating Example

We first study the case wherein the size of only one input-relation for a join
operation is error-prone. then, we extend it to the general case.

Example. Consider the query Q = select * from customer as C, order as O where
C.customerId = O.customerId and C.country = ‘France’ and C.city = ‘Paris’.
Best plan selection for this query requires accurate estimate of selectivity of
the predicates C.country = ‘France’ and C.city = ‘Paris’. However, even with
the existence of histograms on attributes C.country and C.city, the optimizer
can not maintain multi-dimensional histograms for all possible combinations of
attributes [23]. It may so assume independence to compute the joint selectivity
of the two predicates. This assumption may lead to large estimation errors while
costing plans due to an eventual correlation between the predicates. To avoid
sub-optimal plan choice, resulting from these errors, we consider σ(C), which
is the result of C.country = ‘France’ and C.city = ‘Paris’, as error-prone. We
define an interval of estimates around σ(C), denoted I. This interval is then used
to select an appropriate execution plan. In this process, one of the following cases
may occur: (i) there is a single plan that is robust at all points of I, (ii) there
are several plans, each of which is robust at only some points of I.

Existing multi point-based optimization methods assume that the first case is
often feasible, that is to say a plan providing stable performance within an inter-
val of estimates can be founded. This assumption is not always valid. Consider
the scenario of Example, suppose that there is an index on an attribute of the
relation O. Through repeated invocations of a query optimizer, plans labelled
“Plan1”, “Plan2” and “Plan3” (Cf. Fig. 1) are enumerated as possible execution
plans for Q.

Based on a cost model, a query optimizer estimates the costs of these plans
with respect of variation of σ(C) so as to determine the execution plan that
offers robust performance within the interval of estimates. This plan must
respect robustness definition presented in Sect. 1. Assume that the tolerated
cost-increase (λ) is about 20%. This value is chosen based on the works of [1,3].
Figure 2 plots the plans’ costs with respect to variations of σ(C) in MB. In this
Figure, we observe that for λ = 20%, none of plans P1, P2 and P3 is robust

Fig. 1. Possible execution plans for the query Q = σ(C) ⊲⊳ O

Fig. 2. Costs of plans with respect to variations of σ(C)

within I. This example highlights the necessity to divide the interval of esti-
mates into sub-intervals and to associate a robust plan with each sub-interval.
An important question concerns the choice of only one plan to start the execu-
tion. A solution could be to determine the sub-interval covering the most possible
run-time values and choose the plan associated with this sub-interval to execute
the query.

3.2 Robust Optimization Method

The above mentioned discussion motivates the necessity of incorporating esti-
mation uncertainty in the query optimization process. In order to design and
develop such an optimization method, it is suitable to offer first a method for
one-join operation. This method constitutes the building block for a robust exe-
cution of a multi-join query. In this regard, we present a method that consists
of two main modules: (1) Identification of Robust Plans, and (2) Selection of an
Execution Plan. We will examine them in more detail in the subsections below.

Identification of Robust Plans: IRP is a compile-time strategy for identi-
fying robust plans. It relies on intervals of estimates to model the estimation
uncertainty. Such intervals are used to select the plan that minimizes a potential
sub-optimality resulting from possible estimation errors. To conduct our exper-
iments we use the method in [3] to compute these intervals.

Let Q = Join(T, R1) be a query to join T and R1, where T is a temporary
relation and R1 is a base relation. The size of T is denoted |T|. The point estimate

of |T| is denoted Test. Let us assume that the interval of estimates around Test is
defined, i.e., I = [L, U], where L and U are the lower and the upper bound of the
interval. Let S be a set of possible execution plans for Q. This module consists
in determining -for each plan P in S- the interval Ip within which P is robust
(Cf. [26]). Calculate Ip may be converted into a numerical solving problem. We
vary Test in I and compute the lower bound of Ip by solving the inequality:

Cost(P, Test, R1val) ≤ (1 +
λ

100
) × CostBestP lan(S, Test, R1val) (2)

Test is considered as the variable of the inequality. We choose then the minimum
root to be the lower bound of Ip. R1val refers to the size of the base relation R1.
CostBestP lan(S, Test, R1val) returns the cost of the best plan in S for Test and
R1val while Cost(P, Test, R1val) returns the execution cost of P. Similarly, the
upper bound is determined as the minimum root of the inequality below:

(1 +
λ

100
) × CostBestP lan(S, Test, R1val) < Cost(P, Test, R1val) (3)

Due to space limitation, this algorithm is described in greater detail in [26]. The
robustness of a plan is checked at different points in the interval. To avoid a
large computational complexity, these points are computed based on the secant
method, which is very effective and can be extended to n-parameters space [21].

Selection of an Execution Plan: After identifying robust plans, only one plan
should be selected to start the query execution. This plan is chosen based on
a probabilistic approach. We propose to compute, for each plan, its probability
prob(P) to handle run-time variation of estimates. The greater is the probability
the higher is the likelihood of the plan to minimize sub-optimality. We process
estimates as random variables and compute prob(P) as:

prob(P) =
length of the robustness range associated with P

length of the interval of estimates I
(4)

The plan with the higher probability is chosen to start the execution. When two
plans have equal probabilities, the plan that maximizes the worst-case perfor-
mance is selected. The study of this issue is available in [26].

Extension to Multiple Parameters. So far, we have assumed that the size of only
one join input-relation is error-prone. This approach can be generalized to the
multi parameter case. In this case, the size of each relation is modelled by an
interval of estimates. The intersection of these intervals forms a bounding box.
We compute -for each plan- a robustness box rather than a robustness range. In
addition, the plan associated with the robustness box covering the most space of
uncertainty is chosen to start the execution. Notwithstanding these changes, the
basic mechanism of the IRP algorithm is similar to the first case. This algorithm
can be found in detail in [26].

4 Experiments

In this section we describe the experimental evaluation of our optimization
method, termed IRP. We compare IRP with a method that relies on the sin-
gle point-based optimization approach [24] (termed TRAD) and with RIO [3].
RIO is a method using the multi point-based optimization approach. We study
the behaviours of these methods with respect to error in estimates. We consider
that an estimation uncertainty may be high, medium or low. We conducted our
experiments using a simulation model that we describe below.

4.1 Simulation Model

To perform our experiments, we used a query builder and a simulator. The
simulator includes the simulated optimization method and a meta-base. The
simulated method consists of two main modules: (1) Query Optimizer, and
(2) Query Executor. The meta-base includes information describing the run-
time environment (e.g., CPU performance) as well as information about data
(e.g., sizes of base relations). The dataset used in the experiments is shown in
Table 1.

Table 1. Summary of dataset used in the experiments

Parameter Value Parameter Value

Buffer size 400 MB CPU performance 100 000 MIPS

Disk bandwidth 100 MB/s Average disk latency 2 ms

Size of a page on disk 4 KB Size of a record 1–3 KB

Size of a relation 100–1000 MB Size of an attribute 10–500 Bytes

In the next subsections, we present the results of our experiments. First, we
study the case wherein only one input-relation for a join is prone to an estima-
tion error. Second, we extend our experiments to the case wherein both inputs-
relations are prone to estimation errors. During our experiments, we consider
that the cost-increase threshold for robustness condition is 20%.

4.2 Experimental Results

For this experiment, we use a set of 100 queries which we call SQ. Queries in SQ
include only one join operation and verify all, the followings conditions: (i) One
of the inputs relations is a base relation, denoted R1, and (ii) One of the inputs
relations is a temporary relation, denoted T and is resulting from a selection
operation on a base relation named R2. The following query Q′ is a sample of
queries in SQ:

Q′ = select ∗ fromR1, R2 WhereR1.a = R2.b andR2.c < V 1 andR2.d > V 2

Q′ can be represented as Join(R1,T), where T is the result of “select * from R2
Where R2.c < V1 and R2.d > V2”. Estimates of the temporary relations sizes
while costing execution plans for queries in SQ, may be erroneous. This is due
to eventual correlations between the selection predicates. For each query, the
uncertainty about |T| is modelled by an interval of estimates. To calculate such
an interval, we use the method proposed in [3]. We consider three uncertainty
levels: high, medium, and low. Note that a high uncertainty in estimates involves
a large interval of estimates. This interval is then used by RIO and IRP to
generate a robust query execution plan. As for TRAD, it relies on a single-point
estimate of |T|, i.e., Test, to select an execution plan expected to be the best.

Impact of Estimation Errors on Execution Times: The first experiment
consists in assessing the impact of estimation errors on the execution time of each
method. Figure 3 shows the variation of the execution time of plans produced by
TRAD, RIO and IRP for queries in SQ. We vary the error between the estimate
of the temporary relation size and its actual value. This is repeated for each
query in SQ. Figure 3 also shows the execution time of the best plan.

The execution time for a method is computed as the median of the execution
times of all queries in SQ by this method. Error in estimates plotted on the

x-axis is calculated as (|Tactual|
|Testimate| − 1) [3]. A positive error indicates an under-

estimate while a negative error indicates an overestimate of the actual run-time
value compared to the compile-time estimated value. Figure 3 shows that the
performance of TRAD remains acceptable when the error on |T|, is very low.
However, when the error becomes large, i.e., greater than 2, we observe a sig-
nificant increase in the execution times of plans produced by TRAD. Indeed,
TRAD selects an execution plan whose performance is heavily dependent on the
accuracy of compile-time estimates. This plan is optimal for only the single-point
estimate of |T|. Plans chosen by TRAD are very sensitive to estimation errors.

Figure 3 shows that RIO generates better performance compared with
TRAD. However, the performance of RIO may deteriorate. Indeed, when RIO
does not find a single robust plan within the interval of estimates of |T|, it
behaves like TRAD. It produces a plan expected to be optimal for the compile-
time estimate of |T|. Unlike RIO, IRP remains based on multi-point estimates.
It generated an execution plan that provides stable performances within a sub-
interval of the interval of estimates. Using a sub-interval of estimates rather
than a single-point estimate for |T| allows to IRP to produce plans whose exe-
cution times are usually more stable compared with RIO and TRAD. We also
notice in Fig. 3 that when the uncertainty is low, the performance of TRAD and
IRP becomes close. This is because when the interval of estimates is narrow, it
becomes more feasible for RIO to find a plan that is robust within an interval.

Impact of Estimation Errors on the Consistency of Methods: The con-
sistency of a method refers to its ability to cope with estimation errors and/or
changes in run-time conditions compared to compile-time expectation of run-
time conditions. A method is said highly consistent if its performance does not

(a) High uncertainty

(b) Medium uncertainty (c) Low uncertainty

Fig. 3. Variation of execution times with respect to errors on |T|

degrade significantly in the presence of estimation errors [29]. To measure the
consistency of TRAD, RIO and IRP, we compute the variance of performance of
each method and compare it to the variance in case of best performance. Note
that the consistency is inversely proportional to the variance [29]. To achieve
this experiment, we use the same set of queries previously used, i.e., SQ. The
results of this evaluation are shown in Fig. 4.

As we can see in Fig. 4, the variances of RIO and IRP are close when the
estimation uncertainty is low. However, when the uncertainty is large (high or
medium), the gap between the variances of methods increase. A high variance
means a significant dispersion of execution times. Figure 4 demonstrates that
plans generated by IRP are more stable than those generated by RIO. This figure
also proves that estimation errors have a pronounced impact on the consistency
of TRAD. This figure confirms the evaluation results previously obtained.

When Both Inputs-Relations are Prone to Estimation Errors. We performed
more experiments under the assumption that both join-inputs relations, denoted
T1 and T2, are prone to estimation errors. As RIO assumes that at least one

(a) High uncertainty (b) Medium uncertainty (c) Low uncertainty

Fig. 4. Variance of execution times with respect to errors on |T|

of the inputs-relations is a base relation [3], we only compared our method with
TRAD. The experiments are done using the same dataset (Cf. Table 1) as pre-
viously. Unsurprisingly, the experimental results confirm the results obtained in
the first case. IRP generates execution plans that provide stable performance
in the presence of estimation errors. Always because of space limitation, more
details of these experiments and figures can be found in [26].

5 Related Work

A variety of optimization strategies have been proposed in the literature to
identify robust plans. [30] overviews these works. In this section, we compare
our proposal with the most closely related prior research, i.e., [3,15,19]. Similarly
to this paper, these methods address the problem of query optimization due to
the uncertainty in estimates. These methods make use of intervals to manage
estimation uncertainty. These intervals are then used by the optimizer to pick
an appropriate execution plan. However, our work defers from these works on
several aspects.

In the initial optimization phase of Rio [3], if the plan chosen by the optimizer
at the lower and the upper bounds of the interval is the same as that chosen
for the single-point estimate, then the plan is assumed robust within the whole
interval. In our method, we adopt a different way to check the robustness of
a plan. We verify the robustness of a plan at different points in the interval.
These points are determined using our modified secant method, which provides
reduced computation complexity and precise results. In addition, Rio assumes
that at least one of the join inputs-relations is a base relation. We extend this
by considering the case wherein both relations are prone to estimation errors.

Among previous related research, the work by Markl et al. [19]. In [19], and
later in [4], validity ranges are computed for each sub-plan of a query execution
plan. The best plan is first chosen based on single-point estimates. The upper
and lower bounds wherein the plan remains the best plan are then computed.
These methods aim for optimal performance while IRP aims for robustness.
Robust plans choices are especially important to safely process queries when the
uncertainty about estimates is large.

The use of intervals may seem similar to the principle of parametric opti-
mization [10,15] where different plans are generated for different intervals of the
optimization parameters. The main limitation of this approach is the large num-
ber of plans to generate, store and compare at the optimization phase. We reduce
this complexity by computing robustness ranges. We accept a minor cost-increase
that reduces the number of plans generated. In addition, parametric optimiza-
tion is particularly attractive in the case of queries that are compiled once and
executed several times, possibly with minor modifications of parameters. Unlike
our work, its objective being to avoid compiling multiple instances of the same
query, but not to ensure robustness against estimation errors.

6 Conclusion and Future Work

This paper proposes an optimization strategy to handle uncertainty in compile-
time estimates. Uncertainty is modelled by means of intervals of estimates. These
intervals are then used to identify robust plans. We characterize a plan as robust
if its cost remains stable and acceptable in case of estimation errors. Our method
relies on a probabilistic approach to select the plan by which to start the exe-
cution. The experiments show that the proposed strategy may improves the
ability of a query optimizer to generated a robust execution plan, especially in
the presence of large estimation errors.

The proposed method performs in a uniprocessor environment. As future
work, we plan to extend it to a multiprocessor environment. It would be inter-
esting to study the importance of the parallelism degree choices over the identi-
fication of a robust query execution plan.

References

1. Abhirama, M., Bhaumik, S., Dey, A., Shrimal, H., Haritsa, J.R.: On the stability
of plan costs and the costs of plan stability. Proc. VLDB Endow. 3, 1137–1148
(2010)

2. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer: a principled and
practical approach. In: Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 119–130 (2005)

3. Babu, S., Bizarro, P., DeWitt, D.: Proactive re-optimization. In: Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 107–118
(2005)

4. Bizarro, P., Bruno, N., DeWitt, D.J.: Progressive parametric query optimization.
IEEE Trans. Knowl. Data Eng. 21, 582–594 (2009)

5. Bruno, N., Jain, S., Zhou, J.: Continuous cloud-scale query optimization and
processing. PVLDB 6, 961–972 (2013)

6. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of long run-
ning SQL queries. In: Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 803–814 (2004)

7. Chen, C.M., Roussopoulos, N.: Adaptive selectivity estimation using query feed-
back. In: Proceedings of ACM SIGMOD International Conference on Management
of Data, pp. 161–172 (1994)

8. Christodoulakis, S.: Implications of certain assumptions in database performance
evaluation. ACM Trans. Database Syst. 9, 163–186 (1984)

9. Chu, F.C., Halpern, J.Y., Seshadri, P.: Least expected cost query optimization:
an exercise in utility. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Philadelphia, pp. 138–147
(1999)

10. Cole, R.L., Graefe, G.: Optimization of dynamic query evaluation plans. In: Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, pp.
150–160 (1994)

11. Deshpande, A., Garofalakis, M.N., Rastogi, R.: Independence is good: dependency-
based histogram synopses for high-dimensional data. In: ACM SIGMOD Confer-
ence, pp. 199–210 (2001)

12. Dutt, A., Neelam, S., Haritsa, J.R.: Quest: an exploratory approach to robust query
processing. Proc. VLDB Endow. 7, 1585–1588 (2014)

13. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models.
In: Proceedings of ACM SIGMOD International Conference on Management of
Data, pp. 461–472 (2001)

14. Harish, D., Pooja, N.D., Jayant, R.H.: Identifying robust plans through plan dia-
gram reduction. Proc. VLDB Endow. 1, 1124–1140 (2008)

15. Hulgeri, A., Sudarshan, S.: Parametric query optimization for linear and piecewise
linear cost functions. In: Proceedings of the 28th International Conference on Very
Large Data Bases, pp. 167–178. VLDB Endowment (2002)

16. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors in the size of join
results. In: Proceedings of SIGMOD International Conference on Management of
Data, pp. 268–277 (1991)

17. Kabra, N., DeWitt, D.J.: Efficient mid-query re-optimization of sub-optimal query
execution plans. In: Proceedings of ACM SIGMOD International Conference on
Management of Data, pp. 106–117 (1998)

18. Karanasos, K., Balmin, A., Kutsch, M., Ozcan, F., Ercegovac, V., Xia, C., Jackson,
J.: Dynamically optimizing queries over large scale data platforms. In: Proceedings
of ACM SIGMOD International Conference on Management of Data, pp. 943–954
(2014)

19. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.:
Robust query processing through progressive optimization. In: Proceedings of ACM
SIGMOD International Conference on Management of Data, pp. 659–670 (2004)

20. Neumann, T., Galindo-Legaria, C.A.: Taking the edge off cardinality estimation
errors using incremental execution. In: DBIS, Germany, pp. 73–92 (2013)

21. Papakonstantinou, J.M., Tapia, R.A.: Origin and evolution of the secant method
in one dimension. Am. Math. Mon. 120(6), 500–518 (2013)

22. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved histograms for
selectivity estimation of range predicates. In: Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, pp. 294–305 (1996)

23. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value
independence assumption. In: Proceedings of 23rd International Conference on
Very Large Data Bases, pp. 486–495 (1997)

24. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 23–34
(1979)

25. Moumen, C., Morvan, F., Hameurlain, A.: Estimation error-aware query optimiza-
tion: an overview. Int. J. Comput. Syst. Sci. Eng. (2016, in press)

26. Moumen, C., Morvan, F., Hameurlain, A.: Handling estimation inaccuracy
in query optimization. Research report (2016). www.irit.fr/∼Riad.Mokadem/
report%20Chiraz%20Moumen.pdf

27. Tzoumas, K., Deshpande, A., Jensen, C.S.: Lightweight graphical models for selec-
tivity estimation without independence assumptions. In: PVLDB (2011)

28. Tzoumas, K., Deshpande, A., Jensen, C.S.: Efficiently adapting graphical models
for selectivity estimation. VLDB J. 22, 3–27 (2013)

29. Wiener, J.L., Kuno, H., Graefe, G.: Benchmarking query executionrobustness. In:
TPC Technology Conference on Performance Evaluation and Benchmarking, pp.
153–166 (2009)

30. Yin, S., Hameurlain, A., Morvan, F.: Robust query optimization methods with
respect to estimation errors: a survey. SIGMOD Rec. 44, 25–36 (2015)

