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Estimation de canal avec a priori de position pour les communications aéronautiques par satellite

Dans ce papier, nous présentons un nouvel algorithme pour l'estimation d'un canal à faible nombre de trajets dans le cas où certains paramètres peuvent être déterminés à partir de la position. C'est le cas par exemple du canal pour les communications aéronautiques par satellite. On montre que dans ce cas le canal comporte deux trajets principaux et que les retards peuvent être estimés par des considerations géométriques. Le nouvel algorithme développé conduit à de meilleures performances en terme d'erreur quadratique moyenne (EQM) que l'estimateur classique des moindres carrés.

Introduction

Dans les systèmes de communication sans fil, l'estimation de la réponse impulsionnelle du canal est nécessaire pour la démodulation cohérente. Pour cela, il est courant d'introduire des séquences d'apprentissage dans le signal transmis [START_REF] Siala | Maximum a posteriori fast fading channel estimation based exclusively on pilot symbols[END_REF] [START_REF] Ciblat | Training sequence optimization for joint channel and frequency offset estimation[END_REF]. Si le canal varie dans le temps et si on connaît son temps de cohérence, on peut alors définir des trames de telle manière que le canal puisse être supposé stationnaire sur chacune d'elles. Nous nous intéressons dans cet article à l'estimation des canaux à trajets multiples, où le signal émis arrive au niveau du récepteur après avoir emprunté plusieurs chemins, chacun ayant un coefficient d'atténuation et un retard de propagation différent. Le canal sera considéré sur son temps de cohérence et l'estimation effectuée à l'aide d'une séquence d'apprentissage. Disposant d'un modèle paramétrique pour la réponse impulsionnelle du canal multitrajets, l'utilisation du critère du maximum de vraisemblance (MV), conduit à une solution optimale. Cependant, cette procédure d'estimation est très complexe en raison de la mémoire du canal qui est généralement grande. En présence du bruit Gaussien, l'estimation MV devient équivalente à une estimation linéaire selon le critère des moindres carrés (MC) [START_REF] Carbonelli | Sparse channel estimation with zero tap detection[END_REF] qui est moins complexe tout en permettant d'atteindre la borne de Cramer-Rao (BCR) [START_REF] Sampling | Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling[END_REF]. En nous plaçant dans un contexte de bruit Gaussien, nous proposons dans cet article une nouvelle méthode d'estimation du canal de propagation permettant de réduire de manière importante le nombre de coefficients à estimer pour ramener l'estimation du canal multitrajets à l'estimation d'un canal parcimonieux [START_REF] Carbonelli | Sparse channel estimation with zero tap detection[END_REF].

Pour cela on suppose que les filtres d'émission et de réception sont connus et on définit un canal équivalent correspondant à la convolution de ces filtres avec la réponse impulsionnelle du canal multitrajets. C'est ce canal équivalent que nous devons estimer et la connaissance des filtres d'émission et de réception est exploitée pour réduire la complexité de l'estimateur. On peut aller plus loin dans la simplification de la procédure d'estimation. En effet, dans certains systèmes de transmission, les systèmes de communication aéronautiques par exemple, on peut déterminer d'une manière très précise certains paramètres, comme les retards des différents trajets, en se basant sur des considérations géométriques issues de techniques de géolocalisation [START_REF] Soubielle | GPS positioning in a multipath environment[END_REF]. Cet a priori supplémentaire peut-être exploité de manière à réduire encore les inconnus de notre système et à se ramener à une estimation de canal parcimonieux (ie. dans notre cas un faible nombre de coefficients du canal discret équivalent sont prépondérants). Seuls les coefficients d'atténuation du canal multitrajets seront alors à estimer.

La suite de l'article est organisée de la manière suivante. La section 2 rappelle, d'une part, la méthode d'estimation classique de canal utilisant le critère des moindres carrés (MC) et décrit, d'autre part, la méthode proposée qui exploite la forme particulière du canal de transmission équivalent et les considérations géométriques issues des techniques de géolocalisation. Cette section compare également les deux méthodes en calculant le gain apporté par la méthode proposée. La section 3 propose une application aux communications aéronautiques par satellite. Les résultats de simulation sont présentés dans la section 4, tandis que la section 5 conclut l'article.

Méthodes d'estimation du canal de propagation

Cette section permet de comparer la méthode d'estimation proposée, appelée "MC structurés", qui exploite la forme particulière du canal équivalent, avec une méthode d'estimation classique, appelée "MC non-structurés" [START_REF] Carbonelli | Sparse channel estimation with zero tap detection[END_REF], fondée sur le critère des moindres carrés.

Modélisation du système

Nous considérons un système à entrée et sortie uniques (SISO) et un canal linéaire, invariant dans le temps sur la durée d'observation, de type multi-trajets pour lequel on notera a n ∈ C et τ n l'atténuation et le retard du n ième trajet de propagation et N t le nombre de trajets considérés. On suppose que les filtres d'émission et de réception sont connus et de type racine de Nyquist et on note p(t) la réponse impulsionnelle du filtre résultant de la convolution des deux. On appelle alors canal équivalent le filtre correspondant à la convolution entre p(t) et le canal multitrajets. La réponse impulsionnelle du canal équivalent est donc donnée par :

h(t) = Nt-1 n=0 a n p(t -τ n ) (1) 
La version échantillonnée de h(t) à une durée symbole T s possède L échantillons :

h l = h(lT s ) = Nt-1 n=0 a n p(lT s -τ n ) 0 ≤ l ≤ L -1 (2)
On suppose que l'on est en présence de bruit blanc additif et gaussien w(t), de puissance σ 2 w , et que l'on a envoyé une séquence d'apprentissage x = (x 0 , x 1 , . . . , x N -1 ), constituée de symboles pilotes x i , i = 0, ..., N -1 avec N ≥ L. Cette séquence d'apprentissage est de puissance σ 2

x . Le signal reçu à l'entrée de l'échantillonneur peut alors s'écrire sous la forme :

y k = L-1 l=0 h l x k-l + w k (3) 
Nous supposerons par la suite que la réponse impulsionnelle échantillonnée du canal équivalent h = (h 0 , h 1 , . . . , h L-1 ) T est déterministe mais inconnue. Sa mémoire L est par contre supposé parfaitement connue au niveau du récepteur.

Méthode d'égalisation des moindres carrés non-structurée (U-MC)

L'équation (3) peut être écrite sous une forme matricielle de la manière suivante :

y = X h + w (4) où X =          x L-1 x L-2 . . . x 0 x L x L-1 . . . x 1 x L+1 x L . . . x 2 . . . . . . . . . . . . x N -1 x N -2 . . . x N -L          y = [y L-1 , y L , . . . , y N -1 ] T et w = [w L-1 , w L , . . . , w N -1 ] T .
La borne inférieure sur l'estimation de h, notée BCR U , peut être obtenue comme suit [START_REF] Sampling | Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling[END_REF] :

BCR U = F -1 (h) ≤ Cov( ĥ) (5) 
où F(h) est la matrice d'information de Fisher :

F(h) = E{∇ h log(f (y, h)) [∇ h log(f (y, h))] H } = 1 σ 2 w X H X ∇ h désignant l'opérateur du gradient par rapport au vecteur h et f (y, h) = 1 ( √ πσ 2 w ) N -L+1 exp(-1 σ 2 w ||y -X h|| 2 
2 ) Une estimation selon le critère du maximum de vraissemblance (MV) peut atteindre la borne de Cramer Rao en présence de bruit blanc gaussien additif. Dans ce cas, l'estimateur MV non biaisé, ĥMV vérifiant ∇ ĥMV log f (y, h) = 0, est exactement celui donné par la solution des moindres carrés (MC) non biaisée ĥMCU :

ĥMCU = X H X -1 X H y (6) 
avec :

Cov( ĥMCU ) = BCR U
L'erreur quadratique moyenne (EQM) commise sur l'estimation de canal est alors donnée par :

E{|| ĥMCU -h|| 2 2 } = Tr Cov( ĥMCU ) = Tr F (h) -1 (7 
) où Tr(A) représente la trace de la matrice A. Pour simplifier la complexité de calcul, nous choisissons une séquence d'apprentissage constituée de symboles indépendants et identiquement distribués (x telle que X H X = (N -L + 1) σ 2

x I N ×N ). L'erreur quadratique moyenne sur l'estimation de canal peut alors être écrite comme suit :

EQM( ĥMCU ) = Tr 1 σ 2 w X H X -1 = SN R -1 x N -L + 1 × L (8) où SN R x = σ 2 x σ 2 w 2.

Méthode d'estimation des moindres carrés structurée (S-MC)

L'équation (2) peut être écrite sous la forme matricielle suivante :

h = P(τ )a (9) 
avec a = (a 0 , . . . , a Nt-1 ) T , τ = (τ 0 . . . , τ Nt-1 )

P(τ ) =       p(0 -τ 0 ) . . . p(0 -τ Nt-1 ) p(T s -τ 0 ) . . . p(T s -τ Nt-1 ) . . . . . . . . . p((L -1)T s -τ 0 ) . . . p((L -1)T s -τ Nt-1 )      
(10) L'équation (4) peut être reécrite sous cette forme : y = X P(τ )a + w = S(τ )a + w (11) avec S(τ ) = X P(τ ).

En considérant que le vecteur τ est connu (estimation basée sur la géolocalisation) on obtient : ĥ = P(τ )â (12) et une nouvelle borne de Cramer Rao, BCR S , obtenue comme suit :

BCR S = P (τ ) BCR(a) P H (τ ) (13) 
où BCR(a) = F -1 (a), F (a) étant la matrice d'information de Fisher correspondant à l'estimation de a :

F (a) = E{∇ a log(f (y/a)) [∇ a log (f (y/a))] H } (14) = 1 σ 2 w S H (τ )S(τ ) (15) 
avec f (y/a) =

1 ( √ πσ 2 w ) N -L+1 exp(-1 σ 2 w ||y -S a|| 2 
2 ). En présence de bruit blanc additif gaussien, l'estimateur non biaisé MV est exactement celui donné par la solution MC non biaisée :

ĥMCS = P(τ )â M C (16) avec : âMC = S H S -1 S H y (17) et Cov(â M C ) = BCR(a) (18) 
Cov( ĥMCS

) = P (τ ) Cov(â M C ) P H (τ ) = σ 2 w P (τ ) S H S -1 P H (τ ) = σ 2 w P (τ ) P H (τ )X H XP (τ ) -1 P H (τ )
Si nous supposons également que nous avons une séquence d'apprentissage à symboles indépendants et identiquement distribués (ie :

1 N -L+1 X H X = σ 2
x I L×L ) , nous obtenons :

Cov( ĥMCS ) = SN R -1 x N -L + 1 P (τ ) P H (τ )P (τ ) -1 P H (τ )
L'erreur quadratique moyenne de l'estimation de la réponse du canal EQM( h MCS ) est déterminé comme étant la trace de la matrice de covariance de h MCS comme suit :

EQM( h MCS ) = Tr Cov( ĥMCS ) = SN R -1 x N -L + 1 Tr (I Nt×Nt ) = SN R -1 x N -L + 1 N t (19)

Comparaison des deux méthodes d'estimation de canal

Le gain de performance, en termes d'erreur quadratique moyenne, obtenu avec l'estimateur structuré proposé (S-MC) par rapport à l'estimateur classique non structuré (U-MC) est donné par :

G dB = 10 log 10 EQM( h MCU )
EQM( h MCS ) = 10 log 10 L N t (20) Le gain obtenu avec l'estimation S-MC par rapport à l'estimation U-MC devient donc plus important si le nombre de trajets N t est très faible par rapport à la mémoire de canal équivalent L. L'estimation S-MC est donc une technique particulièrement intéressante pour les canaux parcimonieux.

Application aux communications aéronautiques par satellite

La réponse impulsionnelle d'un canal aéronautique [START_REF] Raddadi | On an efficient equalization structure for aeronautical communications via a satellite link[END_REF] peut être considérée comme parcimonieuse. En effet, le canal aéronautique est un canal multitrajets constitué essentiellement de deux trajets principaux, une voie directe (noté LOS pour Line Of Sight) entre le satellite et l'aéronef à laquelle vient s'ajouter une réflexion sur la surface du sol (noté GR pour Ground Reflexion). La voie directe sera le chemin de référence en termes de délai. Il est affecté d'un coefficient d'atténuation a LOS . Le trajet représentant la réflexion sur le sol est retardé de τ GR et affecté par un coefficient d'attenuation a GR . Ces deux atténuations sont des variables aléatoires, mais pour simplifier on suppose que leurs valeurs ne varient pas beaucoup ou presque constantes pendant un certain temps de cohérence. Les paramètres τ et a peuvent alors s'écrire τ = (0, τ GR ) ; a = (a LOS , a GR ) T . En prenant en compte des considérations géométriques, il est possible d'estimer τ GR . Il est donné par la connaissance de l'angle d'élévation ε entre l'aéronef et un satellite géostationnaire obtenu grâce à des mesures GPS [START_REF] Kos | Effects of multipath reception on GPS positioning performance[END_REF] :

τGR = 2H sin( ε) c (21) 
où

sin( ε) = cos( θ1 ) cos(φ 2 -φ1 ) -R+H R+D 1 -2 cos( θ1 ) cos(φ 2 -φ1 ) R+H R+D + ( R+H R+D ) 2 (22 
) avec θ 1 , φ 1 et H qui désignent respectivement la latitude, la longitude et l'altitude de l'aéronef et φ 2 et D qui désignent la longitude et l'altitude d'un satellite géostationnaire. La latitude du satellite géostationnaire est à peu près nulle, c = 3 10 8 m.s -1 est la célerité de la lumière et R = 6378, 14 KM est le rayon de la terre.

En supposant que les filtres d'émission et de réception forment un cosinus surélevé de réponse impulsionnelle p(t), le canal équivalent est une combinaison de deux formes d'onde, a LOS p(t) et a GR p(t-τ GR ). La réponse impulsionnelle résultante est généralement assez parcimonieuse, au sens où un faible nombre de trajets sont prépondérants dans la réponse du canal discret équivalent [START_REF] Raddadi | On an efficient equalization structure for aeronautical communications via a satellite link[END_REF].

En supposant que l'on a réalisé une estimation parfaite de τ GR (τ GR = τ GR ) et en appliquant un estimateur des moindres carrés structuré (S-MC), on obtient un gain d'estimation, par rapport à l'utilisation d'un estimateur des moindres carré non structuré (U-MC), donné par :

G dB = 10 log 10 ( L 2 ) ( 23 
)
En étudiant la fontion de répartition de l'erreur d'acquisition de la valeur de τ GR en se basant sur la géolocalisation GPS, on peut montrer que le pourcentage de l'erreur ne dépasse pas 4, 5 10 -3 % ce qui permet de négliger l'erreur d'éstimation du retard τ GR et valide l'hypothèse d'estimation parfaite : τGR = τ GR . 

Résultats de simulation

Conclusion

Dans cet article, nous avons proposé un nouvel algorithme d'estimation de canal pour les canaux multi-trajets qui présentent un faible nombre de trajets, en prenant comme exemple le cas du canal aéronautique avec une liaison par satellite. La méthode proposée exploite à la fois la forme particulière de la réponse impulsionnelle du canal ainsi qu'un à priori sur la connaissance de certains paramètres qui peuvent être déterminés par des considérations géométriques. Cela réduit le nombre de variables et permet d'avoir une meilleure performance par rapport à des algorithmes qui ne considèrent pas la particularité de ce cas de figure. De futurs travaux prendront en compte cette méthode pour la turbo égalisation de canaux de même type afin de réduire l'impact de l'estimation non parfaite du canal.

  Nous considérons dans cette partie un canal de longueur L = 20 et une séquence d'apprentissage de longueur N = 25. Dans la Fig. 1, on compare en terme d'erreur quadratique moyenne les techniques d'estimation de canal U-MC et S-MC et les borne de Cramer de Rao pour chacune des méthodes (Tr (BCR U ), Tr (BCR S )) sont également tracées. Puisque le canal aéronautique possède deux trajets, on trouve un gain de 10 dB apporté par la technique S-MC par rapport à la technique U-MC.
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 1 FIGURE 1 --EQM et bornes de Cramer Rao pour les estimateurs structuré (S-MC) et non-structuré (U-MC). Dans la Fig. 2, nous présentons les performances en terme de taux d'erreur binaire (TEB) pour une modulation BPSK (Binaire phase shift Keying) non codée après une égalisation selon le critère MAP (Maximum A priori) basée sur l'estimation du canal. La courbe beue représente le cas où on utilise la technique U-MC pour estimer le canal de transmission, la courbe rouge représente le cas d'utilisation de la technique S-MC. Par contre La courbe noire représente le cas où on connait parfaitement le canal. Ces résultats montre que la technique S-MC est
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 2 FIGURE 2 -TEB de l'estimateur structuré et non structuré.