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Abstract

We introduce a novel numerical method to integrate partial differential equations representing the Hamiltonian dy-
namics of field theories. It is a multi-symplectic integrator that locally conserves the stress-energy tensor with an
excellent precision over very long periods. Its major advantage is that it is extremely simple (it is basically a centered
box scheme) while remaining locally well defined. We put it to the test in the case of the non-linear wave equation
(with quartic potential) in one spatial dimension, and we explain how to implement it in higher dimensions. A formal
geometric presentation of the multi-symplectic structure is also given as well as a technical trick allowing to solve the
degeneracy problem that potentially accompanies the multi-symplectic structure.

Introduction

Partial differential equations (pdes) are involved in
the description of many scientific problems of interest.
Quite commonly, understanding the behavior of the
latter starts by solving a pde. Unfortunately, the
ability to find analytical solutions to such equations
is the exception rather than the rule.

Usual strategies to tackle pdes are to consider an
approximation of the initial equation (by removing
some non-leading terms, for example) or a particu-
lar domain of the parameter space (perturbative ap-
proaches, . . . ). However, these partial pieces of infor-
mation can be insufficient to understand the behavior
of the system in a satisfactory way.

It then becomes relevant to focus on approximate so-
lutions, but this time, of the original equation and
for the full range of variation of the parameters. This
is exactly what one tries to achieve by using numer-
ical methods. The question then arises as to how to
control the numerical approximation.

To be more precise, let us take a time dependent process
ρ(t), governed by a differential equation

f
(
ρ, ρ′, ρ′′, · · ·

)
= 0 ,

where the ′ indicates time derivative. In a finite-difference
representation of this equation, the approximation process
is quite well controlled and, at each time step, we know
the order of the error made. Yet, a priori, we cannot
predict the accumulation of these errors over many time

steps and we cannot control the approximation made on
the time-dependent solution (especially in the long-time
limit).

The question can then be rephrased as, why should we
trust a solution obtained with a numerical solver?

To address this question the standard procedure is to test,
as precisely as possible, all the known properties of the
problem. Firstly:

i. If a particular solution is available, we can easily check
whether the numerical solution is in agreement with it.

ii. In the same spirit, we can compare a numerical solu-
tion to the exact one for some particular choices of the
parameters (by turning off all the interaction terms, for
example).

Nevertheless, these two kinds of tests are not robust
enough and nothing ensures that the numerical approx-
imation will behave in the same way in a different regime
(where no exact solutions are available).

The second kind of test is based on symmetries and con-
servation laws:

i. If the theory admits a symmetry group (not sponta-
neously broken) we expect the numerical solutions to
be (as closely as possible) in agreement with the dis-
crete analogue of this symmetry group (and, especially,
the discrete part of it).

ii. Due to the symmetry group, the theory can exhibit
some conserved quantities that the numerical solutions
should preserve as closely as possible.

Using such tools lets us recover the ability to keep control
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over the numerical approximations and authorizes us to
trust (or not) the numerical solutions obtained.

Obviously, the accessibility to such validations is closely
related to the structure of the pde and the method we are
going to introduce will only be applicable to the Hamil-
tonian ones (i.e. arising from De Donder – Weyl –
Hamilton equations) that will be defined later. Let us
simply state for the moment that they are Lagrangian
pdes (i.e. arising from an Euler – Lagrange equation).

We also have to stress that we will focus on the particular
class of finite-difference methods. Other classes (spectral
methods, finite-element methods, . . . ) are not as natural
as finite-difference ones to fulfil the constraints involved
by the preservation of the multi-symplectic structure to
be explained below.

A finite-difference method is like a cooking recipe com-
posed of two ingredients:

i. Firstly, a lattice that samples a bounded region of the
support (e.g. the space-time manifold).

ii. Secondly, a set of discretization rules that translate the
continuous quantities to their lattice analogues. The
continuous unknowns, defined on the space-time man-
ifold, are sampled through the lattice. The discretiza-
tion rules specify how to combine these samples if we
want to compute derivatives, force terms, . . .

Applying these rules to the equation of motion toggles
from a pde to a set of algebraic equations (governing the
behavior of the quantities defined on the lattice). Solving
these algebraic equations leads to a set of values on the
lattice nodes. This is a sampling of the solution, and in
adjunction with some interpolation rules, an approximate
solution of the pde is thus constructed. However, it has
to be noted that these samples are not necessarily exact
and, both the samples and the interpolation process are
responsible for dissimilarities with the exact solution.

Many standard finite-difference schemes already exist and
are often adequate. Each method has its own preferred
application field. In the kind of problems we will be inter-
ested in, we need to control the very long time behavior
(with respect to a characteristic time-scale in the system)
and we need a procedure that minimises the error accu-
mulated over a huge number of steps. For this reason, we
need to develop our own numerical scheme that performs
well over long time scales (even though we may have to
make some compromise on its short time quality).

Generally, most methods are able to behave rather cor-
rectly on short time-scales. Therefore, the simplest and
the fastest the method, the better it is in this regime.
However, the problem complicates at long times, since
two phenomena conspire against the performance of most
strategies:

i. On the one hand, a priori, the reduction of the time
step improves the quality of the approximation and

then the quality of the solution but this obviously in-
hibits reaching long times.

ii. On the other hand, at each step, some numerical trun-
cation errors are induced by the finite precision of the
numbers’ representation in a computer. Such errors are
generally inflated when the size of the step decreases
and accumulate as the number of steps increases.

It results that, for a given final time, the precision is
bounded from above, hence the necessity to chose a nu-
merical method designed to behave correctly whatever the
number of steps to handle.

Regarding mechanical systems (support is of dimension
one, e.g. just time), it exists a very particular class of
finite-difference integrators: the symplectic ones. They
are well known (especially by researchers in planetary evo-
lution) because of their very good capability to preserve
the energy of Hamiltonian systems with a high accuracy
even over long times [1]. Such integrators are based on
the conservation of a very important (even central) struc-
ture of mechanical systems: the symplecticity of the phase
space.

Generalizations to field theories (pde) appends some dif-
ficulties since the conservation of the energy is no longer
rigid enough. Actually, the correct fundamental quantity
to be preserved is now the stress-energy tensor. Its con-
servation is local (by opposition to the conservation of the
energy, which is through a space integral) and hence more
fundamental. Therefore, the symplectic structure is no
longer adapted and needs to be generalized.

Multi-symplectic numerical integrators, introduced by
Bridges and Reich at the beginning of the 21st cen-
tury [2, 3, 4], generalize to pdes the concept of sym-
plectic integrators. Applied to conservative pdes, multi-
symplectic integrators exhibit excellent local conservation
properties (especially of the stress-energy tensor) and a
very stable behavior for long time integrations [5].

In the past fifteen years the subject has been widely stud-
ied [6, 7, 8, 9, 10, 11, 12, 13] and successfully applied
to a broad variety of problems including the non-linear
Schrödinger equation [14, 15, 16, 17, 18, 19], the non-
linear Dirac equation [20], the Maxwell equations [21],
the Klein – Gordon equation [22], the Korteweg – de
Vries (KdV) equation [23, 24, 25, 26], the Boussinesq
equation [27], as well as the Zakharov – Kuznetsov
(ZK) equation [28].

We introduce here a new finite-difference multi-symplectic
method based on the centered box scheme. The latter was
one of the first multi-symplectic schemes introduced [3]
and it has been proved that it is stable and possesses a
number of desirable properties [5]. However, it is not well
defined locally [29, 30], so it requires a global solver and
hence is not scalable. The idea we introduce in this paper
is to use a rotated lattice in the light-cone coordinates,
that restores locality of the algorithm.
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More precisely, the aim of this work is to introduce a multi-
symplectic integrator that is apt to efficiently obtain the
long-time dynamics of a field theory with high precision.
We organize the presentation in a practical way, first show-
ing how the method performs compared to other ones in
the market, and next discussing its theoretical justifica-
tion.

We also discuss, without any assumption on the dimension
of space-time, the problem of the degeneracy of the multi-
symplectic structure and we show how to solve it in the
particular case of the non-linear wave equation.

The outline of the paper is the following.

In the first part of this paper, section 1, we will compare
our multi-symplectic integrator in the light-cone coordi-
nates (msilcc) to two standard methods:

i. On the one hand, a very basic scheme based on the
Newton approximation of derivatives (this method
is widely used by a broad community and proves to
be preserving the multi-symplectic structure too, al-
though it is explicit and thus of lesser quality).

ii. On the other hand, the method proposed by Boy-
anovsky, Destri and de Vega [31] constructed such
that it exactly conserves the energy of the system (non-
local conservation).

The comparison will be performed using the so-called λφ4

field theory in dimension D = 1 + 1. We will, in partic-
ular, study the local conservation (or not) of the stress-
energy tensor. This example will allow us to emphasize
the strengths and weaknesses of our method.

The second part of this paper, section 2, will be devoted
to the definition of the necessary concepts, to exhibit the
multi-symplectic structure, to deduce from it the local
conservation laws (as well as the global ones) and, finally,
to present how to rewrite the equations to prepare the im-
plementation of the msilcc method. Throughout this sec-
tion, the concepts and results will be illustrated through
the example of the non-linear wave equation (whose λφ4

theory, used in section 1 of the paper, is a particular case).

Finally, in section 3 we will introduce our method in de-
tail. We will also demonstrate the conservation properties
as well as a review of the concrete solving methods of the
algebraic equations involved in the numerical approxima-
tion (at this point, the necessity to work in light-cone co-
ordinates will clearly appear). Again, the non-linear wave
equation will be our working example.

A short conclusions section will close the paper.

1 The multi-symplectic integrator in
light-cone coordinates (msilcc) ver-
sus the standard methods

This first section will be devoted to the comparison of
our multi-symplectic integrator in light-cone coordinates

(msilcc) to two standard methods. The first one is a
very basic scheme based on the Newton approximation
of derivatives, directly implemented in the Lagrangian for-
mulation of the pde. This method is the simplest and,
generally, the fastest to implement, so it is widely used and
it is an unavoidable starting point. The second method,
developed by Boyanovsky, Destri and de Vega [31],
is designed such that the total energy (a non-local quan-
tity) will be exactly conserved whatever the configuration
of the field or the size of the integration step.

These two methods will be presented in detail throughout
this section, while the msilcc method will be detailed in
the next sections. Now, first of all, let us introduce the
model which will support the comparison.

1.1 The λφ4 theory in 1 + 1 dimensions

1.1.1 The equation of motion

The comparison will be preformed on the so-called λφ4

model1 in dimension D = d+ 1 = 1 + 1. The unknown is
the real dynamic field, φ(x, t), governed by a second order,
non-linear, pde (the equation of motion):

�φ = ∂0
2φ− ∂1

2φ = −V ′(φ) = −φ
(
1 + φ2

)
, (1.1)

where x and t are space and time respectively, ∂0 = ∂/∂ct,
∂1 = ∂/∂x, c is a characteristic speed (e.g. the speed
of light) that we set to one, c = 1, and the derivative
of the potential, V , is given by V ′(φ) = ∂V/∂φ. The λ
appearing in the name of the model is the parameter of
the non-linear term and it has been set to one. The other
parameter in the potential, the one that accompanies the
quadratic term, has also been set to one in such a way that
the potential has only one absolute minimum at φ = 0.

There is no exact general solution to this equation. Never-
theless, some particular solutions can be obtained in terms
of Jacobi elliptic functions [32] and they can be useful as
a first check of the accuracy of a numerical integrator (see
section 1.5.3).

1.1.2 Boundary and initial conditions

As previously mentioned a finite-difference method can be
decomposed in terms of two ingredients: the lattice and
the discretization rules.

The notion of lattice is a bit ambiguous and needs to be
clarified. First, let us suppose it to be a regular tiling
(since there is, a priori, no reason to take a more complex
structure). Moreover, the spatial part of the lattice should
be finite. Otherwise the integrator would have to solve

1which belong in the class of the non-linear wave equation with
the potential

V (φ) =
r

2
φ2 +

λ

4
φ4 .
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an infinite number of algebraic equations (with the same
amount of unknowns), which is generally impossible.

Since the spatial part of the support is bounded, the solu-
tions need to be constrained on the boundaries. In the fol-
lowing we will impose periodic boundary conditions (pbc)
(even though this is not a requirement for our method)
with a period of length L:

φ(x+ L, t) = φ(x, t) ,
∂0φ(x+ L, t) = ∂0φ(x, t) .

(1.2)

We use an initial condition that complies with the pbc:

φ(x, 0) = A sin

(
2π x

L

)
,

∂0φ(x, 0) = 0 .
(1.3)

Therefore, the total energy is

Eexact =

∫ L

0
dx
[

1

2
(∂0φ(x, 0))2 +

1

2
(∂1φ(x, 0))2

+ V (φ(x, 0))

]
,

= A2

[
π2

L
+
L
(
8 + 3A2

)

32

]
.

The initial amplitude, A, allows us to control the pre-
dominance of the non-linearity. For a sufficiently small
amplitude, the non-linear part of the potential will be
dominated by its quadratic part and the initial con-
dition leads to a time-dependent solution that is close
to the second eigenmode of the linear wave equation:
A sin

(
2π x/L

)
cos
(
2π t/L

)
. Conversely, when A increases,

the non-linear term becomes predominant and the behav-
ior of the solution turns out to be much more complex.

Figure 1 represents the short time behavior of the solution
obtained using the msilcc method for different values of
A. As expected, for A = 0.1 the solution remains very
close to the second eigenmode of the linear wave equa-
tion. For A = 3, the solution evolves in two ways: its
characteristic time-scale decreases, and the amplitude of
the oscillations becomes a little bit bigger than A (see in
fig. 1, A = 3, the small circles at the center of the antin-
odes where the value of the field exceeds A). The impact
of the non-linearity becomes significant. Then the larger
is A, the shorter the characteristic time. The non-linearity
is also destructing the structure of the eigenmode: when
A increases the solution is more and more distorted.

The effect of A is twofold, it will allow us to explore the
influence of the non-linearity and the effect of decreasing
the quality of the sampling when the typical variation scale
of the field becomes closer and closer to the lattice spacing.

1.1.3 The stress-energy tensor, its conservation
and the charges

As previously mentioned, the most fundamental quantity
that the theory shall preserve is the stress-energy tensor

A=0.1 A=3

A=10 A=20

A=30 A=50

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x/L

t/L A=100

−1

−0.5

0

0.5

1

φ(x, t)/A

Figure 1: Space-time plots of the solutions of eq. (1.1)
with initial and boundary conditions given by eq. (1.3)
and eq. (1.2) respectively. Different panels show data for
different values of A, obtained with the msilcc method
and L/

√
2 δ = 1024. Lines are iso-levels of the field while

color is constant in between. Figure 2 represents a cross-
section of these space-time plots for the smallest values of
A.

(see section 2.2.5 for its definition, the one of the charges as
well as the proof of their conservation). For the λφ4 theory
in 1 + 1 dimensions the stress-energy tensor is symmetric
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0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t/L

φ
(
x = L/4, t

)
/A

2nd eigenmode

A = 0.1

= 3

= 10

= 20

Figure 2: Cross-sections of the space-time plots in fig. 1
along the axis x = L/4. Red line is the cross-section of the
second eigenmode of the linear theory: A cos

(
2π t/L

)
.

and its four components read

T 00 =
1

2
(∂0φ)2 +

1

2
(∂1φ)2 +

1

2
φ2 +

1

4
φ4 ,

T 01 = T 10 = − ∂0φ∂1φ ,

T 11 =
1

2
(∂0φ)2 +

1

2
(∂1φ)2 − 1

2
φ2 − 1

4
φ4 .

Its local conservation is given by

∂0T 00 + ∂1T 10 = 0 , (1.4a)

∂0T 01 + ∂1T 11 = 0 , (1.4b)

or, in other words,

∂0φ
[
�φ+ φ

(
1 + φ2

)]
= 0 ,

∂1φ
[
�φ+ φ

(
1 + φ2

)]
= 0 ,

which are satisfied as long as the equation of motion (1.1)
holds.

Conversely, the numerical equivalents of these local con-
servation laws (eqs. (1.4a) and (1.4b)) will not be exactly
satisfied. The violation comes from the fact that, in the
discrete version of these equations, the term in brackets is
not the discrete analogue of the equation of motion. This
is precisely due to the fact that the discretization rules not
always fulfil all the rules of differential calculus (Leibniz,
. . . ).

Since these two quantities are non-vanishing they will al-
low us to control the quality of the numerical solution: a
good numerical approximation should preserve, as closely
as possible, the local conservation of the stress-energy ten-
sor. These residues will be our first quantities of interest.

Let us now define the charges as

Qν =

∫ L

0
T 0νdx ,

where ν is either 0 or 1. These are global quantities. In-
tegrating over space, the local conservation of the stress-
energy tensor leads to the conservation of the charges,

∂0Qν = 0 .

Again, these quantities are not exactly conserved numeri-
cally and the resulting residues will be our second quantity
of interest.

1.1.4 The testing conditions

In the previous sub-section we highlighted the quantities
allowing us to examine the quality of a numerical approx-
imation (of a Hamiltonian pde). Let us now introduce in
which context they will be observed.

For each numerical method we will examine, through two
situations, the error committed on the conservation of the
stress-energy tensor (local) as well as the error committed
on the evaluation of the charges (global). Firstly, we will
have a look at how these errors behave as functions of
A. We recall that A has a twofold effect: it affects the
weight of the non-linearity, but also the quality of the
sampling (since when A increases, the characteristic time-
scale decreases while the time-step remains fixed). So, we
expect the errors to be lower at small A than at large A.
Secondly, we will fix A = 10 and observe how the errors
behave as a function of time. We will explore both short
and long time behavior.

Let us now define the symbolic operator ∆. When applied
on a continuous equation, its effect is to extract the residue
from the discrete analogue of the equation, and divide this
residue by a characteristic quantity such that the result is
not dimensional and the error can thus be compared to 1.

Before entering into the evaluation of the quality of the
numerical methods let us present their construction in de-
tail.

1.2 The Newton method

The Newton method is probably the simplest finite-
difference method one can develop. Its ease of use and
its efficiency make it a classic. However, we will see that
it can be inaccurate and even unstable. For now, let us
describe its construction.

1.2.1 Sampling the space-time manifold

The support of the theory,M, is a flat 1 + 1 dimensional
Minkowski space-time manifold. Taking into account the
boundary conditions and the fact that the method will be
used as an integrator,M becomes a flat half cylinder:

M = T 1 × R+ ,

5



x = j δ

t = n δ

δ

δ

Figure 3: Lattice description of the space-time manifold
in the Newton method. The lattice spacing in space and
time are chosen to be equal to preserve covariance.

where T 1 = S1 = R/LZ is the flat one-dimensional torus
of length L, and where, without loss of generality, the
initial condition is supposed to be given at t = 0.

The lattice, M , will then be taken as a regular tiling of
M with, as generator, a square of width δ aligned with
the space and time coordinates. Therefore, the lattice is
defined by

M = δ Z/N Z× δN = δ ZN × δN ,

where N δ = L. The geometry ofM is represented in fig. 3
and is nothing else than a square lattice.

Now, the field, φ : M → R, can be sampled through the
lattice as ϕ : M → R such that

ϕjn = φ(x = j δ, t = n δ) ,

where n ∈ N and j ∈ J0, NJ.

By this sampling process, at a given time, we have
switched from the infinite number of degrees of freedom
of the dynamic field to a representation with only a finite
number (N) of degrees of freedom that can be used in a
computer. This achieves the first step of the construction
of the finite-difference approximation.

1.2.2 The Newton scheme

In order to complete the construction of the finite-
difference scheme, the second step is to provide the rules
that will indicate how to combine the samples of the field
(i.e. the elements of ϕ) in order to obtain the physical
quantities (and especially the equation of motion).

The derivatives of the field will be approximated using the
Newton’s rule which reads

∂0φ(x = j δ, t = n δ) ≈ D±0 ϕ j
n ≡ ±

ϕjn±1 − ϕjn
δ

,

∂1φ(x = j δ, t = n δ) ≈ D±1 ϕ j
n ≡ ±

ϕj±1
n − ϕjn

δ
,

where the + (respectively −) stands for the forward (re-
spectively backward) approximation. These two defini-
tions (+ or −) are inequivalent and they express the fact
that a finite difference can either represent the derivative
at the end or at the beginning of the interval. This is
exactly why Newton’s method is so easy to implement
but is also the reason for its inaccuracy (a finite difference
should only represent the derivative at the center of the
interval). However, the centered Newton’s rule for the
first order derivative (that combines D+ and D− to in-
volve the points # + 1 and #−1) will not be used since it
leads to an inconsistent approximation of the second order
derivative2.

The equation of motion can be approximated in two ways:
using forward then backward rules or vice versa, i.e.
∂2 ≈ D−D+ or ∂2 ≈ D+D− (either forward – forward
or backward – backward leads to an inconsistent approx-
imation of the second derivatives3). In both cases the
discrete version of the equation of motion at time t = n δ
and position x = j δ reads

ϕjn+1 − 2ϕjn + ϕjn−1

δ2
− ϕj+1

n − 2ϕjn + ϕj−1
n

δ2
=

−ϕjn
(

1 + ϕjn
2
)
.

This algebraic equation is explicit in ϕjn+1. The evolution
of a given state can then be efficiently obtained using

ϕjn+1 = ϕjn−1 + ϕj−1
n + ϕj+1

n − δ2 ϕjn

(
1 + ϕjn

2
)
.

The nodes of the lattice that appear in this equation are
highlighted in fig. 3: the vertex in the left hand side of the
equation is represented as while the vertices involved in
the right hand side of the equation are represented as .

This concludes the definition of the Newton method. Let
us now use these rules to obtain the discrete formulation
of the stress-energy tensor.

2To show this fact, let us define the centered Newton’s rule as

DCϕn =
D+ϕn +D−ϕn

2
=
ϕn+1 − ϕn−1

2 δ
.

The second order derivative, that reads

DCDCϕn =
ϕn+2 − 2ϕn + ϕn−2

4 δ2
,

thus leads to two independent sub-lattices (the odd one and the even
one).

3since
D+D+ϕn =

ϕn+2 − 2ϕn+1 + ϕn
δ2

,

involves two unknowns (ϕn+2 and ϕn+1) and since

D−D−ϕn =
ϕn − 2ϕn−1 + ϕn−2

δ2
,

requires to have solved the neighbouring equation in space to get ϕn
(which is incompatible with the periodic boundary conditions).

6



1.2.3 The energy and the stress-energy tensor

As the derivatives can be approximated in two ways (D+

or D−), the stress-energy tensor can be defined in two
ways too:

T 00
± =

1

2
(D±0 ϕ)2 +

1

2
(D±1 ϕ)2 +

1

2
ϕ2 +

1

4
ϕ4 ,

T 01
± = T 10

± = −D±0 ϕD±1 ϕ ,

T 11
± =

1

2
(D±0 ϕ)2 +

1

2
(D±1 ϕ)2 − 1

2
ϕ2 − 1

4
ϕ4 ,

where the space and time labels were omitted. These two
definitions are inequivalent but both of them are valid and
lead to a residue (again omitting the n and j indexes):

D∓0 T
00
± +D∓1 T

10
± = ε0± ,

D∓0 T
01
± +D∓1 T

11
± = ε1± .

In practice the two definitions of these residues behave in
the same way and the results will only present ε0 = ε0+
and ε1 = ε1+ .

Obviously, the same reasoning can be applied to the con-
servation of the charges but we do not detail it here.

1.2.4 Energy conservation

The general treatment of the energy conservation will be
exposed later, but let us briefly show how the total energy
behaves. At time t = n δ (again, index n will be omitted)
it can be defined in two ways

E+ = Q0
+ ,

E− = Q0
− ,

where Q0
± is the charge defined as

Q0
± = δ

N−1∑

j=0

T 00
± .

One can also envisage to combine these two definitions as

Eave =
E+ + E−

2
.

These three definitions are represented as a function of
time for A = 10 in fig. 4.

We observe that both E+ and E− vary in time with an
amplitude of the order of 5% of their time-averaged value.
The amplitude of the variations for Eave is reduced to
∼ 1% due to a compensation of the errors in E+ and E− .
Nevertheless, Eave does not correspond to any discretiza-
tion rule: it is the average of the energies obtained using
different rules, which differs from the energy that would be
obtained from the combination of the forward and back-
ward rules (that, as already mentioned, leads to an incor-
rect approximation of the second order derivatives).

0 0.5 1 1.5 2 2.5 3 3.5 4

0.9

1

1.1

1.2

t/L

E␣

Eexact

Eave/Eexact

E+/Eexact

E−/Eexact

Figure 4: Time evolution of the total energy for A = 10
with the Newton integrator and L/δ = 128.

We also notice that there is no apparent change in the
amplitude of the deviations as time elapses up to a time-
scale at which the energies rapidly diverge. The divergence
of the energies is directly due to the divergence of the
solution which has been destabilised by the integration
method.

We conclude that, although Newton’s method is
straightforward to implement, it is inaccurate (the total
energy conservation up to 1% is not acceptable in most
applications) and can even become unstable. Therefore,
Newton’s method will not be a good choice to integrate
a field theory over a long time. These observations will be
confirmed by the study of the local conservation laws pre-
sented in the following sections. Before presenting the lo-
cal analysis, let us first introduce another finite-difference
method.

1.3 The Boyanovsky – Destri – de Vega
(BDdV) method

The Boyanovsky – Destri – de Vega (BDdV)
method [31] that we present here has been developed such
that it exactly preserves the total energy of the system,
making it a good candidate for long time integrations.
However, as previously said, the conservation of the total
energy is not the most fundamental principle for a field
theory that should foremost locally preserve the stress-
energy tensor.

1.3.1 The lattice

In the BDdV method the space-time manifold is rotated
by π/4. More precisely, the space-time manifold, M, is
unchanged, and the lattice, M , is still taken as a regular
tilling of M. The generator is still a square of width δ,
but aligned with the light-cone coordinates. Therefore,
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x =
(
j + 1+σn

4

)√
2 δ

t = n δ/
√
2

δ δ

j

n

Figure 5: Lattice description of the space-time manifold
used in the BDdV method.

the lattice is defined by

M =

{(√
2 δ

[
j +

1 + σn
4

]
,
n δ√

2

)∣∣∣∣n ∈ N , j ∈ ZN
}

,

where
σn = 2(n mod 2)− 1 ≡ ±1 .

M is represented in fig. 5 and is nothing else than a square
lattice in the light-cone coordinate system which correctly
respects the boundary conditions.

Finally, in the same way as for the Newton method, the
field, φ : M → R, can be sampled through the lattice as
ϕ : M → R such that

ϕjn = φ

(
x =
√

2 δ

[
j +

1 + σn
4

]
, t =

n δ√
2

)
,

where n ∈ N and j ∈ J0, NJ.

1.3.2 Exact energy preserving approximation

We now provide the rules that allow one to express the dis-
crete analogues of the physical quantities, respecting the
directions imposed by the lattice. Under this constraint,
the derivatives are written along the light-cone coordinates
as

(∂0 − ∂1)φ√
2

(
x =
√

2 δ

[
j +

1 + 3σn
4

]
, t =

n δ√
2

)

≈ Ď±0 ϕ
j+σn

2
n = ±ϕ

j
n±1 − ϕ

j+σn±1
2

n

δ
,

(∂0 + ∂1)φ√
2

(· · ·) ≈ Ď±1 ϕ
j+σn

2
n = ±ϕ

j
n±1 − ϕ

j+σn∓1
2

n

δ
,

where the · · · indicate that the field is evaluated at the
same point on the space-time manifold as in the first equa-
tion.

The method now differs from Newton’s since the dis-
cretization rules are not applied to the equation of motion

but to the energy and the constraints imposed by its con-
servation are used to derive a modified discrete evolution
equation. In the continuum limit this equation would be
identical to the equation of motion, but in the discrete for-
mulation it differs from the one we would have obtained
had we directly applied the rules to the equation of mo-
tion. As a matter of fact, the idea introduced here is very
deep but we will have the opportunity to come back to
this later.

The local energy density (the 00 component of the stress-
energy tensor) will then be approximated in two ways (fol-
lowing the same principle as for the two possible Newton
approximations of the derivatives) and is given by

T 00
±

j+σn
2

n =
1

2

(
Ď±0 ϕ

j+σn
2

n

)2
+

1

2

(
Ď±1 ϕ

j+σn
2

n

)2
− 1

4

+
1

8

(
1 + ϕjn±1

2
)(

2 + ϕjn
2

+ ϕj+σnn
2
)
,

(1.5)

where the n and j indices can no longer be omitted since
they are not obvious. The difference between these two
possible definitions reads

T 00
+

j+σn
2

n − T 00
−

j+σn
2

n =
ϕjn+1 − ϕjn−1

δ2
R
j+σn

2
n ,

where

R
j+σn

2
n =

(
ϕjn+1 + ϕjn−1

)[
1 +

δ2

8

(
2 + ϕjn

2
+ ϕj+σnn

2
)]

− ϕjn − ϕj+σnn .

On the other hand, the total energy is given by

Q0
±n = δ

N−1∑

j=0

T 00
±

j+σn
2

n .

It can be shown (using periodic boundary conditions) that
these two definitions are equivalent,

Q0
+n = Q0

−n+1 = En ,

defining the total energy at time t = n δ/
√

2 with no am-
biguity. Now, this energy is exactly conserved if

Q0
+n = En = En−1 = Q0

−n ,

that will be satisfied as soon as

T 00
+

j+σn
2

n = T 00
−

j+σn
2

n ,

that is to say, if
R
j+σn

2
n = 0 .

Since R involves the samples of the field at different times
this equation is a sort of equation of motion. Moreover,
since it is explicit in ϕjn+1, the evolution of a given state
can be efficiently followed using

ϕjn+1 = −ϕjn−1 +
ϕjn + ϕj+σnn

1 +
δ2

8

(
2 + ϕjn

2
+ ϕj+σnn

2
) .

The nodes of the lattice that are involved in this equation
are highlighted in fig. 5: the vertex in the left hand side of
the equation is represented as and the ones in the right
hand side are represented as .
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1.3.3 The stress-energy tensor

The 00 component of the stress-energy tensor was defined
in eq. (1.5). The two remaining independent components
are

T 01
±

j+σn
2

n = T 10
±
·
· =

1

2

(
Ď±0 ϕ

j+σn
2

n

)2
− 1

2

(
Ď±1 ϕ

j+σn
2

n

)2
,

T 11
±

j+σn
2

n =
1

2

(
Ď±0 ϕ

j+σn
2

n

)2
+

1

2

(
Ď±1 ϕ

j+σn
2

n

)2
+

1

4

− 1

8

(
1 + ϕjn±1

2
)(

2 + ϕjn
2

+ ϕj+σnn
2
)
.

These two definitions (+ and −) are inequivalent (they
only match once integrated over space) but both of them
are valid and each one leads to two residues.

Ď∓0
(
T 00
± − T 10

±
) j
n

+ Ď∓1
(
T 00
± + T 10

±
) j
n

=
√

2 ε0±
j

n ,

Ď∓0
(
T 01
± − T 11

±
) j
n

+ Ď∓1
(
T 01
± + T 11

±
) j
n

=
√

2 ε1±
j

n ,

where

Ď±0 T
µν
∓

j

n
= ±

Tµν∓
j−σn

2
n±1

− Tµν∓ j± 1
2

n

δ
,

Ď±1 T
µν
∓

j

n
= ±

Tµν∓
j−σn

2
n±1

− Tµν∓ j∓ 1
2

n

δ
,

with both µ and ν being either 0 or 1. In practice, the two
definitions of the residues behave in the same way and we
will only present ε0 = ε0+ and ε1 = ε1+ .

The same reasoning can be applied to the conservation of
the charges and will not be detailed.

1.3.4 Energy conservation

Although the energy is defined without ambiguity (since
the two definitions of the stress-energy tensor are equiva-
lent once integrated over space), we still define the total
energy at time t = n δ/

√
2 in two ways

E±n = Q0
±n ,

and we follow their time evolution independently. The
numerical outcome is shown in fig. 6.

We observe, first of all, that the two definitions of the
energy behave exactly in the same way, confirming that
there is no ambiguity. Then we stress that the value of
the energy differs from the exact one (the difference is
of order 2%��). This is not surprising and is due to the
discretization process (what can be astonishing is that the
difference is so small). We also observe that the total
energy is exactly conserved, as expected.

At this point, one could reasonably conclude that the
BDdV method is a very good choice for the short and
long time integration of conservative field theories. How-
ever, as we shall see in section 1.5, this conclusion would
be premature. Unfortunately, the stress-energy tensor is
not conserved locally as it is the total energy.

0 0.2 0.4 0.6 0.8 1
0.9996

0.9998

1

E␣

Eexact

20 40 60 80100

t/L

E+/Eexact

E−/Eexact

Figure 6: Time evolution of the total energy for A = 10
using the BDdV method with L/

√
2 δ = 128. Beyond t/L =

1 the horizontal axis is shown in a different linear scale and
data at 255 consecutive instants are skipped between two
successive points.

1.4 The msilcc method: a short review of
expected properties

The detailed description of the multi-symplectic integrator
in light-cone coordinates (msilcc) will be given in the two
last sections of the paper.

We just want to stress here that the lattice is the same as
the one used in the BDdV method (see fig. 5). In brief,
the difference lies in the rules, which are closer to the ones
employed in Newton’s method.

The msilcc method is designed such that the discretiza-
tion process exactly preserves the multi-symplectic struc-
ture of the phase space. It is also implemented in such
a way to respect, as much as possible, the rules of dif-
ferential calculus. The direct consequence is that the lo-
cal conservation of the stress-energy tensor is remarkably
good even on long time-scales. However, the method is
not engineered to conserve the global charges and we do
not expect to have the same kind of “magic” compensation
of local errors that ensures the BDdV method.

Let us finish this very brief presentation of the expected
properties of the msilcc method by showing how the total
energy (which is here uniquely defined) behaves in time in
fig. 7. We first observe that there seem to be two interlaced
curves. Actually, this is not the case, there is only one en-
ergy that jumps from one carrier curve to the other. This
“double” structure is due to the lattice geometry in combi-
nation with the discretization rules. More precisely, when
the time index is odd there is a shift of the space index and
hence the field is not sampled at the same places, leading
to a different energy. Therefore, there are “two curves”,
one for odd times and the other one for even ones.

Having clarified the effect of the time-discretization we
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Figure 7: Time evolution of the total energy for A = 10
using the msilcc method with L/

√
2 δ = 128. The hori-

zontal axis is the same as in fig. 6. The second part of
the graph also shows a histogram of the occurrences of
the energy during the integration process (from t/L = 0
to t/L = 100) with 128 bins uniformly distributed on the
interval [0.999, 1.001].

now describe the actual time variation of the total energy.
Firstly, over short time-scales, the deviations are around
1%� of its value. Secondly, there is no long term trend to
increase this deviation. Accordingly, these two remarks al-
low us to promote the msilcc method as a good candidate
for the long time integration of conservative field theories.
In the following we analyse the local conservation laws.

1.5 Comparison

In this Section we compare the performance of the three
numerical integrators discussed so far in a complemen-
tary way following what we have already discussed in sec-
tion 1.1.4.

1.5.1 Influence of the non-linearity

The first situation will explore the influence of the non-
linearities (in coordination with the influence of the qual-
ity of the lattice spacing). Figures 8 and 9 represent the
error committed on the conservation laws by the different
methods as a function of A (the amplitude of the initial
condition). For this test, the system is integrated up to a
time t/L = 1 (i.e. the solution is obtained over a square),
and the error, denoted ∆(y = 0), is taken as the largest
deviation from the identity y = 0 ever encountered (in ab-
solute value and divided by a characteristic quantity, as
introduced in section 1.1.4).

Let us start by discussing fig. 8. We first observe that all
methods improve their performance for smaller A.

We emphasize that there are some missing data-points for
the Newton method (behind A ∼ 20). This is due to the
fact that the approximation becomes unstable before the
final integration time for too strong non-linearity. Beyond
that point, the solution diverges and the errors as well.
Behind this feature there is a first important remark: the
largest the effect of the non-linearity, and the worse the
quality of the sampling, the quickest the Newton approx-
imation becomes unstable. This fact is worrying since the
parameter region we want to explore is precisely the one in
which the non-linearities are relevant. Concomitantly, we
want to reach long times and it is not desirable to have to
oversample the field in time with a too small time spacing.

To pursue the remarks on the Newton method, we stress
that it behaves quite well while it remains stable (local
errors are between 10−2 and 10−1). However, it is at
minimum 3 orders of magnitude worse than the msilcc
method. The difference can be attributed to the fact the
Newton’s method is explicit, while the msilcc one is
implicit (explicit schemes are known to be worse than im-
plicit ones).

Concerning the BDdV method, the violation of the lo-
cal conservation laws is very important with an error that
ranges between 10−1 and 10+1. Quite surprisingly, the
exact conservation of the energy is only due to the com-
pensation of these large errors once integrated over space.

Finally, the msilcc method produces errors that range
from 10−9 to 10−2. They disappear very abruptly when
the non-linearity becomes negligible. This is actually due
to the fact that the method is exact for a linear problem
(as we will show in section 3.4.1). So, the msilcc method
appears, for now, as a very good choice to integrate con-
servative field theories over long times.

10−1 100 101 102

10−8

10−6

10−4

10−2

100

A

∆(∂µT
µν = 0)

msilcc BDdV Newton

maxt,x ∆
(
∂µT

µ1 = 0
)

maxt,x ∆
(
∂µT

µ0 = 0
)

Figure 8: Error committed by the different methods on
the local conservation of the stress-energy tensor as a func-
tion of the initial amplitude (discretization is still on 128
points).

Let us now look at how the errors on the charges behave
and, in particular, the energy one (see fig. 9). First of
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all, we remark that the errors committed on the conserva-
tion of the energy are in agreement with what we observed
earlier when we showed their evolution in time. The fig-
ure shows that the BDdV prescription is better (actually
almost exact since 10−14 is of the order of the machine
precision) than the msilcc method which is itself better
than the Newton method. The conservation of the sec-
ond charge is almost exact for both the BDdV and the
msilcc schemes and is of the order of the conservation of
the energy for the Newton method.

In conclusion, Newton’s method presents a not so bad
local conservation of the stress-energy tensor. However,
by accumulation of these errors, the charges are not con-
served and the violation of their conservation, though not
too large, is not sufficiently good for high precision mea-
surements. Concerning the BDdV method, it presents
very poor local conservation properties that, quite sur-
prisingly, lead to a very good conservation of the charges
(due to a deceptive cancelation of the errors). Finally, the
msilcc method behaves more like Newton’s but with
much better local conservation features that yield an ac-
ceptable conservation of the charges.
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10−20
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10−5

100
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∆(∂0Q
ν = 0)

msilcc BDdV Newton

maxt,x ∆
(
∂0Q

1 = 0
)

maxt,x ∆
(
∂0Q

0 = 0
)

Figure 9: Error committed by the different methods on
the conservation of the charges as a function of the initial
amplitude (discretization is still on 128 points).

1.5.2 Long time behavior

We now explore the long time properties. Figures 10
and 11 represent the error committed on the conservation
laws as a function of time. Note that for each method
the integration is performed using A = 10 and two errors
are displayed: the first one is the largest deviation ever
encountered (in absolute value), and the second one is the
largest deviation at time t. The comments made on figs. 8
and 9 still hold and we will only describe the time behavior
here.

Firstly, we observe that the Newton method rapidly be-
comes unstable (after t/L = 4) and is no longer able to
describe the evolution of the field.

Secondly, we remark that the instantaneous error evolves
in time (over several orders of magnitude). So, it is prefer-
able to consider, instead of the instantaneous error, the
worst one ever encountered from the beginning.

Finally, the most interesting comment that applies to the
BDdV and the msilcc method as well is that the worse
errors occur during the short time behavior: after a rapid
evolution (of the order of the characteristic time-scale of
the system, as we observe by comparing figs. 8 and 9 with
fig. 1 for A = 10), the error stabilizes to a value which
can be hopefully considered as definitive (of the order of
100 for the BDdV method and 10−5 for the msilcc one).
This is particularly true for the local conservation of the
stress-energy tensor but less clear for the conservation of
the charges even though they seem to reach a constant
too.

20 40 60 80100

t/L

0 0.2 0.4 0.6 0.8 1
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∆
(
∂µT

µ1 = 0
)

msilcc BDdV Newton

maxx ∆(␣)

max≤t,x ∆(␣)

Figure 10: Long time behavior of the error committed
by the different methods on the local conservation of the
stress-energy tensor for A = 10 (discretization is still
on 128 points). The upper pair of curves are for the
BDdV method (triangles), the intermediate ones for the
Newton method (diamonds), and the lower ones for the
msilcc method (circles). Open and closed symbols show
different ways of measuring the error as defined in the text.
Beyond t/L = 1 the horizontal axis is shown in a differ-
ent linear scale and the curves with open symbols are not
plotted since they vary too rapidly with respect to this
new time-scale (these represent instantaneous errors that
in any case are not relevant on this time-scale).
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Figure 11: Long time behavior of the error committed by
the different methods on the conservation of the charges
for A = 10 (discretization is still on 128 points). Same
symbol convention and time axis as in fig. 10.

1.5.3 Preliminary conclusion

A first element of conclusion is that we need to be ex-
tremely wary of methods that possess remarkable prop-
erties on some observables but not necessarily the most
fundamental objects of the theory.

Within the three methods here presented, the msilcc is
the only one that one could trust to integrate a conser-
vative field theory over a long time interval. However, its
implementation has a cost: the discrete equations of mo-
tion are implicit and more expensive to solve (in terms of
computational time) than the other two methods. Fortu-
nately, the scheme remains well-defined locally (i.e. there
is no need to solve the set of algebraic equations glob-
ally) and it can be easily scaled to larger volumes and/or
extended to theories defined on higher dimensions.

Up to now, we have eluded the concrete results in term of
the (numerical) solution of the pde and one can imagine
that all these elements of conservation only have a neg-
ligible influence. This is not true. As an example, over
an integration time as short as t/L = 1, we observe differ-
ences of the order of 1% between the solutions obtained
with the different methods (under the same conditions as

described in section 1.1.2 and for A = 10). In some situ-
ations the differences can become dramatically larger (up
to 20%) as we show on fig. 12 that represents the field after
an integration time t/L = 1, still with periodic boundary
conditions, but with an initial state that corresponds to a
particular solution of eq. (1.1) in term of a Jacobi elliptic
function [32].

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

x/L

φ(x, t = L)

Exact
msilcc

BDdV

Newton

Figure 12: The red line is the exact solution of eq. (1.1)
in terms of Jacobi elliptic functions after a time t/L = 1
(a particular solution for different initial condition from
the ones used so far). The datapoints represent the field
evolved by the different numerical methods (triangles for
Newton, diamonds for BDdV and circles for msilcc).
On this scale we see no difference between the exact and
the numerical solutions obtained with the Newton and
msilcc methods.

1.5.4 Symmetry breaking potential

So far we have not considered the influence of r (the pa-
rameter that accompanies the quadratic term in the po-
tential) and we want to show that the msilcc method
behaves just as well for a potential in double well. Fig-
ure 13 shows the error committed on the conservations of
the charges and the stress-energy tensor as a function of
r. First of all, we observe that the msilcc method has
the same conservation properties whatever the shape of
the potential. Secondly, we remark that the errors do not
depend on r (except in the very large r limit). This is
a direct consequence of a feature that will be proved in
section 3.4.1: the deviations from the conservation of the
stress-energy tensor only arise with the non-linear part of
the Hamiltonian. Actually we no longer observe this fea-
ture in the large r limit since for A = 10 and for such
values of r the field can only “explore” the quadratic part
of the potential. In other words, when |r| increases the
non-linear part of the potential disappears and the errors
are modified.

Now, the rest of this paper will be devoted to the con-
struction of the msilcc method in a more general setup
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Figure 13: Error committed by the msilcc method on the
conservations of the charges and stress-energy tensor as a
function of the parameter that accompanies the quadratic
term in the potential: r. The initial condition follows
eq. (1.3) with A = 10 and the errors are accumulated
over an integration time of t/L = 1 while we still have
L/
√

2 δ = 128. The vertical axis is cut between 10−5 and
10−15 while the horizontal axis is in logarithmic scale from
−100 to −0.1 and from 0.1 to 100 (scale is linear between
−0.1 and 0.1). Positive values of r mean that the potential
has only one minimum at φ = 0 while negative values of r
mean that the potential is a double well with two minimum
at φ = ±√−r (so far r was setted to 1).

which will be illustrated through the example of the non-
linear wave equation. In the next section we will introduce
a number of necessary concepts and we will discuss how
the method is concretely applied, while in the last section
we will finally present its construction.

2 Applicability and preliminaries

This section introduces the concept of symplecticity (for
mechanical systems) and its generalization to multi-
symplecticity (for field theories). We then introduce the
idea of Hamiltonian pdes through the De Donder –
Weyl formalism. Afterwards, we show how to rewrite the
equation of motion (when possible) in a way that allows
one to use the msilcc method. Finally, we will exhibit
(both in a general setup and with an example) the multi-
symplectic structure, prove its conservation, and discuss
the definition and properties of the stress-energy tensor.

Most of the points presented in this section are just re-
minders except for two of them. Firstly, the link be-
tween the De Donder – Weyl formulation and multi-
symplectic geometry is not so common (usually, the De
Donder – Weyl formulation is treated through the for-
malism of the poly-symplectic geometry). Secondly, as
far as we know, the discussion of the degeneracy of the
multi-symplectic structure, and especially its resolution,
is completely new.

2.1 From symplectic to multi-symplectic
structure

2.1.1 Emergence of the symplectic structure

Let us consider a mechanical problem, constituted by N
particles, in its Hamiltonian formulation (for an exhaus-
tive presentation of the Hamiltonian formalism see, for
example, [33]). The ith body is described by its posi-
tion and momenta, or Darboux coordinates,

(
qi, pi

)
, and

the dynamics are fully characterized by the Hamiltonian,
H
({
qi, pi

})
. The phase space, Ω, is a differential mani-

fold locally parametrized by the union of the Darboux
coordinates.

The symplectic character of the phase space of a mechani-
cal system is rather well known, so we will only remind its
central aspects [33]. The symplectic manifolds are differ-
entiable manifolds equipped with a closed non-degenerate
2-form. We now recall how this 2-form is constructed.

Let us describe Ω using the generalized coordinates {ζa} ≡{
qi, pi

}
with a ∈ J1, 2NK (the union of the positions and

momenta). We define
{
∂a = ∂/∂ζa

}
and {da = dζa}, re-

spectively, as a basis for TΩ, the tangent space of Ω, and
T ∗Ω, its dual (see [34] for the necessary concepts of geom-
etry).

Now, we provide to Ω a 2-form

ω = ωab da ∧ db ,

where we have used the Einstein summation convention,
as we will do (unless explicitly stated) in the rest of this
paper. In particular, for a mechanical system and in Dar-
boux coordinates this 2-form reads

ω = dqi ∧ dpi .

It is obviously closed (dω = 0), and it can be shown to be
non-degenerate (detω 6= 0, the proof will be given later).
Therefore, (Ω,ω) defines a symplectic manifold where ω
is the symplectic structure.

The conservation of the symplectic structure under a
Hamiltonian flow leads to Liouville’s theorem (since the
volume form on Ω is obtained from ω).

The Poisson bracket is directly related to ω since for any
pair of differentiable functions of the phase space variables,
∗({ζa}) and �({ζa}), we have

{∗, �} = ω(χ∗,χ�) = ω[ab] ∂a ∗ ∂b � , (2.1)

where χ∗ is the vector field associated to ∗ by ω defined
as

ω(χ∗, ·) = d∗ [·] , (2.2)

and where [ab] denotes the antisymmetric combination of
the indices

ω[ab] =
ωab − ωba

2
. (2.3)
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Actually, eqs. (2.1) and (2.2) mean that the Poisson
bracket (parametrized by ωab) is the inverse of the sym-
plectic 2-form (parametrized by ωab). In particular, for
a mechanical system and in Darboux coordinates the
Poisson bracket reads

{∗, �} =
∂ ∗
∂pi

∂ �
∂qi
− ∂ ∗
∂qi

∂ �
∂pi

.

Symplecticity is an essential structure of the phase space of
mechanical systems and numerical methods that preserve
it are very popular [1]. For field theories, the symplectic
structure needs to be generalized if we want to develop the
same class of methods for pdes.

2.1.2 Generalization to the multi-symplectic
structure

A multi-symplectic manifold, (Ω, {ωµ}), is a differential
manifold equipped with several independent symplectic
structures4 (in our case, one per space-time direction). As
we shall see later, this structure is natural for a field the-
ory subject to a conservation law that fits the invariance
under the Hamiltonian flow.

The next section will illustrate how the multi-symplectic
aspect of the phase space of a field theory emerges. We
will first recall how to construct a Hamiltonian formulation
of a field theory. Then, we will identify the phase space,
highlight the underlying multi-symplectic structure, and
establish its conservation. Finally, we will discuss the
properties of the stress-energy tensor.

2.2 The De Donder – Weyl (DW) Hamil-
tonian formulation of field theories

2.2.1 From Lagrangian to DW Hamiltonian for-
mulation

Let us start with a space-time Lorentzian manifold,M, of
dimension D = 1 + d. We assumeM to be non dynamic
(the metric is not subject to an equation of motion). With-
out lose of generality,M will be supposed to be flat with
metric η ≡ diag (1,−1, · · · ,−1). We define a local coor-
dinate system {xµ}, with

{
∂µ = ∂/∂xµ

}
a basis of TM,

and µ ∈ J0, dK.

Next, we consider a field theory on M described by the
action S

[{
φi
}]

, where
{
φi
}
with i ∈ J1,N K is a collection

4Let us complete this definition with some vocabulary remarks.
One can also encounter in the literature the concept of poly-
symplectic (or n-plectic) manifold which is actually different: a
n-plectic manifold is a differential manifold with a closed, non-
degenerate, (n+ 1)-form (poly-symplectic is for any n > 1 while
symplectic stands for 1-plectic). So, a multi-symplectic manifold is
poly-symplectic too since we can define $ =

∧
µ ω

µ, but the reverse
is not necessarily true. Finally, we want to stress that the meaning of
poly-symplectic and multi-symplectic can be exchanged depending
on authors.

of dynamic fields. This action originates in a Lagrangian
density L (which is assumed to depend only on the field
and its first derivatives) and reads

S =

∫
dDx L

({
φi, ∂µφ

i
})

,

where dDx is the measure overM and µ ∈ J0, dK. The sta-
tionarity of S leads to the Euler – Lagrange equations
(i.e. the equations of motion) for the fields

δS
δφi

= 0 =
∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

.

This is the Lagrangian formulation of a field theory.

The idea of the Hamiltonian formulation of classical me-
chanics is to substitute the generalized speed (q̇i) by a
conjugate momentum (pi). Obviously the same reason-
ing can be applied to a field theory but, unfortunately, it
breaks the Lorentz covariance of the theory. The idea of
De Donder and Weyl is to reestablish the covariance
by introducing one conjugate momentum per direction of
space-time (such that they are treated on an equal foot-
ing). Thus, we define

ψi
µ =

∂L
∂(∂µφi)

,

as the conjugate momentum of the field φi along the µth

direction of M. Then, provided that the following Leg-
endre transform is not singular,

H = ψi
µ ∂µφ

i − L ,

defines the De Donder – Weyl Hamiltonian density.
Henceforth, the unknowns are the fields (

{
φi
}
) with

their conjugate momenta in each direction of space-time
({ψiµ}). Together, they are the local coordinates of a dif-
ferential manifold, Ω, which is the De Donder – Weyl
definition of phase space (a multi-symplectic manifold as
we will prove later). The Hamilton equations generalize
to

∂µψi
µ = −∂H

∂φi
, (2.4a)

∂µφ
i =

∂H
∂ψi

µ . (2.4b)

This is the DW Hamiltonian formulation of a field theory
(see [35, 36, 37] for a detailed review of this formulation
of classical field theories).

Equations (2.4a) and (2.4b) can be rewritten in a more
symmetrical way (as in the case of classical mechanics)
by introducing a Poisson bracket for each space-time di-
rection. This collection of Poisson brackets is intimately
related to the multi-symplectic structure and each bracket
is associated to a symplectic 2-form.

Let us now describe Ω in the generalized coordinates
{ζa} ≡

{
φi
}
∪ {ψiµ} where a is an index conveniently
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chosen to sweep the collection. Following [2, 3, 4], we de-
fine on TΩ the vector ζ = ζa∂a that allows one to rewrite
eqs. (2.4a) and (2.4b) in the abstract form

Mµ · ∂µζ =∇H , (2.5)

where {Mµ} is a set of constant skew-symmetric matrix
of TΩ. The gradient is defined as

∇ : C∞(Ω)→ TΩ

∇H 7→ (dH)∗ = δab ∂bH∂a ,

and we recall that {∂a} is a basis of TΩ.

The multi-symplectic structure will directly arise from
eq. (2.5). We will come back to this point later but we
already emphasize that, as long as a pde can be written
in such a form, the msilcc method will apply.

The next step is to exhibit the multi-symplectic structure
and to prove its conservation. This will be done in the
next section, but let us first clarify the procedure presented
above on an example.

2.2.2 The non-linear wave equation

We consider the dynamics of a real scalar field, φ, whose
Lagrangian density is given by

L =
1

2
∂µφ∂

µφ− V (φ) .

The Euler – Lagrange equation reads

∂µ∂
µφ+ V ′(φ) = �φ+ V ′(φ) = 0 .

We introduce now

ψµ =
∂L

∂(∂µφ)
= ∂µφ ,

which is the conjugate momentum of φ in the µth direction.
Then, the DW Hamiltonian density reads

H = ψµ ∂µφ− L =
1

2
ψµ ψ

µ + V (φ) .

Defining
ζT =

[
φ ψ0 ψ1 · · · ψd

]
,

the equation of motion is given by eq. (2.5) provided that

Mµ
ab = δµa−1 δ

0
b − δ

µ
b−1 δ

0
a ,

where a, b ∈ J0, DK.

In dimension D = 1 + 0 (d = 0), aliasing q ≡ φ, p ≡ ψ0

and H ≡ H, we recover the expected Hamilton equation
of motion for a mechanical problem

[
0 −1
1 0

]
·
[
q̇
ṗ

]
=




∂H

∂q

∂H

∂p


 =

[
V ′(q)
p

]
.

In dimension D = 1 + 1 (d = 1) the M matrices read

M0 =




0 −1 0
1 0 0
0 0 0


 ,

M1 =




0 0 −1
0 0 0
1 0 0


 ,

and we stress that, for both of them, the eigenvalues are
0 and ±i.
In the general case all the M matrices have the same
eigenvalues: ±i and 0 (d times degenerate). As we will
see in the next section this fact causes some difficulties.
For the moment, we are going to highlight the multi-
symplectic structure of Ω relying on eq. (2.5). Then, we
will return to the vanishing eigenvalues and we will explain
how to treat them in the particular case of the non-linear
wave equation.

2.2.3 The multi-symplectic structure

This section will be devoted to the construction of the
multi-symplectic structure on Ω and, again following [2,
3, 4], we are going to show how it directly emerges from
eq. (2.5).

In the previous section we have shown that for a single
scalar field theory the Hamilton equation is fully char-
acterized by a Hamiltonian density and a collection of D
(constant and skew-symmetric) matrices ({Mµ}) that can
be used to define D 2-forms {ωµ}:

ωµ = −1

2
Mµ

ab da ∧ db .

The action of these 2-forms on a pair of vectors is

ωµ(∗,�) = 〈Mµ · ∗,�〉 = −〈∗,Mµ · �〉 ,

for any ∗,� ∈ TΩ, where 〈␣, ␣〉 is the scalar product on
TΩ.

All the {ωµ} are closed (dωµ = 0) since all the {Mµ}
are independent of the fields. On the other hand, let us
assume for the moment (we will come back to this at the
end of this section) that they are all non-degenerate. Fi-
nally, since the {Mµ} are linearly independent (as we will
shortly show) the {ωµ} are linearly independent as well.
So, (Ω, {ωµ}) is a multi-symplectic manifold.

Let us first prove the independence of the {Mµ} matri-
ces. In order to lighten the following computation, let
us introduce space-time indices which behave differently
under the Einstein summation rule. From now, the %
index takes just one value and does not imply summation
(even if repeated), while the σ index (σ 6= %) behaves in
the standard way. All other indices are unaffected. Let
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us now start by supposing that one of the {Mµ} is lin-
early dependent on the others: M% = ασM

σ. Then, in
eq. (2.5), the operator on the left hand side becomes

Mµ · ∂µ = M% · ∂% +Mσ · ∂σ
= ασM

σ · ∂% +Mσ · ∂σ
= Mσ · (ασ∂% + ∂σ)

= Mσ · ∂̃σ ,

where the ˜ refers to a different coordinate system. As
the direction ∂̃% has just disappeared from the differential
operator, it means that the dynamics along this direction
are trivial. Thus the {Mµ} are linearly independent.

To complete the proof of the multi-symplecticity of Ω it
remains to discuss the question of the degeneracy of the
{ωµ}. The 2-forms will be non-degenerate as long as they
all satisfy

detωµ = detMµ 6= 0 .

In other words the {Mµ} matrices should not have any
zero eigenvalue. Nevertheless we have seen in the previous
section that for the example of the non-linear wave equa-
tion all the {Mµ} matrices have the same eigenvalues and
especially a d times degenerate zero. So, as it is, the phase
space of the non-linear wave equation is multi-symplectic
only for d = 0 (that is to say, for the mechanical problem).

We are now going to present the resolution of this problem
on the particular example of the non-linear wave equation.
The same reasoning can be applied to other theories.

Let us first recall that the aim of the DW Hamiltonian for-
malism was to preserve covariance. Thus, it treats all the
space-time directions on an equal footing by introducing
a conjugate momentum for each. Still, time is not space,
and the conjugate momentum in time will have a different
status. We will call it the canonical one.

Degeneracy comes from the existence of non-canonical
conjugate fields. So, the idea is to ensure that all the
conjugate momenta be canonical (i.e. the conjugate mo-
mentum along time of a dynamic field). The solution is
to add extra fields, interacting with each other, such that
the new field theory allows a conjugate momentum to be
shared by several fields and thus to be canonical for some-
one. Finally, we still want to preserve covariance and, for
each direction of space-time, each momentum needs to be
the conjugate of a field.

Putting these elements together, we can modify the La-
grangian density such that it describes an equivalent, but
non-degenerate, problem. This construction can be graph-
ically represented by placing both the fields and their con-
jugate momenta on the vertices of a D-dimensional hyper-
cube: each direction stands for a space-time direction and
a line means that one of the fields on the edges is the con-
jugate momentum (along this direction) of the other. So,
on any path, a dynamic field alternates with a conjugate
field. We have drawn it for the three first dimensions in
fig. 14.

∂0

d = 0
φ ψ0

∂0

∂1

φ ψ0

ψ1 γ

d = 1

∂0

∂1
∂2

φ

ψ0

ψ1

ψ2

γ01

γ02

γ12
Γ

d = 2

Figure 14: Graphic representation of the construction of
a non-degenerate theory in dimension D = 1 + 0, = 1 + 1
and = 1 + 2 (the canonical direction is shown with a thick
line while the others are not). The fields in the d = 1 case
will be introduced in eqs. (2.8a) to (2.8d).

Now, to construct the new field theory explicitly, we first
consider the collection of fields

{{
Φ

(i)

µ1···µi = Φ
(i)

[µ1···µi]

}
µ1,··· ,µi∈J0,dK

}

i∈J0,DK
, (2.6)

where the pair of square brackets denote the anti-
symmetrization defined as

�[µ1···µi] =
1

i!

∑

p∈Pi({µ1···µi})

σ(p) �p ,

where Pi is the symmetric group of i symbols and σ(p)
is the signature of p. In particular, eq. (2.3) gives this
definition for two indices.

Before going further, we stress that the Φ
(i) will not be

treated as a tensor field but as a collection of scalar fields,
conveniently assembled in the same object. The collection
(2.6) is separated in two (equal) parts: {Φ(2i)} contains the
dynamical fields, while {Φ(2i+1)} contains the conjugate
fields. As a final remark, this collection is composed of

D∑

i=0

(
D

i

)
= 2D

elements and will indeed be suitable to populate the ver-
tices of the D-dimensional hypercube introduced earlier
as a graphic representation of this construction.

Next, we consider the Lagrangian density

L0 =
1

2

≤D/2∑

j=0

1

(2j)!
∂ν0

Φ
(2j)

ν1···ν2j
∂ν0Φν1···ν2j

(2j)

−
≤D/2∑

j=0

1

(2j)!
V [ν1···ν2j ]

(2j)

(
Φ

(2j)

ν1···ν2j

)
,
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where the ν indices are in J0, dK, which is nothing else than
the concatenation of 2d independent theories5 (note that
all these theories need to belong in the class of the non-
linear wave equation but it is not required that they have
the same potential). Then we add to this Lagrangian two
vanishing coupling terms. First, we obviously have

0 = +
1

2

≤D/2∑

j=1

1

(2j − 1)!
Φ

(2j)

µν1···ν2j−1
∂µ∂νΦνν1···ν2j−1

(2j)

− 1

2

≤D/2∑

j=1

1

(2j − 1)!
Φ

(2j)

µν1···ν2j−1
∂µ∂νΦνν1···ν2j−1

(2j)
,

and then, using an integration by parts (and ignoring the
boundary terms), we claim that

L+ = −1

2

≤D/2∑

j=1

1

(2j − 1)!
∂µΦνν1···ν2j−1

(2j)
∂νΦ

(2j)

µν1···ν2j−1

+
1

2

≤D/2∑

j=1

1

(2j − 1)!
∂νΦνν1···ν2j−1

(2j)
∂µΦ

(2j)

µν1···ν2j−1

will not modify the equations of motion since it is just 0
rewritten in a convenient way. Secondly, we have

0 = −
≤D/2−1∑

j=0

1

(2j)!
Φ

(2j)

ν1···ν2j
∂µ∂νΦµνν1···ν2j

(2j+2)
,

since it contains the contraction of a symmetric tensor
(∂µ∂ν) with an anti-symmetric one (Φµν···). Again, us-
ing an integration by parts (and forgetting the boundary
terms), we define

L− =

≤D/2−1∑

j=0

1

(2j)!
∂µΦµνν1···ν2j

(2j+2)
∂νΦ

(2j)

ν1···ν2j

and this term does not affect the dynamics either.

We now consider the theory described by the Lagrangian
density

L = L0 + L+ + L− ,

which should be equivalent to the simultaneous treatment
of 2d independent problems (that belong in the class of
the non-linear wave equation). Let us now construct the
DW Hamiltonian formulation of this theory. We first in-
troduce, for each dynamic field in the collection (2.6) and
for each direction of space-time, a conjugate momentum

Ψµ0···µ2i

(2i+1)
= Ψµ0[µ1···µ2i]

(2i+1)
=

∂L
∂
(
∂µ0

Φ
(2i)

µ1···µ2i

)

= ∂µ0Φµ1···µ2i

(2i)
+ ∂µΦµµ0···µ2i

(2i+2)

+ 2i ηµ0[µ1 ∂µΦ |µ|µ2···µ2i]
(2i)

− 2i ∂[µ1 Φ |µ0|µ2···µ2i]
(2i)

+ 2i(2i− 1) ηµ0[µ1 ∂µ2Φµ3···µ2i]
(2i−2)

,

5The anti-symmetrization of the indices in the potential are re-
quired since the fields are anti-symmetric objects and in particular
V 01

(2)

(
Φ

(2)

01

)
should coincide with V 10

(2)

(
Φ

(2)

10

)
.

where we have used that

∂
(
∂ν0

Φ
(j)

ν1···νj
)

∂
(
∂µ0

Φ
(i)

µ1···µi
) = j! δji δ

µ0
ν0
δµ1

[ν1
· · · δµiνj ] .

Then, defining

Φµ0···µ2i

(2i+1)
= Ψ[µ0···µ2i]

(2i+1)

= (2i+ 1) ∂[µ0 Φµ1···µ2i]
(2i)

+ ∂µΦµµ0···µ2i

(2i+2)
,

we can prove6 that

Ψµ0[µ1···µ2i]
(2i+1)

= Φµ0···µ2i

(2i+1)
+ 2i ηµ0[µ1 Φµ2···µ2i]

(2i−1)
,

and in consequence, that all the conjugate momenta are
indeed already defined in the collection (2.6).

The Euler – Lagrange equation reads

∂L
∂Φ

(2i)

µ1···µ2i

= ∂µ0

∂L
∂
(
∂µ0

Φ
(2i)

µ1···µ2i

) = ∂µ0
Ψµ0[µ1···µ2i]

(2i+1)

= ∂µ∂
µΦµ1···µ2i

(2i)
+ ∂µ∂νΦνµµ1···µ2i

(2i+2)

+ 2i ∂[µ1 ∂µΦ |µ|µ2···µ2i]
(2i)

− 2i ∂[µ1 ∂µΦ |µ|µ2···µ2i]
(2i)

+ 2i(2i− 1) ∂[µ1 ∂µ2Φµ3···µ2i]
(2i−2)

= ∂µ∂
µΦµ1···µ2i

(2i)
= �Φµ1···µ2i

(2i)
.

Summarizing, we first consider the concatenation of 2d in-
dependent theories (through the Lagrangian density L0).
Based on what we introduced in the previous sections,

6By substituting the expression of Φµ0···µ2i
(2i+1)

and Φµ2···µ2i
(2i−1)

and after
a straightforward identification it remains to prove that

(2i+ 1) ∂[µ0 Φµ1···µ2i]

(2i)
= ∂µ0Φµ1···µ2i

(2i)
− 2i ∂[µ1 Φ |µ0|µ2···µ2i]

(2i)
.

On the other hand, we successively have

(2i+ 1) ∂[µ0 Φµ1···µ2i]

(2i)
=

= (2i+ 1)
1

2i+ 1

2i+1∑
j=1

∂
[µj

Φ
µj+1···µ2i|µ0|µ1···µj−1]
(2i)

= ∂µ0Φµ1···µ2i

(2i)
+

2i∑
j=1

∂
[µj

Φ
µj+1···µ2i|µ0|µ1···µj−1]
(2i)

= ∂µ0Φµ1···µ2i

(2i)
+

2i∑
j=1

∂
[µj

Φ
|µ0|µ1···µj−1µj+1···µ2i]
(2i)

= ∂µ0Φµ1···µ2i

(2i)
−

2i∑
j=1

∂
[µ1

Φ
|µ0|µjµ2···µj−1µj+1···µ2i]
(2i)

= ∂µ0Φµ1···µ2i

(2i)

−
2i∑
j=1

(−1)j−2 ∂
[µ1

(−1)j−2 Φ
|µ0|µ2···µj−1µjµj+1···µ2i]
(2i)

= ∂µ0Φµ1···µ2i

(2i)
−

2i∑
j=1

∂[µ1 Φ |µ0|µ2···µ2i]

(2i)

= ∂µ0Φµ1···µ2i

(2i)
− 2i ∂[µ1 Φ |µ0|µ2···µ2i]

(2i)
.

�
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we know that the DW Hamiltonian formulation of this
theory requires the collection {Φ(2i)

,Ψ
(2i+1)

} of 2d(D + 1)

fields to construct the phase space (2d dynamical fields
and D 2d conjugate momenta). We also know that this
phase space is not a multi-symplectic manifold since the
multi-symplectic structure of each “sub”-theory is, inde-
pendently, degenerate. As we claimed earlier, this comes
from the existence of a non-canonical conjugate field. To
fix this issue, we introduce the additional coupling terms
L+ and L−. Above all, these couplings do not affect
the dynamics and each “sub”-theory remains independent.
However, these couplings have an interesting side effect:
they allow a conjugate momentum to be shared by several
dynamical fields and thus enable all the conjugate fields to
be canonical. Thus, correctly chosen, L+ and L− lead to
the closed collection {Φ(2i)

,Φ
(2i+1)

} = {Φ(i)} of 2D fields,
equality composed of dynamic fields and canonical conju-
gate momenta, and where “closed” has two meanings. On
the one hand, all the dynamic fields have all their con-
jugate momenta in the collection. On the other hand, all
the conjugate fields are, for all the directions of space-time,
the conjugate momentum of a dynamic field that belong
in the collection.

Now, from the Euler – Lagrange equations and the
definitions of the conjugate momenta, we get the De Don-
der – Weyl – Hamilton equations

−∂µΦµµ1···µ2i

(2i+1)
− 2i ∂[µ1 Φµ2···µ2i]

(2i−1)
=

∂H
∂Φ

(2i)

µ1···µ2i

(2.7a)

(2i+ 1) ∂[µ0
Φ

(2i)

µ1···µ2i]
+ ∂µΦ

(2i+2)

µµ0···µ2i
=

∂H
∂Φµ0···µ2i

(2i+1)

(2.7b)

where

H =
1

2

≤(D−1)/2∑

j=0

1

(2j + 1)!
Φν0···ν2j

(2j+1)
Φ

(2j+1)

ν0···ν2j

+

≤D/2∑

j=0

1

(2j)!
V [ν1···ν2j ]

(2j)

(
Φ

(2j)

ν1···ν2j

)
,

is the Hamiltonian density associated to L.
In order to identify the form of eq. (2.5), we need to flatten
all these indices (i.e. for every configuration of values of
all these indices we associate one, and only one, index).
So, if the list (µ1 · · ·µi) is sorted and free of duplicates,
we define

fl(i, µ1 · · ·µi) = 1 +

i−1∑

j=0

(
D

j

)

+

i∑

j=1

µj−1∑

νj=
µj−1+1

d−i+j+1∑

νj+1=
νj+1

· · ·
d∑

νi=
νi−1+1

1

∈
q
1, 2D

y
,

with µ0 = −1 and where the stacking of sums can be
re-expressed in term of generalized harmonic numbers as
well.

In the following, we assume that both (α1 · · ·αi) and
(β1 · · ·βj) are sorted and duplicate free. Thus, defining
the vector state ζ as

ζa = ζa=fl(2i,α1···α2i) = Φ
(2i)

α1···α2i

= ζa=fl(2i+1,α1···α2i+1) = Φα1···α2i+1

(2i+1)
,

eqs. (2.7a) and (2.7b) can be rewritten in the form of
eq. (2.5), i.e.

Mµ a
b ∂µζ

b = ∂aH ,

provided that

Mµ a=fl(i,α1···αi)
b=fl(j,β1···βj) =

(i mod 2− 1)×
[
δi+1
j

j∑

k=1

(−1)k−1δ
α1

β1
· · · δαk−1

βk−1
δ
µ
βk
δ
αk
βk+1
· · · δαiβj

+ δi−1
j

i∑

k=1

(−1)k−1δ
α1

β1
· · · δαk−1

βk−1
η
µαkδ

αk+1

βk
· · · δαiβj

]

+ (i mod 2)×
[
δj+1
i

i∑

k=1

(−1)k−1δ
β1
α1 · · · δ

βk−1
αk−1δ

µ
αkδ

βk
αk+1 · · · δ

βj
αi

+ δj−1
i

j∑

k=1

(−1)k−1δ
β1
α1 · · · δ

βk−1
αk−1η

µβkδ
βk+1
αk · · · δβjαi

]
.

These {Mµ} matrices are skew-symmetric, linearly inde-
pendent and non-degenerate (they all have two eigenval-
ues, ±i, 2d times degenerate). The phase space of the the-
ory, Ω, is now a multi-symplectic manifold and we have
finally obtained a correct covariant Hamiltonian formula-
tion of the non-linear wave equation.

Let us illustrate how this construction works in the par-
ticular dimension D = 1 + 1. We start by considering the
collection (2.6) and for notational convenience we create
aliases for these 22 fields as

Φ
(0)

= φ (2.8a)

Ψ0
(1)

= Φ0
(1)

= ψ0 (2.8b)

Ψ1
(1)

= Φ1
(1)

= ψ1 (2.8c)

Φ
(2)

01 = −Φ
(2)

10 = γ (2.8d)

Ψ001
(3)

= −Ψ010
(3)

= Φ1
(1)

= ψ1

Ψ101
(3)

= −Ψ110
(3)

= Φ0
(1)

= ψ0 .

Here, we have introduced one new dynamic field, γ, inde-
pendent of φ. See fig. 14 for a graphical representation of
these fields. Then we consider the concatenation of these
two theories described by the Lagrangian density

L =
1

2
(∂0φ)2 − 1

2
(∂1φ)2 − 1

2
(∂0γ)2 +

1

2
(∂1γ)2

+ ∂0φ∂1γ − ∂0γ ∂1φ− V (φ)− Ṽ (γ) ,
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where Ṽ is the potential of the extra theory which can
be freely chosen. The (canonical) conjugate momenta are
defined by

ψ0 =
∂L

∂(∂0φ)
=

∂L
∂(∂1γ)

= ∂0φ+ ∂1γ ,

ψ1 =
∂L

∂(∂1φ)
=

∂L
∂(∂0γ)

= −∂0γ − ∂1φ .

The Hamiltonian density is

H =
1

2
ψ02 − 1

2
ψ12

+ V (φ) + Ṽ (γ) ,

and defining the vector state

ζT =
[
φ ψ0 ψ1 γ

]
,

the dynamics are fully described by eq. (2.5) provided that

M0 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 ,

M1 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 .

These two matrices are no longer degenerate (their eigen-
values are +i, +i, −i and −i) and they define a multi-
symplectic structure on the phase space.

Recaping, we started with two theories (one for φ and one
for γ). While isolated they break the multi-symplectic
structure of phase space. Joined together they complete
each other such that the theory of the coalition restores
multi-symplecticity.

Using this construction, we reduced the number of
unknowns for each independent “sub”-theory from 3:{
φ, ψ0, ψ1

}
and

{
γ, ψ1, ψ0

}
to 2:

{
φ, ψ0

}
and

{
γ, ψ1

}
. In

a general settup we reduced the number of unknowns per
independent “sub”-theory from D+ 1 (the field and all its
conjugate momentums) to 2 (the field and its canonical
conjugate momentum) as in the standard non-covariant
Hamiltonian formulation of field theory.

Finally, we want to stress that from the numerical point
of view, to integrate a D-dimensional theory, we actually
need to integrate 2d D-dimensional theories. These “extra”
theories can be used in two ways (or a mix of the two):

i. By considering a theory the solution of which is known
we get an error estimate of the integration process.
This feature comes from the fact that the integration
is performed through the conjugate momentum which
is itself shared between different dynamic fields. If an
error occurs during the integration of one of the fields,
it will reverberate on the others and will be caught by
the control field(s).

ii. They can be used to integrate, at the same time, sev-
eral replicas of the theory (in a statistical approach for
example) or even different theories.

In the present section we have introduced a construction
that leads to a phase space that is a multi-symplectic man-
ifold. In the next sections, we will first prove the conser-
vation of the multi-symplectic structure under the Hamil-
tonian flow. Then we will define the stress-energy tensor,
the charges and discuss their properties.

2.2.4 Conservation of the multi-symplectic struc-
ture

To prove the conservation of the multi-symplectic struc-
ture, we consider the dual of eq. (2.5) which reads

Mµ
ab ∂µζ

b da = ∂aHda

i.e. ωµ(∂µζ, ·) = dH .
(2.9)

Now, taking the exterior derivative of it, we successively
have

d(ωµ(∂µζ, ·)) = ddH = 0

= d
(
Mµ

ab ∂µζ
b da

)

= Mµ
ab d
(
∂µζ

b
)
∧ da

= Mµ
ab

(
∂µdb

)
∧ da ,

where we have used that d and ∂µ commute since they act
in different spaces (Ω does not depend on the position on
M).

On the other hand, we have

∂µω
µ =

1

2
Mµ

ab

(
−
(
∂µda

)
∧ db − da ∧

(
∂µdb

))

=
1

2
Mµ

ab

(
−
(
∂µda

)
∧ db +

(
∂µdb

)
∧ da

)

= Mµ
ab

(
∂µdb

)
∧ da = 0 .

Thus, we have proved (on-shell) the local conservation of
the multi-symplectic structure

∂µω
µ = 0 . (2.10)

By definition a multi-symplectic integrator is a numeri-
cal method that exactly preserves the discrete version of
eq. (2.10).

2.2.5 The stress-energy tensor, its conservation
and the charges

We define now the stress-energy tensor as the symmetric
2-tensor

T µν =
1

2
(ωµ(∂νζ, ζ) + ων(∂µζ, ζ) + ηµνωκ(ζ, ∂κζ))

+ ηµνH (2.11)
= T νµ .
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Before proving that it is subject to a local conservation
law, we need to make some remarks. First of all, perform-
ing an integration by parts and provided that boundary
terms vanish (space-time is unbounded, subject to peri-
odic boundary conditions, . . . ) we have
∫

dDxωµ(∂ν∂
νζ, ζ) = −

∫
dDxωµ(∂νζ, ∂

νζ) = 0 .

(2.12)
Since ωµ is skew-symmetric in its two arguments
ωµ(∂νζ, ∂

νζ) identically vanishes. We stress that
eq. (2.12) holds for any ζ (i.e. off-shell), so the integrands
are equal, and hence

ωµ(∂ν∂
νζ, ζ) = −ωµ(∂νζ, ∂

νζ) = 0 .

Secondly, following the same reasoning we have

ων(ζ, ∂ν∂
µζ) = −ων(∂µζ, ∂νζ)

= −ων(∂νζ, ∂
µζ) = ων(∂µζ, ∂νζ)

= 0 .

We now have all the necessary ingredients to prove the
local conservation of the stress-energy tensor. Using the
relations established above, and eqs. (2.9) and (2.10), it is
straightforward to deduce

∂νT µν = ∂νT νµ = 0 . (2.13)

Hence, the stress-energy tensor is locally conserved (on-
shell).

Let us now sketch why we have defined the stress-energy
tensor as eq. (2.11). We suppose that the action of our
theory,

S =

∫
dDxL

({
φi, ∂µφ

i
})

,

is invariant under the local transformation

xµ → x′µ = xµ + ε `µ , (2.14)

where ε � 1 is constant while ` may depend on x. The
local variation of the field is

ε δφi(x) = φ′i
(
x′
)
− φi(x) ,

while the global variation is

ε∆φi(x) = φ′i(x)− φi(x) .

The local variation only depends on the nature of the field
(scalar, vector, tensor, . . . ) while the global variation in-
cludes the effect of the transformation. They are related
by

∆ = δ − `µ ∂µ +O(ε) .

On the other hand, the measure is affected by a Jacobian
and reads

dDx′ =
∣∣∣∣
∂x′

∂x

∣∣∣∣ dDx =
(
1 + ε ∂µ`

µ +O
(
ε2
))
dDx .

Then, the variation of the action is

δS =

∫
dDx δL+

∫
L δdDx

=

∫
dDx (δL+ L ∂µ`µ)

=

∫
dDx (∆L+ ∂µ(L `µ)) .

The global variation of the Lagrangian density reads

∆L =
∂L
∂φi

∆φi +
∂L

∂(∂µφi)
∆∂µφ

i

= ∂µ
∂L

∂(∂µφi)
∆φi +

∂L
∂(∂µφi)

∂µ∆φi

= ∂µ

(
∂L

∂(∂µφi)
∆φi

)
.

(using the Euler – Lagrange equation and the fact that
the global variation commutes with the space-time deriva-
tives). Hence, the variation of the action

δS = 0 =

∫
dDx ∂µ

(
∂L

∂(∂µφi)
∆φi + L `µ

)
,

defines a conserved Noether current associated to the
symmetry of the action under transformation (2.14):

jµ =
∂L

∂(∂µφi)
∆φi + L `µ

=
∂L

∂(∂µφi)
δφi −

(
∂L

∂(∂µφi)
∂νφi − ηµνL

)
`ν .

Now, if we restrict ourselves to global transformations only
(` becomes constant), the Noether current associated
with the global translational invariance along ` is

jµ =

(
ηµνL − ∂L

∂(∂µφi)
∂νφi

)
`ν ,

since all the fields (whatever their nature) have no local
variation (the Jacobian is the identity). Now, the stress-
energy tensor is naturally defined as the collection of the
Noether currents, each associated with the global trans-
lational invariance along a direction of space-time. It is
then defined as

Θµν = ηµνL − ∂L
∂(∂µφi)

∂νφi ,

and is, by construction, subject to a local conservation law

∂µΘµν = 0 .

Note that this tensor is not necessarily symmetric but it
can be symmetrized following the popular Belinfante
procedure. See, e.g. [38].

The stress-energy tensor is expressed in terms of the
Hamiltonian density (up to a sign) as

Θµν = ηµνH+ ψi
µ∂νφi − ηµνψiκ∂κφi .
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ωµ(∂νζ, ζ)/2 produces terms of the form(
ψi
µ∂νφi − ∂νφiψiµ

)
/2, which, after integration by

parts give ψiµ∂νφi. Then, adding a term to restore its
symmetry, the stress-energy tensor is indeed given by
eq. (2.11).

To conclude this section, let us now define the charges and
prove their conservation. The charges are the conserved
quantities associated to the Noether currents. Since the
stress-energy tensor is a collection of D Noether cur-
rents, it will define D charges as

Qµ =

∫
ddx T 0µ .

The stress-energy tensor is locally conserved (eq. (2.13))
and hence the charges are subject to a global conservation
law (using Stokes’ theorem and again assuming there are
no boundary terms):

dQµ
dx0

=

∫
ddx ∂0T 0µ = −

∫
ddx ∂jT jµ = 0 ,

where j runs on J1, dK.

2.2.6 Summary

Throughout this section, we have first introduced the no-
tion of symplecticity and highlighted its central rôle in
Hamiltonian mechanics. We have then presented the De
Donder – Weyl covariant Hamiltonian formulation of
field theory and we have shown that it leads to a multi-
symplectic phase space. We have also introduced (relying
on the particular example of the non-linear wave equation)
a construction that allows one to obtain a theory, equiv-
alent to the original one, but which does not lead to a
degeneracy of the multi-symplectic structure of the phase
space. Finally, we have proved the local (on-shell) conser-
vation of multi-symplecticity. We have also constructed
the stress-energy tensor and the charges, and we proved
their local and global conservation (on-shell), respectively.

To do so, following [2, 3, 4] we introduced the general form
(2.5) of the De Donder – Weyl – Hamilton equations.
Now we claim that, whenever a pde can be written in
the form (2.5), and has a non-degenerate multi-symplectic
structure, the msilcc method can be applied. We are
going to present how to implement it in the next section.

3 Construction and properties

The msilcc method is a centered box (finite-difference)
scheme [3] except that we do not implement it on the
traditional hypercubic lattice. Instead, we use a lattice
based on light-cone coordinates, that has the advantage
to restore the locality of the method (i.e. there is the
same number of unknowns as equations in each cell).

In this section we will present the implementation of the
msilcc method as well as a review of some of its interest-
ing properties. We will illustrate it on the example of the
λφ4 theory mainly in 1 + 1 dimensions.

3.1 The lattice: sampling the space-time
manifold

Let us consider the new coordinate system

x̌0 =
x0

√
2
− 1√

2

d∑

j=1

xj ,

x̌j =
√

2xj + δjd x̌
0 ,

(3.1)

the inverse of which is

x0 =
1√
2

d∑

µ=0

x̌µ ,

xj =
1√
2

(
x̌j − δjd x̌0

)
.

Defining ∂̌µ = ∂/∂x̌µ, the associated vector basis is

∂̌0 =
∂0 − ∂d√

2
,

∂̌j =
∂0 + ∂j√

2
,

and its inverse

∂0 =
∂̌0 + ∂̌d√

2
,

∂j =
√

2 ∂̌j − ∂0 .

One can remark that (3.1) is not the usual light-cone co-
ordinate system (except in dimension D = 1 + 1). The
difference is mainly that the set

{
∂̌µ
}
is not an orthogonal

basis (while it is for the usual definition).

Let us now sample the space-time manifoldM using the
lattice

M =
{
n = o+ δ ňµ ∂̌µ

∣∣ ňµ ∈ Z, n ∈M
}
, (3.2)

where o is arbitrary (chosen such thatM respects as much
as possible the boundaries ofM) and δ is the lattice spac-
ing.

At each point on the lattice (n ∈ M) we define the ele-
mentary cell (the definition can be extended to each point
nC ∈M + δC)

cell(n) =

{
n+ δ

∂0 + σ ∂ρ√
2

∣∣∣∣σ = ±1, ρ ∈ J0, dK
}

,

if all the vertices of the cell belong in M (possibly using
periodic boundary conditions).
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Figure 15: A portion of the lattice M in D = 0 + 1,
1 + 1 and 2 + 1 dimensions where we have highlighted the
elementary cell.

Figure 15 represents how the lattice looks like in low di-
mensions. On this lattice, the approximation of the deriva-
tives along the original directions of space-time (high-
lighted in color) will simply be obtained using the mid-
point rule. Hence, they only involve two points of M and
this makes the method local.

Let us now highlight that the direction ∂̌µ selects in cell(n)
one (and only one) square, of width δ, with vertices

nR−|∂̌µ = n+ δR−|∂̌µ = n

nR
+|∂̌µ = n+ δR

+|∂̌µ = nR−|∂̌µ + δ ∂̌µ = n+ δ
∂0 + σ ∂ρ√

2

nL−|∂̌µ = n+ δL−|∂̌µ = nR
+|∂̌µ − σ δ

√
2 ∂ρ = n+ δ

∂0 − σ ∂ρ√
2

nL
+|∂̌µ = n+ δL

+|∂̌µ = nL−|∂̌µ + δ ∂̌µ = n+ δ
√

2 ∂0 ,

where the second equation is used to determine σ = ±1
and ρ ∈ J0, dK. The center of this square (which is the
center of the cell as well),

nC = n+ δC = n+ δ
∂0√

2
, (3.3)

is the point where all the approximations are made.

3.2 The numerical approximation scheme

3.2.1 Definition

The approximation rules are constructed by a concatena-
tion of the centered box scheme, itself a concatenation of

midpoint rules, applied on a square of the elementary cell.
Indeed, this scheme is the simplest way to construct a
symplectic integrator. Therefore, by combining midpoint
rules in the most symmetric possible way, we expect to
conserve this property and thus obtain a simple multi-
symplectic integrator (locally well defined thanks to the
lattice).

For ζ or one of its components and for f smooth enough,
the approximation rules are given by

f
(
{ζa}

)(
nC
)
≈ f

({
〈ζa〉

(
nC
)})

,

∂̌µf
(
{ζa}

)(
nC
)
≈ Ďµf

(
{ζa}

)(
nC
)
,

with nC defined in eq. (3.3),

〈ζa〉
(
nC
)

=
1

2D

∑

m∈cell(n)

ζa(m) , and (3.4)

Ďµf
(
{ζa}

)(
nC
)

=

1

δ

[
f

({
1

2

[
ζa
(
nL

+|∂̌µ

)
+ ζa

(
nR

+|∂̌µ

)]})

− f
({

1

2

[
ζa
(
nL−|∂̌µ

)
+ ζa

(
nR−|∂̌µ

)]})]
.

For the moment we do not know whether these approxima-
tion rules respect the rules of differential calculus (we will
explore this issue in the following). A priori, the algebraic
manipulations done in the continuous formulation will not
be equivalent to the ones done on the discrete representa-
tion. Hence, the msilcc scheme should be applied only in
the light-cone coordinate system (i.e. all the derivatives
∂µ have to be re-expressed in term of the derivatives ∂̌µ be-
fore applying the scheme). When and only when directly
applied on a field, we have

∂0ζ
a
(
nC
)

=
∂̌0 + ∂̌d√

2
ζa
(
nC
)
≈ [· · ·] ,

∂jζ
a
(
nC
)

=
2 ∂̌j − ∂̌0 − ∂̌d√

2
ζa
(
nC
)
≈ [· · ·] .

After some straightforward algebraic manipulations, we
obtain

∂µζ
a
(
nC
)
≈ Dµζ

a
(
nC
)

= (3.5)
1√
2 δ

[
ζa
(
nC + δ

∂µ√
2

)
− ζa

(
nC − δ ∂µ√

2

)]
.

Equation (3.5) defines the derivatives of the field along
the original directions of space-time as nothing else than
the midpoint rule. Nevertheless, remember that this is
true only for a linear function of the field, otherwise it is
necessary to return to Ďµ.

The discrete analogue of the equation of motion (2.5) in
cell(n) at nC is

Mµ ·
[
ζ

(
n+ δ

∂0 + ∂µ√
2

)
− ζ
(
n+ δ

∂0 − ∂µ√
2

)]
=

√
2 δ∇H

(
1

2D

∑

σ=±1

∑

ρ∈J0,dK

ζ

(
n+ δ

∂0 + σ ∂ρ√
2

))
.
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As expected, the approximation of the equation of mo-
tion is indeed a concatenation of midpoint rules. Let us
illustrate how the procedure works with an example.

3.2.2 Application to the λφ4 theory in 0 + 1 di-
mension

The mechanical problem is described by the two unknowns
q and p that only depend on time. We first sample them
through M

qn = q(t = n δ) ,
pn = p(t = n δ) .

Then, applying the msilcc scheme, we get the discrete
version of the equations of motion

pn − pn+1 = δ
qn+1 + qn

2

[
1 +

(
qn+1 + qn

2

)2
]
,

qn+1 − qn = δ
pn+1 + pn

2
.

In this particular case, one could write down the explicit
expressions for (qn+1, pn+1) as functions of (qn, pn). But
these expressions are quite cumbersome and it is not worth
presenting them here.

This is a symplectic approximation.

3.2.3 The λφ4 theory in 1 + 1 dimensions

The lattice is now the same as for the BDdV method (see
fig. 5). Again, defining

σn = 2(n mod 2)− 1 ≡ ±1 ,

we sample the fields through M as

ζa jn = ζa
(
x =
√

2 δ

[
j +

1 + σn
4

]
, t =

n δ√
2

)
,

where n ∈ N and j ∈ J0, NJ. Therefore the discrete ver-
sion of the equation of motion is given by the set of alge-
braic equations

ψ0 j
n+1 − ψ0 j

n−1 + σnψ
1 j+σn
n − σnψ1 j

n =

−
√

2 δ
φ jn−1 + φ jn + φ j+σnn + φ jn+1

4
1 +

(
φ jn−1 + φ jn + φ j+σnn + φ jn+1

4

)2

 ,

φ jn+1 − φ jn−1 − σn γ j+σnn + σn γ jn =

√
2 δ

ψ0 j
n−1 + ψ0 j

n + ψ0 j+σn
n + ψ0 j

n+1

4
,

γ jn+1 − γ jn−1 + σn φ j+σnn − σn φ jn =

−
√

2 δ
ψ1 j

n−1 + ψ1 j
n + ψ1 j+σn

n + ψ1 j
n+1

4
,

ψ1 j
n+1 −ψ1 j

n−1 − σn ψ0 j+σn
n + σn ψ

0 j
n = 0 .

These are the equations used to integrate the λφ4 the-
ory with the msilcc method in the first section. Again,
they are not implicit but too much complicated to write
down in an explicit form. Hence they were treated as im-
plicit equations and solved using the Levenberg – Mar-
quardt algorithm for non-linear least squares [39].

In this way we generated the data exposed in section 1.

3.3 Conservation properties

3.3.1 Leibniz’s product rule for quadratic forms

Let us now explore how the approximation rules behave
with respect to the rules of differential calculus. We first
apply the discrete derivative to a quadratic form. After a
straightforward but tedious calculation we obtain

∂̌µζ
aζb
(
nC
)
≈ Ďµζ

aζb
(
nC
)

=

= 〈ζa〉∂̌µ
(
nC
)
Ďµζ

b
(
nC
)

+ 〈ζb〉∂̌µ
(
nC
)
Ďµζ

a
(
nC
)

≈ ζa∂̌µζb
(
nC
)

+ ζb∂̌µζ
a
(
nC
)
, (3.6)

where the average value on the square selected by ∂̌µ is

〈ζa〉∂̌µ
(
nC
)

=
1

4

[
ζa
(
nL

+|∂̌µ

)
+ ζa

(
nR

+|∂̌µ

)

+ ζa
(
nL−|∂̌µ

)
+ ζa

(
nR−|∂̌µ

)]
.

(3.7)

First of all, eq. (3.6) defines the approximation rule for
ζa∂̌µζ

b such that the Leibniz’s product rule for quadratic
forms holds (actually the msilcc scheme was designed
for that purpose since it is a simple way to construct an
approximation that preserves the multi-symplectic struc-
ture). As a second remark, the Leibniz’s product rule
remains valid on the discrete scheme for quadratic forms
only. Finally, this is not true for ∂µ (except in D = 1 + 1
dimensions since 〈〉∂̌µ coincides with 〈〉 by definition).
Hence, the necessity to work in the light-cone coordinate
system (all the derivative have to be re-expressed in terms
of ∂̌ before making approximations).

To conclude this section, we stress7 that the same relations
hold on the lattice M + δC .

3.3.2 Preservation of cross derivatives equality

Now, we define the collection
{
zk
}
. Each zk lives on M +

δC and is linear in the field. So the collection
{
zk
}

is

7When applied on objects of the collection
{
zk
}
(defined in sec-

tion 3.3.2) the average value on the square selected by ∂̌µ as well as
the full average value are defined on M + δC at n as

〈zk〉∂̌µ(n) =
1

4

[
zk
(
nL+|∂̌µ − δ

C
)

+ zk
(
nR+|∂̌µ − δ

C
)

+ zk
(
nL−|∂̌µ − δ

C
)

+ zk
(
nR−|∂̌µ − δ

C
)]

〈zk〉(n) =
1

2D

∑
m∈cell(n−δC)

zk(m) .
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limited to {
〈ζa〉,

{
〈ζa〉∂̌µ , Ďµζ

a
}}

.

The average values were defined in the previous section.
We add here the definition of the derivatives

∂̌µf
({
zk
})

(n) ≈ Ďµf
({
zk
})

(n) =

1

δ

[
f

({
1

2

[
zk
(
nL

+|∂̌µ − δ
C
)

+ zk
(
nR

+|∂̌µ − δ
C
)]})

− f
({

1

2

[
zk
(
nL−|∂̌µ − δ

C
)

+ zk
(
nR−|∂̌µ − δ

C
)]})]

.

Following the same reasoning as when the field was ζa

defined on M , we have (again, only when directly applied
on a field)

∂µz
k(n) ≈ Dµz

k(n) =

1√
2 δ

[
zk
(
n+ δ

∂µ√
2

)
− zk

(
n− δ ∂µ√

2

)]
.

Using these definitions, one can give meaning to the second
derivative of the field. We have

DµDνζ
a(n) =

=
1√
2 δ

[
Dνζ

a

(
n+ δ

∂µ√
2

)
−Dνζ

a

(
n− δ ∂µ√

2

)]

=
1

2 δ2

[
ζa
(
n+ δ

∂µ + ∂ν√
2

)
− ζa

(
n+ δ

∂µ − ∂ν√
2

)

− ζa
(
n− δ ∂µ − ∂ν√

2

)
+ ζa

(
n− δ ∂µ + ∂ν√

2

)]

=
1

2 δ2

[
ζa
(
n+ δ

∂ν + ∂µ√
2

)
− ζa

(
n+ δ

∂ν − ∂µ√
2

)

− ζa
(
n− δ ∂ν − ∂µ√

2

)
+ ζa

(
n− δ ∂ν + ∂µ√

2

)]

=
1√
2 δ

[
Dµζ

a

(
n+ δ

∂ν√
2

)
−Dµζ

a

(
n− δ ∂ν√

2

)]

= DνDµζ
a(n) ,

proving the identity of the cross derivatives in discrete
space-time. Using the relation between Dµ and Ďµ, we
find that the same applies on the light-cone coordinates:

ĎµĎνζ
a(n) = ĎνĎµζ

a(n) .

3.3.3 Exact conservation of the multi-symplectic
structure

Let us now prove the conservation of the multi-symplectic
structure. We first perform the change of coordinates in
the left hand side operator of the equation of motion (2.5)

M̌µ · ∂̌µ = Mµ · ∂µ ,

and we obtain the set of skew-symmetric matrices in the
new coordinate system

M̌0 =
1√
2
M0 − 1√

2

d∑

j=1

M j ,

M̌ j =
√

2M j + δjd M̌
0 .

From M̌µ we define ω̌µ that actually behaves as a com-
ponent of a D-vector inM

ω̌µ =
∂x̌µ

∂xρ
ωρ .

The set {ω̌µ} defines the multi-symplectic structure in the
light-cone coordinate system and is subject to the same
conservation law

∂̌µω̌
µ =

∂xρ

∂x̌µ
∂ρ

(
∂x̌µ

∂xσ
ωσ
)

= ∂ρω
ρ = 0 .

By taking the exterior derivative of the equation of motion
(2.5) we have

M̌µ
ab ∂̌µdb = ∂a∂bH(ζ)db .

Then, the local conservation of multi-symplecticity is, nu-
merically,

∂̌µω̌
µ ≈ Ďµω̌

µ =

= −1

2
M̌µ

ab

(
Ďµda ∧ 〈db〉∂̌µ + 〈da〉∂̌µ ∧ Ďµdb

)

= M̌µ
ab Ďµdb ∧ 〈da〉∂̌µ

= ∂a∂bH(〈ζ〉) 〈db〉 ∧ 〈da〉∂̌µ
= 0 ,

since the contraction of the symmetric object ∂a∂b with
the skew-symmetry of the wedge product vanishes.

So, the multi-symplectic structure is indeed exactly pre-
served by the msilcc scheme which is hence a multi-
symplectic integrator.

3.4 Conservation of the stress-energy tensor

In this section we investigate the effect of the msilcc
scheme on the stress-energy tensor.

3.4.1 Local approximate conservation of the
stress-energy tensor

Let us first obtain two preliminary results. On the one
hand, we have the commutativity of the oriented average
value (eq. (3.7)) with itself

〈
〈ζa〉∂̌µ

〉
∂̌ν

(n) =

=
1

4

∑

σ=±

∑

X={L,R}

〈ζa〉∂̌µ
(
n− δC + δX

σ|∂̌ν

)

=
1

16

∑

σ=±
σ′=±

∑

X={L,R}
X′={L,R}

ζa
(
n− 2 δC + δX

σ|∂̌ν + δX
′

σ′|∂̌µ

)

=
1

4

∑

σ′=±

∑

X′={L,R}

〈ζa〉∂̌ν
(
n− δC + δX

′

σ′|∂̌µ

)

=
〈
〈ζa〉∂̌ν

〉
∂̌µ

(n) .
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On the other hand, we have the commutativity of the ori-
ented average value with the derivative

〈
Ďµζ

a
〉
∂̌ν

(n) =

=
1

4

∑

σ=±

∑

X={L,R}

Ďµζ
a
(
n− δC + δX

σ|∂̌ν

)

=
1

8 δ

∑

σ=±
σ′=±

∑

X={L,R}
X′={L,R}

σ′ ζa
(
n− 2 δC + δX

σ|∂̌ν + δX
′

σ′|∂̌µ

)

=
1

2 δ

∑

σ′=±

∑

X′={L,R}

σ′ 〈ζa〉∂̌ν
(
n− δC + δX

′

σ′|∂̌µ

)

= Ďµ〈ζa〉∂̌ν (n) .

Now we consider the non-symmetrized part of the stress-
energy tensor

T µν =
1

2
[ων(∂µζ, ζ)− ηµνωκ(∂κζ, ζ)] + ηµνH(ζ) .

Since T is a tensor (η is a tensor and ω and ∂ are vectors),
we have

Ť µν =
∂x̌µ

∂xρ
∂x̌ν

∂xσ
T ρσ

=
1

2

[
ω̌ν
(
∂̌µζ, ζ

)
− η̌µνω̌κ

(
∂̌κζ, ζ

)]
+ η̌µνH(ζ)

≈ Ťµν ,

where

η̌µν = ∂ρx̌
µ ∂ρx̌ν .

The numerical version of Ť is defined (using the approxi-
mation rules introduced earlier) as

Ťµν =
1

2

[
ω̌ν
(
Ďµζ, 〈ζ〉∂̌µ

)
− η̌µνω̌κ

(
Ďκζ, 〈ζ〉∂̌κ

)]

+ η̌µνH(〈ζ〉) .

Now, we use the exact conservation of the multi-
symplectic structure

Ďνω̌
ν
(
Ďµζ, 〈ζ〉∂̌µ

)
= 0 =

= ω̌ν
(
ĎνĎ

µζ,
〈
〈ζ〉∂̌µ

〉
∂̌ν

)
+ ω̌ν

(〈
Ďµζ

〉
∂̌ν
, Ďν〈ζ〉∂̌µ

)
,

and the dual of the equation of motion (2.5) to prove that

ω̌ν
(
ĎνĎ

µζ,
〈
〈ζ〉∂̌µ

〉
∂̌ν

)
= ω̌ν

(
Ďν〈ζ〉∂̌µ ,

〈
Ďµζ

〉
∂̌ν

)

= dH
(〈
〈ζ〉
〉)[

Ďµ〈ζ〉
]
.

Then, using all the preliminary results of this section,
the approximation of the local conservation of the stress-

energy tensor reads

Ďν Ť
µν =

1

2

[
0− Ďµω̌κ

(
Ďκζ, 〈ζ〉∂̌κ

)]
+ ĎµH(〈ζ〉)

= ĎµH(〈ζ〉)− 1

2

[
ω̌κ
(
ĎµĎκζ,

〈
〈ζ〉∂̌κ

〉
∂̌µ

)

+ ω̌κ
(〈
Ďκζ

〉
∂̌µ
, Ďµ〈ζ〉∂̌κ

)]

= ĎµH(〈ζ〉)− 1

2

[
ω̌κ
(
ĎκĎ

µζ,
〈
〈ζ〉∂̌µ

〉
∂̌κ

)

+ ω̌κ
(
Ďκ〈ζ〉∂̌µ ,

〈
Ďµζ

〉
∂̌κ

)]

= ĎµH(〈ζ〉)− dH
(〈
〈ζ〉
〉)[

Ďµ〈ζ〉
]

= ĎµHI(〈ζ〉)− dHI
(〈
〈ζ〉
〉)[

Ďµ〈ζ〉
]
, (3.8)

where
HI = H−HQ ,

is the non-quadratic part of H (HQ is the quadratic part
of the Hamiltonian density).

Accordingly, the msilcc scheme exactly preserves the lo-
cal conservation of the stress-energy tensor for any linear
Hamiltonian pde. When applied on a non-linear prob-
lem, the msilcc method breaks the conservation of the
stress-energy tensor only because the chain rule does not
hold on the discrete space-time. Nevertheless, if the sam-
pling is good enough we expect the msilcc integrator not
generate large violations of this conservation law.

One can remark that there is no longer any second deriva-
tive in eq. (3.8). Hence, let us approximate Ďν Ť

µν by
removing the lowest level average value:

Ďν Ť
µν ' ĎµHI(ζ)− dHI(〈ζ〉)

[
Ďµζ

]
. (3.9)

Obviously, this operation is strictly forbidden. Neverthe-
less, eq. (3.9) is a very good estimator of eq. (3.8). This
can be understood if we remember that eq. (3.8) mainly
evaluates how much the chain rule is violated for non-
quadratic functions on the lattice. Therefore, increasing
the averaging is not an essential element.

In practice, on the example of the λφ4 theory in 1 + 1
dimensions the difference between eq. (3.8) (or explicitly
eq. (3.10)) and eq. (3.9) (explicitly eq. (3.11)) is negligible
and it is almost impossible to distinguish the two on the
numerical results.

The substantial advantage of the estimator (3.9) is that
it is simpler to compute, but first and foremost, that it is
more local (it involves only the current cell). Thus, the
accuracy of the integration can be checked regardless of
the neighbouring cells. This ensures a better scalability of
the method by reducing the number of communications.

3.4.2 The λφ4 theory in 1 + 1 dimensions

In the case of the λφ4 theory in 1 + 1 dimensions, and
assuming that the extra field γ is free (i.e. used as a
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control parameter), eq. (3.8) explicitly becomes

ε± = Ďν Ť
µν

=
1

4 δ

[(
φU + φ±

2

)4

−
(
φD + φ∓

2

)4
]

(3.10)

− 1

2 δ
(φU + φ± − φD − φ∓)

(
φU + φ± + φD + φ∓

4

)3

,

where ± selects µ = 0 or 1 and

φU =
1

4

[
φ jn + φ jn+1 + φ j−σnn+1 + φ jn+2

]
,

φ± =
1

4

[
φ
j+σn±1

2
n + φ

j−σn∓1
2

n + φ
j−σn∓1

2
n−1 + φ

j−σn∓1
2

n+1

]
,

φD =
1

4

[
φ jn + φ jn−1 + φ j−σnn−1 + φ jn−2

]
,

while eq. (3.9) explicitly becomes

ε± '

1

4 δ




φ

j+σn±1
2

n + φ jn+1

2




4

−


φ

j
n−1 + φ

j+σn∓1
2

n

2




4


− 1

2 δ

(
φ
j+σn±1

2
n + φ jn+1 − φ jn−1 − φ

j+σn∓1
2

n

)

×
(
φ jn + φ j+σnn + φ jn−1 + φ jn+1

4

)3

. (3.11)

3.4.3 Note on the possibility of an exact conser-
vation of the stress-energy tensor

It is actually possible to obtain an exact conservation of
the stress-energy tensor. Let us remember the idea of the
BDdV method: the discretization rules were applied on
the energy instead of the equation of motion, then the
constrains on the conservation of the energy were used as
an equation of motion. These two procedures are equiva-
lent in the continuum limit, but they are not on the lattice
since the rules of differential calculus are no longer fulfilled
in the latter setting.

One can imagine here to proced in the same way by ap-
plying the discretization rules on the stress-energy ten-
sor and then use its conservation as an equation of mo-
tion (hence an exact conservation of the stress-energy ten-
sor). However, it would become necessary to evaluate
the error committed on the original equation of motion.
This would leads to evaluate the quantity: ĎµHI(〈ζ〉) −
dHI

(〈
〈ζ〉
〉)[

Ďµ〈ζ〉
]
(i.e. eq. (3.8)).

The dHI
(〈
〈ζ〉
〉)[

Ďµ〈ζ〉
]
term is the right hand side of

the equation of motion while ĎµHI(〈ζ〉) arises with the
derivatives of the stress-energy tensor. So, whether the
discretization is performed on the equation of motion
or on the stress-energy tensor, to estimate the quality
of the approximation we have to evaluate how much
dHI

(〈
〈ζ〉
〉)[

Ďµ〈ζ〉
]
differs from ĎµHI(〈ζ〉) in both cases.

3.5 Motivation to use the light-cone coordi-
nates

Solving the numerical equation of motion requires the si-
multaneous solution of a set of algebraic equations. This
is equivalent to finding the root of a vector function. It is
generally preferable to see this problem as the minimiza-
tion of the square norm of a vector function since algo-
rithms for this kind of optimization are more robust and
more diversified than the ones for finding roots. Indeed,
this can be achieved by using standard optimization meth-
ods such as the Levenberg – Marquardt, Powell’s
Dog Leg, etc. [39].

We alluded to this feature earlier, but we now want to
stress the importance of the lattice. It has been chosen
such that in each cell there is only one point at the lat-
est time. Thus, in each cell we have as many algebraic
equations as unknowns. The method is well defined lo-
cally. Usually, the centered box scheme is implemented
on a hypercubic lattice which is indeed simpler but leads
to more unknowns than equations in each cell (except in
dimension D = 0 + 1). The method is still globally well
defined since each unknown is involved in the equations of
the neighbouring cells. However, at each time step, it re-
quires to solve the whole system in one block. Therefore, if
we want to dispatch the problem on several process units
a huge number of communications are needed (known to
be a bottleneck for high performance computations).

The main advantage of the msilcc method, is that it re-
stores the locality of the algorithm while most of the ex-
pressions (the equation of motion, the conservation of the
stress-energy tensor, . . . ) remain quite simple as we have
shown through the example of the λφ4 theory.

We finally want to make a remark concerning the initial
conditions: the lattice of the msilcc method is such that
a cell involves three levels of time. Therefore, at the ini-
tial time, in each cell, we have two unknowns for only one
equation. The idea to solve this tricky problem is to as-
sume (only at the initial point) that the average in space
is equal to the average in time (i.e. the average over all
the points of the cell at t = 0 is equal to the average of the
two points at t = 0 ± δC). In this way we have removed
the superfluous unknowns. Nevertheless, it requires that
the equation of motion contains a derivative along time of
all the fields of the vector state. Hence the necessity to
work with a formulation of the problem that will not lead
to a degeneracy of the multi-symplectic structure.

3.6 Higher dimensions

In the present section we discuss the limits of the msilcc
method and possible ways of improvement.

The lattice M , defined in eq. (3.2), is an attempt to gen-
eralize to higher dimensions the one introduced in sec-
tion 1.3.1 for D = 1 + 1 (see fig. 5). However, we have
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experienced some instabilities of the method in dimension
D > 1 + 1. This change in the behavior of our method
when the dimension of space-time increases is a bit as-
tonishing. We suspect two reasons for that. When the
dimension of space-time becomes higher than 1 + 1:

i. On the one hand, the ensemble of the cells of the lat-
tice is no longer a tessellation of the space-time mani-
fold (i.e. there are points in space-time which are not
contained in any cell).

ii. On the other hand, the oriented average, 〈· · ·〉∂̌µ (see
eq. (3.7)), no longer coincides with the full average 〈· · ·〉
(eq. (3.4)).

One can imagine another generalization of the lattice in-
troduced in section 1.3.1 which avoids the two problems
mentioned above. This is a hypercubic lattice, oriented in
such a way that there is only one unknown in each cell
(cells are now hypercubes). It consists in starting with
another light-cone coordinate system:

∂̌µ =
∂xν

∂x̌µ
∂ν = R ν

µ ∂ν ,

where R is a rotation matrix (i.e. R ∈ SO(D)) such that
the direction (1, 1, · · · , 1) is mapped to (1, 0, · · · , 0) (in
that way, each cell will only contain one unknown). So,

R ν
0 =

1√
D

.

Then, it remains to orthogonalize the remaining rows of
R, which can be achieved by defining

R ν
µ =

1√
µ(µ+ 1)

ν < µ ,

R ν
µ = −

√
µ

µ+ 1
ν = µ ,

R ν
µ = 0 ν > µ ,

where µ ∈ J1, dK and ν ∈ J0, dK.

The space-time is now discretized using an hypercubic lat-
tice rotated by R, and the discretization rules are simple
concatenations of midpoint rules as introduced in [3].

Such a method would have the same property of multi-
symplecticity and locality while, hopefully, remaining sta-
ble in any dimension. But we leave the complete develop-
ment of it for future work.

Conclusions

The purpose of this paper was to introduce a new nu-
merical method to integrate partial differential equations
stemming from the Hamiltonian dynamics of field theories.
The method is a centered box scheme, implemented on the
light-cone coordinates, in such a way to restore the local-
ity of the algorithm without losing its multi-symplectic
properties.

Our method has local conservation properties (and there-
fore global conservation properties as well) in agreement
with what is generally achieved by multi-symplectic inte-
grators. The errors committed do not strongly accumu-
late, remaining very small over very long periods of time.
This is important in applications in which the long-time
limit of evolution should be reached with good confidence.

In the process of comparing the performance of our algo-
rithm to other ones in the literature we showed that exact
global conservation properties, as the ones imposed in the
BDdV technique, do not necessarily guarantee small er-
rors in the local conservation laws.

We highlighted the link between the De Donder – Weyl
formalism of field theories and the multi-symplectic struc-
ture of phase space, and we treated the latter on a rigor-
ous geometric way. We developed the construction of the
stress-energy tensor in the Hamiltonian formalism. We
showed that it is exactly conserved in the continuum and
we derived the error committed by the algorithm in its
discrete implementation. In particular, we showed that it
is exactly preserved for a linear equation.

Interestingly, depending on the model that we considered,
the multi-symplectic structure was found to be degenerate
in spatial dimension larger than zero. We showed how to
solve this problem in any dimension using the particular
case of the wave equation as an example. The generaliza-
tion to other field equations should follow similar steps.
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